CHAPTER II

THE REPRESENTATION OF CLASSES OF ALGEBRAIC: LATTICES

In section 2.1, we study the relationship between properties
of commutative groupoids G and properties of their lattices of
subalgebras Su(G).

In section 2.2, we prove representation theorems for various

classes of algebraic lattice using the construction of Theorem 1.21.

2.1. Commutative groupoids and their lattices of subalgebras,

Let G be a commutative groupoid and x, y € G. By "Jn eN,

n _ " '
X =y we mean

"y e Sg({x}) " and by "Vm, n eN, x® # yn " we
mean " Sg({x})n Sg({y}) # ¢ "

2.1.1 Theorem. Let G be a commutative groupoid. Then Su(G) has

m > 0 minimal elements and V X ¢ Su(G), X contains some minimal
element in Su(G) if and only if there exists B < G such that [B| = m
and for all x & G-B, there exist b ¢ B, n ¢MN such that x* = b and

for all b,, bye B, m, n N, (bl)n # (be)m.

Proof. (=3 ) Let ¢ = {Si| Si is minimal in Su(G), i ¢ {1,...,m})

For each S;e C, let b, be an element of S;+ Since ¢ ¢ Sg({bi}) € 8,
and S, is minimal in Su(G), we have Sg({bi}) =8;- Let B= {'bi['big S
ie{l,...,m}}. |B] = m. 002358

Let x € G-B, there exist b,e B such that Sg({bi}) c sg({x}).

i’

That is be Sg({x}), then there exists n ¢MN , such that x> = by

Let b, bje B, we have Sg({bi})nSg({bJ}) = ¢. Therefore,

for all m, n inIN , (bi)“Il . (bJ)“.

| 1900259K
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(&) Let b € B, to show Sg({b}) is minimal in Su(G),
let X € Su(G) such that ¢ ¢ X< Sg({b}), let xje X. Ifm=1,
then there exists n ¢ N such that xg = b, If not, let b'e B-{b},
we have Sg({b})N Sg({b'}) = ¢, then b'¢ X, that is, for all n EN .
for all b'e B-{b}, xg # b. Therefore, there exists n €/N such that
xg =b, sob € X and X = Sg({b}). Since B has m elements, we have
Su(G) has at least m minimel elements. If X € Su(G) and is minimal then

X = Sg({b}) for some b € B. That is, Su(G) has m minimal elements.

2.1.2. Theorem. Su(G) is a chain iff for ell x, vy € G, there exists

ns{N such that xn=yor yn=x.

Proof. (=»). Let x, ¥ € G, we have Sg({y}) Sg({x}) or
sg({x}) & Sg({y}). Therefore, there exists n €N such that x =y
n
ory = x.
(&). Let S;, S,¢ Su(G) such that S§ S,, then there exists

X E Sl such that x € 52.

To show S,= S,, let y € §,, there exists n eN such that

]

2’
x* = y. Therefore y € Sl, and Su(G) is a chain.

2.1.3. Lemma. Let £ be a non-distributive algebraic lattice such

that for all compact elements x, y in L, x A y is compact. Then L

a
contains de or b c\d as a sublattice where a, b, ¢, d
c

NS

e
are compact in aC .
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Proof. Let ¥ =<F; V> be the semilattice of all compact elements
of L, and I(f) be the set of all ideals of ¥ . Then as in Lemma 1.18,

1(%),s> 2 K,

s X)
Suppose L has a sublattice x3 » then Ix 3 Ix 3 Ix 5
Xg 4 2 3
I ,I_ in I(f) form the sublattice
xh X5
E
y
T, I, , where I_ = {x|xeF, x € xl}, I, = {x|xeF, x & xe} g
2 L 2
I Ix = {x[xeF, x € x3}, 3. - {x|xeP, % g Xh} ;
3 3 L
3z 4L
X IXS = {x|%eF, x < xs}.
Choose x!e I =TI/ p\OBST T 3T I s then x! # x/'.
2 Xy Xy L X, %3 Xy Xy 2 i

Let a=xVx. Thenfae I_- (I oI )& I, -(I_ v I ), and there
——ro—h g Ay A

exist xg eI -I and xH £ F = IX such that
x3 Xh Xh 3

a = x5V ), 5 xgv xi:. That is a contains X)s x;, ), » xi: "

Let b=xlvx! ,d=x'vx' . ThenbeI =1 g BT T
ar 3 Y Xy X3 X, Xg
and a contains b, 4.
Letbﬂd=e,then]’1)111d=Ie,andeEIxAIx=IxﬂIx.
2 T BN
X;Ve, we have c € Ix3- Ixh, e <o <b,

e=eAdsc:\d=(x;Ve)ﬂdSbAd=e,impliescﬂd=e.

1}

Let ¢
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bVd = () V xg)V(xﬂ v xﬂ)

= Sxé v xg)v(xﬂ v xﬂ)

= ((xé v xg)v xﬂ)V xﬁ

= (xé V(xg A th))v x)' (xé V a)v xﬂ) =a , and

cVvVa = (x; v e)v(xﬁ v xﬂ = g,

a
Therefore, {a, b, ¢, d, e} forms a sublattice b[::;rd 2
2]

e
where a, b, ¢, d, e are compact in A:.
X
Suppose tﬁzhas a sublattice X X, » we have I_ , Ix s
o -
Xg -
I_,I , I  in I(#) form the sublattice I )
1:3 xh xs xe xh
Ix
5
\
Choose xé € Ix - I A Ix g xﬁ g I =T =FE =1 .
g 61\Ey Vi TN % = K
Let a = xé ' xﬁ J OfHen (4l TN+ (Ix ) Ix v I ), there exist
i 2 3 W
" " " b |}
7o e N R ) A IR e I S L 1 such that
3 X3 X L X, Xy 2 X, X 3. X3 X,

a= xé v xﬂ = x; s xﬂ = xé" v xé" , that is, a contains xé, xﬁ, x;, xﬂ,

xé", xé". Let d' = x) V x}", a' = x; V xﬁ, e' = xg \ xé" , then

b'! € Ix =« F 5 g'e I = Ix g G & Ix - Ix :
5 Ay Xy, 3 - B



19

Suppose Lb‘ﬁ Id' = Ie and Ib,ﬁ Ic' = Ip and Ic'nld' = Ih »
e, f, h are compact, e V£ V h ¢ 1’x .
5
Let I, = V(I.b,‘d IV Ifu Ih) = Ib,v I
S MWD IR T W Tey s vg
Ig=VIWwININL) = Tyiweveyn:®
Since Ibn Id = IbAd = V(Ieu Ifu Ih) = Ievah >
IAT, = Iq 7 VERINL) = T gyemp o
IbA Ic = Ibnc = V(Ieu I Ih) = Ievah ,» we have
bAd = cA/AEER NMhe B eV £Vh,

And similarly to the previous proof, we can show that b Vd=c¢cVad
=b Ve. Therefore, a, b, ¢, d, € V £V h, are compact in J:, and

{a, b, ¢, d, e V £ V h} forms a sublattice h(j%:::;d.

eVfVh
2.1.4, Theorem. Let G be a commutative groupoid such that Su(G) is

non-distributive and for all Sl’ 82 in Su(G) which are finitely

generated, Slﬁ S2 is finitely generated. Then Su(G) contains either

a
a sublattice bOd or b@d where a, b, ¢, d, e are
c

e 5]

finitely generated subalgebras of G.

Proof. (By Lemma 2.1.3 and Lemma 1.19)
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2.2. Representation theorems for classes of algebraic lattices,

2.2.1. Definition. A class K of algebraic lattices is represented by
a class C of commutative groupoids if
(R,) for all KL in K, there exists G in C such that & = Su(G).

(R2) for all G in C, there exists J in K such that Su(G) =L,

2.2.2. Theorem. Let K be the class of non-=trivial algebraic lattices
which have the property that each compact element contains only countably
many compact elements. And let C be the class of commutative groupoids.

Then K is represented by C.
Proof. (By Theorem 1.21).

Note: For the rest of this chapter, K, C denotes the same

class of lattices and groupoids it denotes in Theorem 2.2.7.

m
2.2.3. Theorem. Let Kb be the class of algebraic lattices in K which

have m minimal elements. And let CE be the class of commutative groupoids
G with the following properties :

i) G has m idempotent elements,

ii) 1let B be the set of all idempotents of G,
then for all x in G-B, there exist b € B, n eIN » such that x" = b.

m
Then KO is represented by or,

0
Proof. (Rl)
m
Let £ ¢ Ky» and let {b , by,...} be the set of all minimal

elements of oC
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To show b, € {bl,b2,...} is compact in X:, since there
exists only one set, {bi, 0}, in L such that b, = V{bi, 0}, b, is
obviously compact.

Follow the construction of G in theorem 1.21., L g‘Su(G),
and {bl, b2,...}§;‘v where bi =‘(bi, bi,...:>,for all b.e {bl’bg""}J

we have bi* bi = bi « S0y bi is idempotent of G.

Let B = {bl, bQ""}' B contains m idempotents of G.
Let x € G-B. Since x € L, there exists bis B such that x contains
bi and x' = (x, xi, Ké,-.-:y where xi is contained in x, we have

= bi for some n € N and (x)" = x* = b,. Therefore, x is

L]
xn—l n-1 i

not an idempotent of G.

That is, G contains m idempotent elements and for all x in G-B,

m
there exist b € B, n €N, such that x" = b. Consequently, G € Co»

m
2). Let G € Cyo

Therefore, Su(G) has m minimal elements, by Theorem 2.1.1., vhere

(R G has properties i), ii).

m
B = {idempotents of G}, and so Su(G) € Kqye
m m
Hence KO is represented by CO.

2.2.4. Theorem. Let K1 be the class of algebraic lattices aC in K
which are chains. And let Cl be the class of groupoids G in C with
the property that for all x, y in G, there exists n € [N such that

Then K1 is represented by Cl'
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Proof. (R,). Tet £ e¢K., L is a chain.

ik
Consider G, which is constructed as in Theorem 1.21., such that
su(G) = dc
Let x, ¥y €G, so x, ¥y € L. Since uC is a chain, we have y < x or
X £¥s i.e. Xx contains y or y contains x.

- n n
Therefore, there exists n €N such that x =y or y = x,
and so G € 02.

(R Let G € 02, consider Su(G).

2)'
Since G satisfies the property in Theorem 2.1.2, we have Su(G) is
a chain. Therefore, Su(G) & K .

Hence, Kl is represented by Cl'

Remark. 1P & is a chain of 2 or 3 elements, then G, constructed

from Theorem 1.21,, is a semigroup.

T
Proof. Let GC be 2 chain I . G=1{1}, so G is a
0
semigroup with only one element.
e
Let a[ be a chain lx . G has two elements 1, x, which
O

L4151l =2, s x =%, 168,618 % semigroup with two

elements, one is the generator, and the other is an idempotent.

2.2.5. Theorem. Let K2 be the class of algebraic lattices L in K
with the property that there exists x in gC s such that x is compact
and contains all compact elements. And let C, be the class.of

groupoids G in C which are finitely generated.

Then K2 is represented by 02'
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Proof. (Rl) Let CL.S K,, and x € L such that x is compact
and contains all compact elements of s

Consider G which is constructed as in Theorem 1.21., such that

su(g) = &L

We have x € G, and x generates G.
Therefore, G is finitely generated, G € C2.

(R2) Let G e C G is finitely generated.

2’
Then G is compact in Su(G%;by Lemma 1.19, and G contains all compact

elements of Su(G).

Therefore, Su(G) e K,, and Ke is represented by C,.

m
2.2.6. Theorem. Let KS be the class of algebraic lattices £ in K,

such that L_= U{Ci} Ci is a finite chain of length nl)oi - Oj and
ieI, with |I|3
li = 13, for 1 # J, Cif\bj = {Oi,li},
m
And let C3 be the class of groupoids G in C with the properties that

i) there exists a € G, such that a generates q,

ii) B={eeClexe=el# P and for e, # e, in B,

el* 82 = B’j

iii) for all e; in B, there exists @ # Xi'; G such that

X; = {xlx e G, 3n elN,5 x" = e}, |X,| =m-1 and for all x, y in X,
JnelN such that x° = y or yn o
iv) for all x in G-{al, x ¢ X, for some i.

m

Then Kglis represented by C3
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m
Proof. (Rl) Let L ¢ K3,

L = o{c.} gy ta .

T e

lj’ and for i # j,

finite chain of lengthm, 0i = Oj’ li

c;n c‘j = {oi, li}.

Since all elements in L are compact, we have that the
groupoid G constructed in Theorem 1.21, contains all elements in L
and has 1 as its generator.

Let ei be the minimal element in Ci'

Since CiﬁC‘j = {0,1}, for all i # j, we have that e; is also minimal

N e \
in and ei* ej eiV ej’ that is, €, ¥ e‘j generates ei and eJ, then
e % € € Cfﬁ CJ and e, ej =1,
Let B = v{e,} . As in Theorem 2.2.3.,
lel,|I|51

B is the set of idempotent elements in G. |I| > 1 implies B # @.
Let e;e B, we have e; € C;, end for all x in Ci-{O}, x € G and
contains e, , that is, there exists n e N, such that x= = e;» and
since cin Cj = {0,1} for all i # j, we have y ¢ C; if and only if y

does not contain e, if and only if for all n in N, y* # e

& T ) .
Let X; = {x)x 2 G,dn elN yx = ei}. |Xi| = ICi-{O}| =m-1.
Since C4 is a chain, we have for all x, y in Xi’
there exists n €[N , such that x= ¥y o yn = x, by Theorem 2.2, 4.
Let x € G-{a}l, x € L-{al implies x ¢ C;» for some i,

that is x € X for some i.

i 2

Therefore, G e cé?
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m
(R,) Let G € C_,, then G has the properties i), ii), iii).

2 3

By Theorem 2.2.3. UﬁSg({ei§)]is the set of all minimel elements
of Su(G).

Consider Su(Sg(Xi-[a])), by Theorem 2.2.%.,it is a chain.
Since G contains all subalgebras in Su(Sg(X;-{a})), we have that
5; = Su(Sg(Xi—{a}))-U G is also a chain.

For each x in X, Sg( iei‘; ) ¢ sg({x}) € G.
Since Xi has m-1 elements, we havem-1 subalgebras,
that is, Su(Sg(Xi- 2 )) U G has at least melements including @.

Let S € Su(G) such that Sg({ef)c 8< G, then e, € S
andeij¢ S for all j # i, and for all x in S, x € Xi. Therefore,
gic Xi

Since Xi is finite, we have S is finite, say

8 = {yl,..., yk} e Xi—{a}, then we can choose vi in 8

kem * YJ
such that y, generates S. Thus; S = Sg({yi}). This shows that,

Si has exactly m elements.

Su(G)

v {Si}’ where Si is a chain of length mand for

alli#‘j,oi g0, 1 =@g=1,

S ¢ J
To show for i # Js8,0 Sj = {@#, G}, suppose not, then there

exists S € Su(G) 5 @ # SE Gand S e siﬁ sj, this implies that
Sc X; and Sc XJ, that is, S contains e, and e, where i # j, and

e ¥ ej = a € S, a contradiction that S # G. Therefore Su(G) e Kgf

m
Hence K, is represented by C

m
3 i
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2.2, Theorem. Let Kh be the class of algebraic lattices L in K -
which are complemented lattices and units are compact. And let Ch
be the class of groupoids G in C with the following properties ;

i) there exists a in G such that a generates G.

ii) for all @ # X& G, if for all x, y in X, x * y € X and
sg({x,y}) # G, then there exist x' in G, x in X such that x % x'= a,
and for all n in N , for all y in X, (x")® # y.

Then Kh is represented by Ch'

Proof. (Rl) Let &L ¢ Ky, by the construction of G in

Theorem 1.21, we have Su(G) = £ and G is generated by the unit (1)
of oC.

LetQ#X?G, and for all x, y in X, x * y € X and
sg({x,y}) # G.

X = 8g(X) & G, then since Su(G) is a complemented lattice,
then there exists S in Su(G) such that

SVX=G, SNX=0@ and @ # S F G.

Therefore 1l e S VX where 1 ¢ S and 1 ¢ X, that is there
exist x' € S, x in X such that x' # x = 1, Since SNX =@, we
have for all n in[N, for 211 y in X, (x')" # v. Hence, G € C).
(Re). Let Ge C) and G is generated by a. Then G, the unit of

Su(G), is compact.
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To show Su(G) e K, let # # S e Sul(G) and S # G. Then for

all x, y in S, x » y ¢ S and Sg({x,y}) # G. From ii), there exists
x' € G, x in S such that x » x' = a and for all n in [N, for all

y in S, (x") # v, consequently, (x')" ¢ S.

Consider Sg({x'}). V(Sg({x'}), S) G,
A(Sg({x"'}), 8) = sg({x'})Ns = @.
That is, Sg{x") is a complement of S in Su(G). Therefore, Su(G) is

a complemented lattice in Kh' Hence, Kh is represented by Ch‘

Note : L in Kh is a unique complemented lattice if and

only if x' of G in Ch in Theorem 2.2.7 is unique.
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