

CHAPTER I

THE LATTICE OF SUBALGEBRAS

A universal algebra or briefly, an algebra, is 1.1. Definitions. a pair $\langle A; F \rangle$, where A is a nonvoid set and F is a family of finitary operations on A. F is not neccesarily finite.

A type of an algebra ∞ is a sequence $\langle n_0, n_1, \ldots, n_n, \ldots \rangle$ of nonnegative integers, γ < 0(ζ) where 0(τ) is an ordinal, called the order of \mathbb{C} . For every $\gamma < O(\mathbb{C})$, we have a symbol f_{γ} of an n_{γ} -ary operation on the algebra.

Thus, if $\langle A; F^A \rangle$ and $\langle B; F^B \rangle$ are both algebras of the same type \mathbb{C} , f^A_γ will denote an n_γ -ary operation on A as well as f^B_γ on B.

The class of all algebras of type $\mathbb C$ will be denoted by $K(\mathbb C)$; it will be called a similarity class of algebras.

1.2. Definition. Let $(A; F)$ be an algebra of type C and B a subset of A, $\langle B; F \rangle$ is called a subalgebra of $\langle A; F \rangle$ if and only if $b_0, \ldots, b_{n_v-1} \in B$ implies $f_{\gamma}(b_0, \ldots, b_{n_v-1}) \in B$, $\forall \gamma \in O(\mathbb{C})$. Let $Su(A)$ denote the set of all subalgebras of $\langle A; F \rangle$. Let X be a subset of A. Let Sg(X) = \bigcap {U : X \subseteq U \in Su(A)} denote the subalgebra of \bigtriangleup A; F \bigtriangleup generated by X.

1.3. Definition. Let $\langle A; F^A \rangle$ and $\langle B; F^B \rangle$ be both algebras of the same type $\mathcal{C}.$

A mapping ψ : A + B such that

$$
r^A_{\gamma}(a_0, \ldots, a_{n_{\gamma}-1})^{\psi} = r^B_{\gamma}(a_0^{\psi}, \ldots, a_{n_{\gamma}-1}^{\psi})
$$

for all $\gamma \in O(2)$, $a_0, \ldots, a_{n_v-1} \varepsilon$ A, is called a <u>homomorphism</u> of $\langle A; F^A \rangle$ into $\langle B; F^B \rangle$. A homomorphism $\psi : A \rightarrow B$ is called an isomorphism if it is 1-1 and onto.

1.4. Definition. A relational system is a pair $\langle A; R \rangle$ where A is a nonvoid set and R is a family of finitary relations on A. A type of a relational system ∞ is a sequence $\langle m_0, m_1, \ldots, m_{\gamma}, \ldots \rangle$ of nonnegative integers, γ < 0(\bar{c}) where 0(\bar{c}) is an ordinal, and for every γ < 0(\bar{c}) we have a symbol r_{γ} of an m_{γ} -ary relation on the relational system.

1.5. Definition. Let $\langle A; R^A \rangle$ and $\langle B; R^B \rangle$ be relational systems of the same type $\mathbb{C}.$

A mapping ψ : A \rightarrow B such that

 $r^A_{\gamma}(a_0, \ldots, a_{m_v-1}) \Rightarrow r^B_{\gamma}(a_0 \psi, \ldots, a_{m_v-1} \psi)$

for all γ so(c), a_0, \ldots, a_{m_v-1} and A , is called a homomorphism of $\langle A; R^A \rangle$ into $\langle B; R^B \rangle$, and if ψ is also 1-1, onto, and

$$
r^A_\gamma(a_0,\ldots,a_{m_\gamma-1})\Longleftrightarrow r^B_\gamma(a_0\psi,\ldots,a_{m_\gamma-1}\psi)
$$

for all $\gamma \in O(\mathbb{C})$, $a_0, \ldots, a_{m_v-1} \varepsilon$ A, then it is called an isomorphism of $\langle A; R^A \rangle$ into $\langle B; R^B \rangle$.

1.6. Definition. A partially ordered set is a relational system $\langle P; \xi \rangle$ where " ξ " is a binary relation on P satisfying the following conditions for all a, b, c in P.

 $i)$ a $\leqslant a$

ii) $a \le b$ and $b \le a$ imply $a = b$

iii) $a \le b$ and $b \le c$ imply $a \le c$.

A chain $\langle C; \epsilon \rangle$ is a partially ordered set satisfying the additional condition.

iv) a < b or b < a for all a, b in C.

1.7. Definitions. A semigroup $\langle A; * \rangle$ is an algebra with one binary operation " . " such that

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in A.

A semigroup $\langle A; \cdot \rangle$ is commutative if

 $a \cdot b = b \cdot a$ for all a, b in A.

A semilattice $\langle A; \cdot \rangle$ is a commutative semigroup in which every element is idempotent, i.e, a . a = a for all a in A.

If there exists 0 in a semilattice $\langle A; \cdot \rangle$ such that 0 \cdot a = 0 for all a in A, then 0 is called a zero of a semilattice $\langle A; \cdot \rangle$.

We can define a semilattice as a partially ordered set $\langle A; \leq \rangle$ in which any two element subset of A has a least upper bound. The two definitions are naturally equivalent in the following sense. i) Let $A = \langle A; \cdot \rangle$ be a semilattice. Define a binary relation " \leq " on A by, for all a, b in A, a \leq b if and only if a \cdot b = b. Then $A^* = \langle A; \leq \rangle$ is a partially ordered set, and as a partially ordered set, it is a semilattice; futhermore $l.u.b.(\{a,b\}) = a \cdot b.$ ii) Let $A = \langle A; \le \rangle$ be a partially ordered set which is a semilattice. Set $a \cdot b = l.u.b (a,b)$.

Then \mathcal{A}^+ = $\langle A; \cdot \rangle$ is a semilattice and a \leq b if and only if $a \cdot b = b$.

iii) Let $\mathcal{A} = \langle A; \cdot \rangle$ be a semilattice. Then $(\mathcal{A})^+ = \mathcal{A}$. iv) Let $A = \langle A; \le \rangle$ be a semilattice. Then $(A^{\dagger})^{\circ} = A$.

1.8. Definition. An ideal of a semilattice $\langle A; \vee \rangle$ is a nonvoid subset I of A such that, for all a, b in A,

 $a \vee b \in I$ if and only if a, $b \in I$.

We can define an ideal of a semilattice $\langle A; \xi \rangle$ as a nonvoid subset I of A such that

i) a, b & I implies &.u.b ({a,b}) & I.

iii) $a \le b \epsilon$ I implies $a \epsilon$ I.

And as in 1.7. these two definitions are equivalent.

6

1.9. Definition. A lattice is an algebra $\langle A; V, \Lambda \rangle$ where V and Λ are binary operations on A, called join and meet, respectively, satisfying the following conditions.

 $\langle A; V \rangle$ and $\langle A; \Lambda \rangle$ are similattices. i)

ii) $(a \vee b) \wedge a = a$ and $(a \wedge b) \vee a = a$, for all a, b in A. We can define a lattice as a partially ordered set $\langle A; \leq \rangle$ in which any two element subset of A has *L.u.b.* and g *.l.b.*

The two definitions are equivalent in the following sense.

Let $A = \langle A; V, \Lambda \rangle$ be a lattice. Define a binary relation i) " \leq " on A by, for all a, b in A, a \leq b if and only if a V b = b. Then $A^{\circ} = \langle A; \xi \rangle$ is a partially set, and as a partially set, it is a lattice; furthermore $l.u.b.$ ({a,b}) = a V b

and $g.l.b.$ ({a,b}) = a Λ b.

ii) Let $A = \langle A; \le \rangle$ be a lattice. Set a V b = $\ell.u.b.(\{a,b\})$ and $a \wedge b = g_{\cdot} \wedge b_{\cdot} (\{a_{\cdot}, b\})$.

Then $A^+ = \langle A; V, \Lambda \rangle$ is a lattice and $a \leq b$ if and only if $a \vee b = b$.

iii) Let $\mathcal{A} = \langle A; v, A \rangle$ be a lattice. Then $(\mathcal{A})^{\dagger} = \mathcal{A}$. iv) Let $\mathcal{A} = \langle A; \xi \rangle$ be a lattice. Then $(\mathcal{A}^+)^\circ = \mathcal{A}$.

1.10. Definition. If A is a lattice, then subalgebras of A are called sublattices of A .

1.11. Definition. A lattice $\langle A; V, \Lambda \rangle$ is distributive if for all $a, b, c in A, a \Lambda (b V c) = (a \Lambda b) V (a \Lambda c).$

1.12. Theorem. A lattice is distributive if and only if it does not have \Diamond or \Diamond as a sublattice.

> (see in $[2]$, page 22;). Proof.

1.13. Definition. A lattice $\big\langle A; V, \Lambda \big\rangle$ is modular if for all a,b,c in A, a V c = c implies (a V b) Λ c = a V(b Λ c).

Note : Distributive lattices are modular.

The smallest element in a lattice, if it exists, is called zero (0) .

The largest element in a lattice, if it exists, is called $unit (1).$

b is a complement of a in a lattice with zero and unit if $a \vee b = 1$ and $a \wedge b = 0$.

A complemented lattice is a lattice in which every element has a complement.

1.14. Definition. Let $\langle A; \xi \rangle$ be a lattice, if the collection a_i , i ϵ I of elements of A has a $g.\ell.b$ ($\ell.u.b$) we denote this element by $\Lambda \{a_i | i \in I\}$ (and $V \{a_i | i \in I\}$).

If for all $X \subseteq A$, ΛX and VX exist, then the lattice $\langle A; \iff$ is called complete.

1.15. Definition. Let $\langle A; \preccurlyeq \rangle$ be a complete lattice. Let a εA . The element a is called compact if the following condition is satisfied :

If $a \leq V\{x_i \mid i \in I\}$ where $x_i \in A$, for each i in I, then there exists: $I_1 \subseteq I$ such that I_1 is finite and $a \leqslant v\{x_i \mid i \in I_1\}$, i.e. if a is contained in an infinite join, it is already contained in a finite join.

1.16. Definition. A lattice $\langle A; \xi \rangle$ is called algebraic if:

 (i) it is complete.

(ii) every a in A can be written as

 $a = V\{x_i \mid i \in I\}$ where x_i is compact in A for all i in I.

1.17. Lemma. Let $\widetilde{\mathcal{F}} = \langle F; v \rangle$ be a semilattice with zero. Then $\langle I(f');\subseteq\rangle$ is an algebraic lattice where $I(f')$ is a set of all ideals of *.*

Proof. (see in $\begin{bmatrix} 1 \end{bmatrix}$, page 22;).

1.18. Lemma. Let $\mathcal{L} = \langle L; \xi \rangle$ be an algebraic lattice. Then there exists a semilattice $\mathcal{F}' = \langle F; v \rangle$ with zero such that $\mathcal L$ is isomorphic to $\big\langle I(\mathfrak{F})\,;\subseteq\,\big\rangle$ where $I(\mathfrak{F})$ is the set of all ideals of \mathfrak{F} .

Proof. Let F be the set of all compact elements of L. Since 0 is compact, we have 0ϵ F

To show $\langle F; v \rangle$ is a semilattice with zero, let a, b ε F and a $V b \leq V\{x_i \mid i \in J\}$ where $x_i \in L$, i $\in J$. Since $a \le a \vee b \le V\{x_i \mid i \in J\}$ and

 $b \le a \vee b \le V\{x_i \mid i \in J\}$, which by the compactness of a and b imply that there exists finite subsets J_1 , J_2 of J such that

 $a \leqslant \forall \{x_i \mid i \in J_1\}$ and $b \leqslant \forall \{x_i \mid i \in J_2\}$.

Therefore a $V b \leq V f x_1 / i \epsilon J_1 U J_2$ where $J_1 U J_2$ is finite, and so a V b is in F.

That is, F is closed under V and $\langle F; V \rangle$ has same properties as $\langle L; V \rangle$.

For a ϵ L, set $I_a = \{x | x \epsilon \text{ F and } x \leq a\}.$

To show I_a is an ideal of $\mathcal F$, since $0 \in I_a$, we have $I_a \neq \emptyset$. x, y ϵ I_a iff $x \le a$ and $y \le a$ iff $x \vee y \le a$ iff $x \vee y \in I_a$. Therefore $I_{\mathbf{a}}$ is an ideal of $\mathbf{\mathfrak{F}}$.

Define $\psi : L \rightarrow I(\mathcal{P})$ by $a\psi = I_a$.

To show ψ is 1-1, If a ϵ L, then there exists H, a set of compact elements such that

 $a = V(x | x \in H),$ that is $H \subseteq T_a$, and

 $a = V{x \mid x \in H} \le V{x \mid x \in I_n} \le a$, so

 $a = V(x|x \varepsilon I_a)$. Let $a, b \varepsilon$ L such that $I_a = I_b$, then $a = V{x | x \in I_{a}} = V{x | x \in I_{b}} = b.$

To show ψ is onto, let I ϵ I(\approx) and a = V{y|y ϵ I}. Since for all y in I, y is compact and $y \le a$, we have $I \subseteq I_{n}$.

Suppose $x \in I_{\alpha}$, then x is compact, $x \leq V(y | y \epsilon 1)$ and there exists I_1 , a finite subset of I, such that $x \leq V(y|y \in I_1)$. Since $V(y | y \in I_1) \in I$ and I is an ideal of $\#$, we have x ϵI ; thus,

$$
\mathbb{I}_{\mathfrak{a}} = \mathbb{I} \ .
$$

To show ψ is homomorphism, let a, b ε L such that a \leq b, and let $x \in I_a$, we have $x \in F$, $x \le a \le b$, and so $x \in I_b$. That is $I_a \subseteq I_b$, i.e. $a\psi \in b\psi$. Let $I_a \subseteq I_b$, $a = V\{x \mid x \in I_a\} \leq V\{x \mid x \in I_b\} = b$; $a \leq b$. Therefore $\langle L, \xi \rangle \cong \langle I(\mathfrak{F}) \rangle \subsetneq$.

1.19. Lemma. For any $\langle A; F \rangle$, $\langle Su(A); \subseteq \rangle$ is an algebraic lattice, denote $\langle \text{Su}(A); \subseteq \rangle$ by $\text{Su}(A)$. If G is a family of subalgebras, then the meet of G is $\bigcap G$, the join of G is Sg (UG).

U in G is compact iff U is finitely generated.

Proof. (see in $[2]$, 103-104;).

1.20. Theorem. (Whaley) If m is a cardinal and $\&$ is a non-trivial algebraic lattice such that for all x in L , x is compact implies x contains at most m compact elements, then there exists an algebra A of 1 binary operation, m unary operations, such that $\mathcal{L} \cong \text{Su}(A)$.

Proof. Let $F = \{non zero compact elements of L\}$

Let I be any set of order m.

For each $x \in F$, let $f_x : I^{optq}y|y \in F$, $y \leq x$. Let $A = \langle F; V, F_i(i \in I) \rangle$ where $F_i(x) = f_x(i)$ for all x in F. Let $\widetilde{\mathcal{F}} = \langle \widetilde{\mathbf{F}} \mathbf{b} \{0\} \mathbf{y} \rangle$, from Lemma 1.18, $\widetilde{\mathcal{F}}$ is a semilattice with zero.

Let $I(\mathcal{F})$ be the set of all ideals of $\mathcal F$. To show $\langle I(\mathscr{F})_* \subseteq \rangle \stackrel{\sim}{=} \mathrm{Su}(A)$, let $\psi : I(\mathscr{F}) \to \mathrm{Su}(A)$ be defined by $\psi(I) = I - \{0\}$ for all I in I(\hat{r}). To show $I - \{0\} \varepsilon S u(A)$, let $x \varepsilon I - \{0\}$. Since $F_i(x) = f_x(i) = y$ for some $y \le x$, $y \in F$, we have $y \in I$ -{0}, so $F_i(x) \in I - \{0\}.$ Let $x, y \in I - \{0\}$, $x \in I$ and $y \in I$, $x \neq 0$, $y \neq 0$. Since I is an ideal, we have x V y & I and x V y \neq 0, then $x \vee y \in I - \{0\}$. Therefore I - $\{0\} \in Su(A)$. Clearly ψ is 1-1 and preserves order. To show ψ is onto, let S ε Su(A), consider S v {0}, let $x, y \in S \cup \{0\}.$ If x or y is zero, then clearly $x \vee y \in S \cup \{0\}$. If x and y are not zero, then x, $y \in S$ and $x \vee y \in S$,

that is $x \vee y \in S \cup \{0\}$,

let $x, y \in F$ such that $x \vee y \in S$ \cup {0}.

If $x \vee y = 0$, then clearly $x = y = 0 \in S \cup \{0\}$.

Suppose x V y \neq 0, Since f_{xVy} : I \xrightarrow{onto} {z|z ϵ F, z \leq x V y} and $x \leq x \vee y$, $y \leq x \vee y$, we have $f_{xVy}(i) = F_i(xVy) = x$ and $f_{xVy}(j) = F_j(xVy) = y$ for some i, j in I.

Therefore $x, y \in S$ and $x, y \in S$ \cup {0}, and S \cup {0} \in I(\mathcal{F}). Hence, $\langle I(\mathfrak{F})\rangle \subseteq \rangle \stackrel{\sim}{=} \text{Su}(A)$.

By lemma 1.18. $\delta \cong$ Su(A).

If m is uncountable and some compact element of $\mathcal L$ Note. contains m compact elements, then all algebras A such that $su(A) \stackrel{\sim}{=} \mathcal{L}$ must have at least m operations.

1.21. Theorem. For any non-trivial algebraic lattice \mathcal{L} , the followings are equivalent,

i) each compact element contains only countably many compact elements,

 $\textbf{ii)}$ there exists an algebra A of countable similarity type such that $\mathcal{L} \cong \text{Su}(A)$,

iii) there exists a commutative groupoid G such that $\mathcal{L} \triangleq_{\text{Su}}(\mathcal{G}).$

Proof. (iii) \Rightarrow (ii) is obvious.

 $(ii) \Rightarrow (i)$ Suppose not (i), from note, A must have an uncountable number of operations. To show $(i) \Rightarrow (iii)$, let $V = \{non zero compact elements of L\}$ for each a in V; arrange V into a sequence

 $a' = \langle a'_0, a'_1, \ldots \rangle$ where $a'_0 = a$ and a'_1 are contained in a. If a contains finite number, n, of elements of V, let a' is periodic, with $a_i^{\dagger} = a_j^{\dagger}$ iff $i \equiv j (mod n)$.

For all a, b in V, define

$$
a * b = \begin{cases} a'_{i+1} & \text{if } b = a'_i \\ b'_{i+1} & \text{if } a = b'_i \\ a \text{ } b & \text{otherwise.} \end{cases}
$$

Let $G = \langle V; * \rangle$, clearly G is a commutative groupoid and $su(G) \stackrel{\sim}{=} I(\mathcal{F})$ via $\phi \Rightarrow \{0\}$ and $Su(G) \ni G_i \Rightarrow G_i \cup \{0\} \in I(\mathcal{F})$.

To show $G_1 \cup \{0\} \varepsilon I(F)$, let x , $y \varepsilon G_1 \cup \{0\}$. If x or y is zero, then x V y = x or y and x V y e $G_1 \cup \{0\}$. If x and y are not zero, then x, $y \in G_1$ and $x * y \in G_1$.

$$
x * y = \begin{cases} x'_{1+1} & \text{if } y = x'_1 & \dots & (1) \\ y'_{1+1} & \text{if } x = y'_1 & \dots & (2) \\ x \vee y & \text{otherwise} & \dots & (3) \end{cases}
$$

In case 1. $x \vee y = x \in G_1 \Rightarrow x \vee y \in G_1 \cup \{0\}.$ In case 2. $x \vee y = y \in G_1 \Rightarrow x \vee y \in G_1 \cup \{0\}.$ In case 3. $x \vee y \in G_1 \implies x \vee y \in G_1 \cup \{0\}.$ Let $x, y \in V$ such that $x \vee y \in G_1 \cup \{0\}$. If $x \vee y = 0$, then $x = y = 0 \in G_1 v$ {0}. If $x \vee y \neq 0$, $x \leq x \vee y$, $y \leq x \vee y$, then there exist m, n in N such that $(xy)^m = x$ and $(xy)^n = y$. Therefore $x, y \in G_1 v$ {0}. Hence $G_1 \cup \{0\} \in I(\nsubseteq)$.

Clearly, this mapping preserves order.

Consequently; $Su(G) \stackrel{\sim}{=} I(F)$ and by lemma 1.18, $Su(G) \stackrel{\sim}{=} \mathcal{L}$.