CHAPTER 1

'THE LATTICE OF SUBALGEBRAS

1.1l. Definitions. A universal algebra or briefly, an algebra, is

a pair <A; F), where A is a nonvoid set and F is a family of finitary
operations on A, F is not neccesarily finite.

A type of an algebra © is a sequence <n0,nl,..., nT,...>
of nonnegative integers, y < 0(T) where 0(7) is an ordinal, called
the order of T. For every y < 0(7), we have a symbol rY of an n_-ary
operation on the algebra.

Thus, if <A; F’A> and (B; FB> are both algebras of the same
type T, f‘: will denote an n -ary operation on A as well as f$ on B.

The class of all algebras of type T will be denoted by K(T);

it will be called a similarity class of algebras.

1.2, Definition. Let (A; F)be an algebra of type C and B a
subset of A, {B; F) is called a subalgebra of {A; F) if and only if

bagssay D
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denote the set of all subalgebras of(A; F>. Let X be a subset of A,

€ B implies £,(by,..s b“w"l) € B, Vyeo(?). Let Su(a)

Let Sg(X) ={){V: XS U € Su(A)} denote the subalgebra of{A; F>

generated by X.



1.3. Definition. Let <A; FA> and {B; F’B> be both algebras of
the same type .

A mapping ¥ : A+ B such that

f?(ao,..., anY_l)lp = fs(aotb,..., 8 v),

n.r-l

1€ A, is called a homomorphism

for all y € 0(7), Bgseees 8 _
Y
of CA; FA> into < B; F‘B>. A homomorphism ¥ : A+ B is called an

isomorphism if it is 1-1 and onto.

1.4, Definition. A relational system is a pair (A; R> where A is

a nonvoid set and R is a family of finitary relations on A.

A type of a relational system T is a sequence <m0, Myseces mY, ce >
of nonnegative integers, y < 0(T) where 0(T) is an ordinal, and for
every ¥ < 0(T) we have a symbol r, of an m -ery relation on the

relational system.

1.5. Definition. Let<A; R*>and {(B; R°> be relational systems of
the same type T.
A mapping ¢ : A -+ B such that

A B
rY(ao,..., a _1)-_-; rY(aol.b,..., am\(_lq‘;)

m\,

for all ¥ € 0(T), Bgseees a’mT-lB A, is called & homomorphism

of \’A; RA> into <B; RB>, and if ¢ is also 1-1, onto, and




A B
rY(&O,lno’ am_Y"l)@ rY(aolp"'" am.Y"'lw)

for all vy € 0(T), 8yse++s 8 1€ A, then it is called an

isomorphism of <Aj; RA>- into <B; RB)-.

1.6. Definition. A partially ordered set is a relational system

<P; ¢)>vwhere " ¢ " is a binary relation on P satisfying the following
conditions for all a, b, ¢ in P.
i) ag a
ii) ag< band b & imply a = b
iii) a < b and b £ ¢ imply a < c.

A chain< C; ¢ > is a partially ordered set satisfying the additional

condition.

iv) a€b orbga forall a, b in C.

1.7. Definitions. A semigroup < A; *> is an algebra with one binary
operation " . " such that

a ° (Beile)-="(a"""b) «'¢'“for’all a, b, ¢ in A.

A semigroup <A; > is cormutative if
a*b = b mn for all a, b in A.
A semilattice (A; > is a commutative semigroup in which every element
is idempotent, i.e, a ° a = a for all a in A.
If there exists O in a semilattice {A; *> such that 0 - a = 0 for all

a in A, then 0 is called a zero of a semilattice <A; >.



We can define a semilattice as a partially ordered set <A; £>in
wvhich any two element subset of A has a least upper bound.

The two definitions are naturally equivalent in the following sense.

i) | Let o’f' = A; °> be a semilattice. Define a binary relation

"< "onAby, for all a, b in A, a £ b if and only if a * b = b.

Then /4 = <A; <> is a partially ordered set, and as a partially
ordered set, it is a semilattice; futhermore %.u.b.({a,b}) = a * b,

11) Let of = <A} © be & partially ordered set which is & semilattice.
Set a°*b = 2.u.b ({a,b}).

Then o’ﬁﬁ =(A; > is a semilattice and a ¢ b if and only if

a *b=hb.

# ) o o
iii) Let /I = <{A; > be a semilattice. Then () = /.
iv) Let i = <{a; £>be a semilattice. Then (£)° = #+ .

1.8. Definition. An ideal of a semilattice <Aj;V) is a nonvoid

subset T of A such that, for all a, b in A,
aVbe1l if and only if a, b € I.

We can define an ideal of a semilattice (A; \<> as a nonvoid
subset I of A such that

i) a, b € I implies 2.u.b ({a,b}) € I.
iii) as be I implies a e I.

And as in 1.%. these two definitions are equivalent.



1.9. Definition. A lattice is an algebra (A; V, A> where VY and A
are binary operations on A, called join and meet, respectively,

satisfying the following conditions.
i) <A; V> and <A; A) are similattices.
ii) (avb)Aa=aand (aAb)Va=a, for all a, b in A.

We can define a lattice as a partially ordered set <A; <) in which
any two element subset of A has f2.u.b. and g.%.Db.

The two definitions are equivalent in the following sense.

i) Let f=<A;V, ADbe a lattice. Define a binary relation
"< "on Aby, for all’'a, b in A, a £ b if and only if a VDb = b,

Then A’ ={A; &) is a partially set, and as a pa.rtia.lljr set, it is

a lattice; furthermore %.u.b. ({a,b}) =a Vb

and —g.2. b (ta;b}) =72/A b.
ii) Let)f’ =<{A; £> be a lattice. Set a Vb = L.u.b.({a,b})
and aA b= g.2,b,.({a,bl}).

Then # =<A; V, A> is a lattice and a £ b if and only if

aVb=h.
iii) Letl;#= <CA; V, A>be a lattice. Then (?F)*' =/{'.
iv) Letof =ChA; € bé a lattice. Tnen (A" = A .

1.10, Definition. If}4’ is a lattice, then subalgebras of A’are

called sublattices of ,}4‘



1.11. Definition. A lattice{A; V, A Yis distributive if for all

a, b,cin A, aA (bVe)=1(adrb)V(iahe).

1.12. Theorem. A lattice is distributive if and only if it does

not have q<§>b or g::;y as a sublattice.

Proof. (see in [2],}’&6& 2-9-3)-

1.13. Definition. A latticedA; V, A> is modular if for all a,b,c

in A, aVe =c implies (a VD) A c =a V(b A e).

Note : Distributive lattices are modular.

The smallest element in a lattice, if it exists, is called
zero (0).

The largest element in a lattice, if it exists, is called
unit (1).

b is a complement of a in a lattice with zero and unit if
aVb=1and a ANb =0, J

A complemented lattice is a lattice in which every element

has a complement.

1.1k, Definition. Let (Aj s)be a lattice, if the collection ey
i e I of elements of A has a g.%.b (2.u.b) we denote this element
by A{ai| ieI} (an@av {ai| ie1I}).

If for all X< A, AX and VX exist, then the lattice <A; <> is called

complete.



1.15. Definition. Let <¢A; <) be a complete lattice. Let a € A.
The element a is called compact if the following condition is
gatisfied :

If a < V{xi |i € I} where x, € A,for each i in I, then

i
there exists: Ilg I such that IJ. is finite and a & v{xi| ie I4l,
i.e. if a is contained in an infinite join, it is already contained

in a finite join.

1.16. Definition. A lattice <{A; <) is called algebraic if :
(i) it is complete.
(ii) every a in A can be written as

a = V{xil i € I} where x, is compact in A for all i in I.

i

1.1T7. Lemma. Let F =(F; V) be a semilattice with zero.
Then \/I(? )3C> is an algebraic lattice where I(F) is a set of

all ideals of F .

Proof. (see in [1],' ge 22;).

1.18. Lemma. Let d =<L; <> be an algebraic lattice. Then there
exists a semilattice F =<F3V)with zero such that £ is isomorphic

to {I(#)3S > where I(f) is the set of all ideals of ¥ .

Proof. Let F be the set of all compact elements of L.

Since 0 is compact, we have 0 € F
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To show {F; V) is a semilattice with zero, let a, b e F and

aVb g V{xil i eJ} where x,e L, i € J.

i
Since a.saVb.sV{inieJ} and
bgaVb g V{xil i € J}, which by the compactness of a and b

imply that there exists finite subsets Jl, J’2 of J such that
a< if{xil ie Jl} and b g V{xil iedyl.

Therefore a Vb < Vix,| i e J U J,} where J,U J, is finite, and so
aVbis in F,.

That is, F is closed under V and {F; V) has same properties
as {Lj V).

For a € L, set I/= {x{xe F and x ¢ a}.

To show I is an ideal of # , since 0 ¢ I,» we have I_ # §.

X, ¥V € Iaiffxsaandysa I x Vysa iftfxVye Ia'
Therefore Ia is an ideal of ¥ .

Define ¢ : L+ IWF) by ay = 3 e

To show ¢y is 1-1, If a € L, then there exists H, a set of

compact elements such that

a = Vlx|x e H}, that is HE I, end

a=Vix|x e H < V{x]x ¢ I} <a, s0

a=Vix|xe I,}- Let a, be L such that I =1 , then
a=Vix|xe I} = Hxzlxe L} = b,

To show ¥ is onto, let I € I(f) and a = V{y|y ¢ I}. Since for all

¥ in I, y is compact and y € a, we have I Ia.



L

Suppose x € Ia.’ then x is compact, x < V{yly € I} and there exists
Il, a finite subset of I, such that x < V{yly ¢ Il}- Since
Vizly e Il} eI and I is an ideal of ¥ , we have x ¢ I; thus,

I = :
a

To show ¥ is homomorphism, let a, b € L such that a < b, and let
X eIa, we have x ¢ F, x < a g£b, and so x sIb. That is Iag Ib-‘
i.e. ay=by . Let Ie L, as= Vixlx ¢ Ia}s Vi{x|x e Ib} = b3 6 € B

Therefore L3 <> =<I(F)4S)> .

1.19. Lemma. For any < A;F)>, -<Su(A); &> is an algebraic lattice,
denote <Su(A)3; €> by Su(A). If G is a family of subalgebras, then the
meet of G isNG, the join of G is Sg (vG).

U in G is compact iff U is finitely generated.

Proof. (seglin [2],103-104;).

1.20. Theorem. (Whaley) If m is a cardinal end &L is a non-trivial
algebraic lattice such that for all x in L, x is compact implies x
contains at most m compact elements, then there exists an algebra A

of 1 binary operation, m unary operations, such that e = Su(a).

Proof. Let F = {non zero compact elements of L}
Let I be any set of order m.
t
For each x € F, let fx : Io-ﬁ ?yly € F, y8 x)

Let A ={F; V, F.(ie I)> where F, (x) = fx(i) for all x in F.

i
Let $=<FololsV), from Lemma 1.18:’,';?g is a semilattice with zero.
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Let I(f) be the set of all ideals of % .
To show <I(#),S> =su(a), let ¢ : I(#) > Su(A) be defined by
¥(I) = I -{0} for all I in I(f).
To show I ~{0} e Su(A), let x ¢ I -{0}.
Since Fi(x) = fx(i) =y for some y £ x, ¥y € F, we have y ¢ I -{0},
so F.(x) e I - {0}.
Let x,yeI- {0}, xeIandy/el, x#0,y#0.
Since I is an ideal, we have x Vy e I and x Vy # O,
then xVye I -{0}. Therefore I -{0} ¢ Su(A).
Clearly ¥ .is 1-1 and preserves order.
To show ¢ is onto, let 8 € Su(A), consider S v {0},
let x, ye S v {0}.
If x or y is zero, then clearly xV y e S v {0}.
If x and y are not zero, then x, y € Sand x VyeS§,
that is x V y € s v {0},
let x, y € F such that x Vy e S v {0}.
If x Vy =0, then clearly x =y = 0¢e Sv {0}.

Suppose x Vy # 0, Since'fxvy: L %{zlz e F, 2 ¢ xV y} and

x$xVy, yg&xVy, we have fxvy(i) = F,(xVy) = x and

b
foy(J) = Fj(xvy) =y for some i, j in I.
Therefore x, ye Sand x, ye Sv {0}, and Sy {0} ¢ I(f).
Hence, <I(F¥);C) = su(A).

By lemma 1.18. & = su(a).
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Note. If m is uncountable and some compact element of £
contains m compact elements, then all algebras A such that

Su(A) 2'43 must have at least m operations.

1.21. Theorem. For any non-trivial algebraic lattice &, the
followings are equivalent,

i) each compact element contains only countably many
compact elements,

ii) there exists an algebra A of countable similarity type
such that & = su(a),

iii) there exists a commutative groupoid G such that

QC = Su(G).

Proof. (iii) = (ii) is obvious.
(ii) = (1) Suppose not (i), from note, A must
have an uncountable number of operations. To show (i)=> (iii),
let V = {non zero compact elements of I} for each a in V; arrange V
into a sequence

al = <:36, alse..,> Where 2y = @ and a; are contained in a.

If a contains finite number, n, of elements of V, let a' is periodic,

with ai = aj iff i = j(mod n).

For all a, b in V, define

1 ol = N

ai+l 15 B &i

= i = '

axb bi+l if a bi

a Vb otherwise.



Let G =<V; *>, clearly G is a commutative groupoid and
su(6) = I(F) vis ¢ = {0} and Su(6) 2 G;=> G,u {0} ¢ I(F).
To show Gy {0} ¢ I{(F), let x, y ¢ G {0}~
If xoryis zero, then x Vy =xoryand xVy ¢ Glu]{O}.

If x and y are not zero, then x, y € Gl and x # y € Gl'

{ % if y = x! ATPETELI %

i+l i

- L = V
X*Y =t yi+l if X yi .lll.."(2)
Kvy othEWise .ll.l...(3).

Incasel. xVy=xc¢€ Gl:=> xVye G, {0}.
Incase 2, xVy=yc¢ Gy XV yeGu {o}.
In case 3. xVyeGl = xVyE:Glu {0}.
Let x, y € V such that x Vy ¢ Glu {0} .

If xVy=0, then x=y=OeGlu{O}.
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If xVy#0,x<xVy,y<xVy, then there exist m, n in N

-~

such that (xvy)™
Hence G,V {0} e 1(%).
Clearly, this mapping preserves order.

Consequently; Su(G) x I(F) and by lemma 1.18 , su(G) X oC -

x and (xvy)" = y. Therefore X, ¥y € G {o}.
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