CHAPTER IIT

MAL'CEV VARIETIES

When working with arbitrary algebras, there is always the
danger that the kind of algebra under consideration might be too
special, and thus trivial, or else too general, and thus lack the
possibility of interesting results. Therefore, one is always
searching for appropriate levels of generality.

One proprosal (see [3] ) is to consider special classes of
algebras called Mal'cev Varieties. 1In this chapter we define this
kind of class of algebras and investigate the various.classes of
algebraic lattices and commutative groupoids, introduced in Chapter II,

in this setting.

RO IZL
3.1, Definition., Let =<A; F> be an algebra, the n-ary
Polynomials of'Qi are certain mappings from nA into A, defined as

follows :

; i~ n
(i) The projections e; t A+ A, (ao,...,an_l) *oa,

are n-ary polynomials,
t31) 1I£ Pgs+++sP, _; are n-ary polynomials, then so is

Y
fY(pO"“’pnY-l)’ defined by

f.r(po"" ’pnY-l)(xO’...’xn—l) = f\((po(bios".’xn_l)’aio ’PnY_l(xoglqc ’xn-l))"

where fT EF
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(iii) n-ary polynomials are those and only those which we

get from (i) and (ii) in a finite number of steps.

(n

Let P )FZD denote the set of n-ary polynomials of9/.

3.2. Definition. The n-ary polynomial Symbols of type T are

defined as follows :

(i) XgseeesX . are n-ary polynomial symbols.,

(3%) 4 Posesss Pn -1 8re n-ary polynomial symbols, and

K
Yy < 0(T), then fY(PO""’ Pn l) is an n-ary polynomial symbol ;
Y

(iii)  n-ary polynomial symbols are those and only those
which we get from (i) and (ii) in a finite number of steps.

Let P(D)CC) denote the set of all n-ary polynomial symbols.

3.3. Definition, The n-ary polynomial p over the algebra ‘U
induced by the n-ary symbol P is defined as follow :
: ; n
(i) X; induces €5
(ii) difrPp = fY(PD""’ PnY-l) end P, induces p; for

0 £ 1i<n, then P induces fy(po,..., ) )

| nY-l
3.4, Definition., Let P, Q € P(n)(T). The n-ary identity P = Q

is said to be satisfied in a class K of algebras of type T if P and
Q induce the same polynomials, in each algebra in K, or, equivalently,
P induces p, Q induces q, and p(ao,..., M q(ao,..., a, 1) for

all Bgseees an-l & A, 'rus K.
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If X is a class of algebras, Id(K) denotes the set of all
identities satisfied in K.
Let £ be a set of identities in P(n)(t), then we get a class

*
of algebras I satisfying these identities.

*
3.5. Definition. A class K of algebras is a variety if K = &

for some set of identities I,

3.6. Theorem. A class K is a variety if and only if K is closed

under taking subalgebras, direct products and homomorphic images.

Proof. (see[ijjrmsel?l}h

3.T. Definition. Let U be an equivalence relation on an algebra
le=<fA;F>, i.e., a reflexive, symmetric, and transitive subset of 2A.

If U is also a subalgebra of QA, then it is called a

congruence on A,

3.8. Definition. Let U, V be equivalence relations on a set A, let

2

Ue Ve {(xy)e "8 |3te & xU & V3l

If U V=V U, then U and V are said to commute.

3.9, Definition. Let K(T) be a variety such that each pair of
congruences, on each algebrs (L in K(T), commutes. Then K(T) is

said to be a Mal'cev variety, and algebras in K(Z) are called

Mel'cev algebras.
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3.10. Theorem. If K(T) is a Mal'cev variety, then for each algebra
1 in K(T), each subalgebra of %) containing A, where A = {(a,a)la e A},

is a congruence on A.

Proof. (see [3],19-20;).

Next we check whether the classes of algebraic lattices and
commutative groupoids from Chapter II are Mal'cev varieties.
Recall that K is the class of non-trivial algebraic lattices which
have the property that each compact element contains only countably
many compact elements. K'Bn is the class of algebraic lattices in K
which have m minimal elements. Kl is the class of algebraic lattices
in K which are chaing.
K:2 is the class of algebraic lattices & in K with the property that
there exists x in L~, such that x is compact and contains all compact
elements.
KT: is the class of algebraic lattices & in K, such that

L=v {ci} + C; is a finite chain of lengthm, 0,= 0
ieI where |I|)l

and li=l for i # j, c;h e

J

3 ® {oi, 11}.

‘.j’
Kh is the class of algebraic lattices in K which are complemented

lattices and units are compact.

m
Claim. K, KE, Kl’ KQ’ KS’ Kh are not varieties and hence not

Mal'cev varieties.
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To show K is not a variety, let £ =<utly €, Le K
and {1,2,3,...} is sublattice of OC which is not complete. That is,
K is not closed under taking a subalgebras. Therefore, K is not a

variety.

To show Ie; is inc;»‘l: a variety. Suppose m > 1. Let L have

OCO = <{l,a,0}; <.> is a sublattice of ocwi‘bh one minimal

element. Hence ‘CO % I‘CIS .

1
Suppose m = 1. Let GC have a structure ay ay ,oC € Kg
i OC'! 33
but a Q a, 1is a sublattice of s with two
5 2 2),
aa 0
minimal elements. Therefore, KE is not closed under taking
subalgebras, and thus, K]g is not a variety.
3
To show Kl is not a variety, let uC have structure {2 5
1
aC e K. °C><OC has a structure
(3,3)
/ 3 \
{1,723 ')\\ /(237-)\ /(3:1-)
(3,87 (2,1)
\\ /
1. 4Y
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Bimee (1,3); (3.1) ELRE win tust (1,3)41 (3,1) and
(3,l)$ (1,3) , we have L& 1% ot a chain,

Hence Kl is not closed under taking direct products, this
implies that Kl is not a variety.
To show K, is not a variety, let & = lwt23<), w+l is compact,
therefore oCé K2. w=1V {0,1,2,...‘} , W is not compact, and
<w+l',é> is a sublattice of <w+2;$> which the greatest compact
elegent does not exist, therefore <u+lj<> #Kz.

Hence K2 is not closed under taking subalgebras, and thus
K2 is not a variety.

To show Kr';is not a variety. For any OC in Km we have OCB

3 3

with structure I as a subalgebra of oL

L2

< 1(3,3) (0ae3) 01302 2) L) } 4 <> and

%

02 <{(393)5(253)9(292),(132) :(1,1)}; £ > s We have Cl, C2

are chain in of3 X 0C3 and C, # C,. But C,NC, ={(3,3),(2,3),(1,2),(1,1)}

# {(1,1),(3,3)} where (1,1) is the unit of ol; X"CS and (3,3) is a zero
of of3 XOCS. Therefore °C3 X OCB 4: I(l.-;’n Since £3 X oC3 is a

subalgebra of UCXOC, we have [{Inis not closed under direct product,
3

and thus Kranis not a variety.
1
To show Kh is not a variety, let L have a structure 'al<>n a,

)

we have &L € Kh _ 0
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<?Q0 =<{1, a, 0}, €> is a sublattice of & and OCO is not a
complemented lattice, then aCO # Kh'

Therefore, Kh is not closed under taking subalgebras, and
thus Kh is not a variety. Recall that C is the class of commutative
groupoids. C":g is the class of commutative groupoids G with the
following properties; i) G has m idempotent elements, ii) let B
be the set of ell idempotents of G, then for all x in G-B, there
exist b e B, nelN such that x'= b,

Cl is the class of G in C with the property that for all x, y in G,
there exists ne N such that x'= vy or y°= x.
C, is the class of G in C which are finitely generated.

2

c’3n is the class of G in C with the properties that;

i) there existsa €& G, such that a gencrates G,

ii) B={eeGlexec=cl#g a.ndforel¥e21nB,el*ee=a.,

iii) for all e; dn B, there exists @ # X.= G such that

X, = {x|xe &, 3 nelN 3 X" = ei}, |Xi| =m-1 and for all x, y in X5

i

InelN such that x° = y or y° = x.
iv) for all x in G-{a}, x e X;, for some i.
Ch is the class of G in C with the following properties,

i) there exists a in G, such thit a senerates (.
ii) for all § # X G G, if for ali x, y in X, x ¥y € X and

S5e({x,y}) # G, then there exist x' in G, x in X such that x # x'=a,

and for all n in N, for ell y in X, (x")® # y.
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Claim C is a variety.
Let £ be the following set of identities, {x1* Xy, = X % x,, for all

*
x> X, in Pn(<2>)}. Then I = C. Therefore, C is a variety.

Claim Cg, Cl, 02, Cgl, Ch are not varieties, and hence not Mal'cev
varieties.

m m
To show CO is not a variety, suppose m > 1, let G e CO and B
B = {idempotent of G}. Let b € B, we have Sg({b}) = {b} as a
subalgebra of Gy with 1 idempotent element. Therefore, {b} ¢ CO.

Suppose m = 1. Let Gy, G come form the lattices of the form

N
o i
1 X5 s \ya » therefore, a _, al are the idempotent of GO’ 2

. 0
':y3 respectively. We have (a.o, a.l) is the idempotent
Iao tal of Gy X Gy .
0 0
3
- L S - -
Ijet xi -(}Clsx,298.0,o-.> £l yl - (yl)al’y29y39"'> - we have (xl) o 8'0

)2 =a . LetnelN, (xl, yl)n = (xB, yI:E) # (ag’ a’l)'

and  (y; 1 1

Therefore G G, ¢ C., and thus, C
e o 1 o> 2B us, 0

To show Cl is not a variety, let Gl, G2 come from lattices of the

is not a variety.

1 go ¥

forms '. X5 {ye s respectively. Then Gl’ C—2 € Cl.
: Y3
lo lo

< 20 3
Since (xl,yl), (xe,y3) € G, x G, and X) = X5 ¥] = y3» we have

)n

n n n
for all n e|N J (xl, ¥y = (xl, yl) # (x2, y3) and sence X, # x.,,
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yg # yys We have
(xpo ¥3)% = (x5, ¥5) # (x, ).

Therefore G, x G, ¢ C., that is C, is not closed under taking

direct products, and thus Cl is not a variety,
To show 02 is not a variety, let GO come from lattice /£ which

w+1

has a structure 1 w 5 then GO € 02.
i 1
0

Gy * G, must be generated by {((m+l)m,(w+l)n)|m ,nelN}

which is infinite. Therefore G, X G, ¢ C,.
That is, 02 is not closed under taking direct products, and

thus C, is not a variety.

m
for all G in C

m
Tc show C, is not a variety, similarly to 02, 3

3

m
must be finitely generated, but for some G in CB’ G x G is not

neccessary finitely generated, for example G which comes from a
o

1
/4f7$§§§¢\, m
lattice ”'QQ§229;}'“' G e C3, but G x G is not generated by one
[}

m m
element, and hence G x G ¢ C3. Therefore C

3 is not a variety.
To show Ch is not a variety, since for all G in Ch must be finitely
genérated and if G is infinite, then this property is not closed

under taking direct products by similarly proof in 02.

Therefore, Ck is not a variety.



Claim C is not a Mal'cev variety.

Consider G =<n\l; max}, G is obviously a commutative groupoid,

Iyes; @ & Cs

™~ A
No {1,252} = s8g(IN v{<1,2>}) is a subalgebra of G x G
A% : A
which contains ﬂ\l but it is not a congruence relation on N .

That is, C is not a Mal'cev variety, by Theorem 3.10.
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