CHAPTER I

THE LATTICE OF SUBALGEBRAS

1.1. <u>Definitions</u>. A <u>universal algebra</u> or briefly, an algebra, is a pair <A; F>, where A is a nonvoid set and F is a family of finitary operations on A. F is not neccessrily finite.

A type of an algebra $^{\mathcal{T}}$ is a sequence $\langle n_0, n_1, \ldots, n_{\gamma}, \ldots \rangle$ of nonnegative integers, $\gamma < O(\mathcal{T})$ where $O(\mathcal{T})$ is an ordinal, called the order of $^{\mathcal{T}}$. For every $\gamma < O(\mathcal{T})$, we have a symbol f_{γ} of an n_{γ} -ary operation on the algebra.

Thus, if $\langle A; F^A \rangle$ and $\langle B; F^B \rangle$ are both algebras of the same type \mathcal{T} , f_{γ}^A will denote an n_{γ} -ary operation on A as well as f_{γ}^B on B.

The class of all algebras of type \mathcal{T} will be denoted by $K(\mathcal{T})$; it will be called a similarity class of algebras.

1.2. <u>Definition</u>. Let (A; F) be an algebra of type C and B a subset of A, (B; F) is called a <u>subalgebra</u> of (A; F) if and only if $b_0, \ldots, b_{n_{\gamma}-1} \in B$ implies $f_{\gamma}(b_0, \ldots, b_{n_{\gamma}-1}) \in B$, $\forall \gamma \in O(C)$. Let Su(A) denote the set of all subalgebras of (A; F). Let X be a subset of A. Let $Sg(X) = \bigcap \{U: X \subseteq U \in Su(A)\}$ denote the subalgebra of (A; F) generated by X.

1.3. <u>Definition</u>. Let $\langle A; F^A \rangle$ and $\langle B; F^B \rangle$ be both algebras of the same type \mathcal{T} .

A mapping ψ : A \rightarrow B such that

$$f_{\gamma}^{A}(a_{0},...,a_{n_{\gamma}-1})\psi = f_{\gamma}^{B}(a_{0}\psi,...,a_{n_{\gamma}-1}\psi),$$

for all $\gamma \in O(\mathcal{T})$, $a_0, \ldots, a_{n_\gamma-1} \in A$, is called a <u>homomorphism</u> of $\langle A; F^A \rangle$ into $\langle B; F^B \rangle$. A homomorphism $\psi : A \rightarrow B$ is called an isomorphism if it is 1-1 and onto.

- 1.4. <u>Definition</u>. A <u>relational system</u> is a pair $\langle A; R \rangle$ where A is a nonvoid set and R is a family of finitary relations on A. A <u>type</u> of a relational system \mathcal{T} is a sequence $\langle m_0, m_1, \dots, m_{\gamma}, \dots \rangle$ of nonnegative integers, $\gamma < O(\mathcal{T})$ where $O(\mathcal{T})$ is an ordinal, and for every $\gamma < O(\mathcal{T})$ we have a symbol r_{γ} of an m_{γ} -ary relation on the relational system.
- 1.5. <u>Definition</u>. Let $\langle A; R^A \rangle$ and $\langle B; R^B \rangle$ be relational systems of the same type \mathcal{T} .

A mapping ψ : A \Rightarrow B such that

$$r_{\gamma}^{A}(a_{0}, \ldots, a_{m_{\gamma}-1}) \Rightarrow r_{\gamma}^{B}(a_{0}\psi, \ldots, a_{m_{\gamma}-1}\psi)$$

for all $\Upsilon \in O(C)$, $a_0, \ldots, a_{m_{\gamma}-1} \in A$, is called a <u>homomorphism</u> of $\langle A; R^A \rangle$ into $\langle B; R^B \rangle$, and if ψ is also 1-1, onto, and

$$r_{\gamma}^{A}(a_{0},\ldots,a_{m_{\gamma}-1}) \iff r_{\gamma}^{B}(a_{0}\psi,\ldots,a_{m_{\gamma}-1}\psi)$$

for all $\gamma \in O(\mathcal{C})$, $a_0, \ldots, a_{m_{\gamma}-1} \in A$, then it is called an isomorphism of $\langle A; R^A \rangle$ into $\langle B; R^B \rangle$.

- 1.6. <u>Definition</u>. A <u>partially ordered set</u> is a relational system <P; <> where " < " is a binary relation on P satisfying the following conditions for all a, b, c in P.
 - i) a ≤ a
 - ii) $a \le b$ and $b \le a$ imply a = b
 - iii) $a \le b$ and $b \le c$ imply $a \le c$.

A <u>chain</u> $\langle C; \langle \rangle$ is a partially ordered set satisfying the additional condition.

- iv) a < b or b < a for all a, b in C.
- 1.7. <u>Definitions</u>. A <u>semigroup</u> < A; $^{\circ}>$ is an algebra with one binary operation " $_{\circ}$ " such that

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 for all a, b, c in A.

A semigroup <A; •> is commutative if

A <u>semilattice</u> $\langle A; \cdot \rangle$ is a commutative semigroup in which every element is idempotent, i.e, $a \cdot a = a$ for all a in A.

If there exists 0 in a semilattice $\langle A; \cdot \rangle$ such that 0 \cdot a = 0 for all a in A, then 0 is called a <u>zero</u> of a semilattice $\langle A; \cdot \rangle$.

We can define a semilattice as a partially ordered set <A; ≤>in which any two element subset of A has a least upper bound.

The two definitions are naturally equivalent in the following sense.

- i) Let $\mathcal{A} = \langle A; \cdot \rangle$ be a semilattice. Define a binary relation " \leq " on A by, for all a, b in A, a \leq b if and only if a \cdot b = b. Then $\mathcal{A} = \langle A; \cdot \rangle$ is a partially ordered set, and as a partially ordered set, it is a semilattice; futhermore $\ell.u.b.(\{a,b\}) = a \cdot b$.
- ii) Let $\mathcal{A} = \langle A; \leqslant \rangle$ be a partially ordered set which is a semilattice. Set $a \cdot b = l.u.b (\{a,b\})$.

Then A^+ = $\langle A; \cdot \rangle$ is a semilattice and $a \leq b$ if and only if $a \cdot b = b$.

- iii) Let $\mathcal{A} = \langle A; \cdot \rangle$ be a semilattice. Then $(\mathcal{A})^+ = \mathcal{A}$.
- iv) Let $A = \langle A; \langle \rangle$ be a semilattice. Then $(A^{\dagger})^{\circ} = A$.
- 1.8. <u>Definition</u>. An <u>ideal</u> of a semilattice $\langle A; \vee \rangle$ is a nonvoid subset I of A such that, for all a, b in A,

a∨b ∈ I if and only if a, b ∈ I.

We can define an ideal of a semilattice $\langle A; \langle \rangle$ as a nonvoid subset I of A such that

- i) a, b ϵ I implies l.u.b ({a,b}) ϵ I.
- iii) a < b ∈ I implies a ∈ I.

And as in 1.7. these two definitions are equivalent.

- 1.9. <u>Definition</u>. A <u>lattice</u> is an algebra $\langle A; V, \Lambda \rangle$ where V and Λ are binary operations on A, called join and meet, respectively, satisfying the following conditions.
- i) <A; V > and <A; A> are similattices.
- ii) (a V b) Λ a = a and (a Λ b) V a = a, for all a, b in Λ .

We can define a lattice as a partially ordered set <A; <> in which any two element subset of A has l.u.b. and g.l.b.

The two definitions are equivalent in the following sense.

i) Let $A = \langle A; V, \Lambda \rangle$ be a lattice. Define a binary relation " \leq " on A by, for all a, b in A, a \leq b if and only if a V b = b. Then $A = \langle A; \leq \rangle$ is a partially set, and as a partially set, it is a lattice; furthermore $\ell.u.b.$ ($\{a,b\}$) = a V b

and g.l.b.
$$({a,b}) = a \wedge b$$
.

ii) Let $\mathcal{A} = \langle A; \leq \rangle$ be a lattice. Set a V b = l.u.b.({a,b}) and a Λ b = g.l.b.({a,b}).

Then $A^+ = \langle A; V, \Lambda \rangle$ is a lattice and a $\langle b$ if and only if a $\vee b = b$.

- iii) Let $\mathcal{A} = \langle A; V, \Lambda \rangle$ be a lattice. Then $(\mathcal{A}^{\circ})^{\dagger} = \mathcal{A}$.
- iv) Let $\mathcal{A} = \langle A; \langle \rangle$ be a lattice. Then $(\mathcal{A}^+)^\circ = \mathcal{A}$.
- 1.10. <u>Definition</u>. If A is a lattice, then subalgebras of A are called sublattices of A.

1.11. <u>Definition</u>. A lattice $\langle A; V, \Lambda \rangle$ is <u>distributive</u> if for all a, b, c in A, a Λ (b V c) = $(a \Lambda b)V(a \Lambda c)$.

1.12. Theorem. A lattice is distributive if and only if it does not have or or as a sublattice.

Proof. (see in [2], page 22;).

1.13. <u>Definition</u>. A lattice $\langle A; V, \Lambda \rangle$ is <u>modular</u> if for all a,b,c in A, a V c = c implies (a V b) Λ c = a V(b Λ c).

Note : Distributive lattices are modular.

The smallest element in a lattice, if it exists, is called <u>zero</u> (0).

The largest element in a lattice, if it exists, is called <u>unit</u> (1).

b is a complement of a in a lattice with zero and unit if $a \lor b = 1$ and $a \land b = 0$.

A <u>complemented lattice</u> is a lattice in which every element has a complement.

1.14. <u>Definition</u>. Let $\langle A; \leqslant \rangle$ be a lattice, if the collection a_i , is I of elements of A has a g.l.b (l.u.b) we denote this element by $\Lambda\{a_i \mid i \in I\}$ (and V $\{a_i \mid i \in I\}$).

If for all $X \subseteq A$, $A \times A$ and VX exist, then the lattice $\langle A; \leqslant \rangle$ is called complete.

1.15. <u>Definition</u>. Let $\langle A; \leqslant \rangle$ be a complete lattice. Let a ϵ A. The element a is called <u>compact</u> if the following condition is satisfied:

If $a \le V\{x_i \mid i \in I\}$ where $x_i \in A$, for each i in I, then there exists $I_1 \subseteq I$ such that I_1 is finite and $a \le V\{x_i \mid i \in I_1\}$, i.e. if a is contained in an infinite join, it is already contained in a finite join.

- 1.16. Definition. A lattice (A; <> is called algebraic if :
 - (i) it is complete.
- (ii) every a in A can be written as $a = V\{x_i \mid i \in I\} \text{ where } x_i \text{ is compact in A for all i in I.}$
- 1.17. Lemma. Let $\mathcal{F} = \langle F; V \rangle$ be a semilattice with zero. Then $\langle I(\mathcal{F}); \subseteq \rangle$ is an algebraic lattice where $I(\mathcal{F})$ is a set of all ideals of \mathcal{F} .

Proof. (see in [1], page 22;).

1.18. <u>Lemma</u>. Let $\mathcal{L} = \langle L; \leqslant \rangle$ be an algebraic lattice. Then there exists a semilattice $\mathcal{F} = \langle F; V \rangle$ with zero such that \mathcal{L} is isomorphic to $\langle I(\mathcal{F}); \subseteq \rangle$ where $I(\mathcal{F})$ is the set of all ideals of \mathcal{F} .

<u>Proof.</u> Let F be the set of all compact elements of L. Since O is compact, we have O ϵ F

To show $\langle F; V \rangle$ is a semilattice with zero, let a, b ϵ F and a V b \leq V $\{x_i \mid i \in J\}$ where $x_i \in L$, $i \in J$.

Since $a \le a \lor b \le \lor \{x, | i \in J\}$ and

 $b \le a \ V \ b \le V \{x_i \mid i \in J\}$, which by the compactness of a and b imply that there exists finite subsets J_1 , J_2 of J such that

 $a \leq V\{x_i | i \in J_1\}$ and $b \leq V\{x_i | i \in J_2\}$.

Therefore a V b < V{x_i| i \in J₁U J₂} where J₁U J₂ is finite, and so a V b is in F.

That is, F is closed under V and $\langle F; V \rangle$ has same properties as $\langle L; V \rangle$.

For a ε L, set $I_a = \{x \mid x \in F \text{ and } x \leqslant a\}$.

To show I_a is an ideal of \mathcal{F} , since $0 \in I_a$, we have $I_a \neq \emptyset$.

x, y \in I iff x \le a and y \le a iff x V y \le a iff x V y \in I . Therefore I is an ideal of \digamma .

Define ψ : L \rightarrow I(\mathcal{F}) by $a\psi$ = I_a.

To show ψ is 1-1, If a ϵ L, then there exists H, a set of compact elements such that

 $a = V\{x | x \in H\}$, that is $H \subseteq I_a$, and

 $a = V\{x \mid x \in H\} \leq V\{x \mid x \in I_a\} \leq a$, so

 $a = V\{x | x \in I_a\}$. Let a, b \in L such that $I_a = I_b$, then

 $a = V\{x | x \in I_a\} = V\{x | x \in I_b\} = b.$

To show ψ is onto, let $I \in I(\mathcal{F})$ and $a = V\{y | y \in I\}$. Since for all $y \in I$, $y \in I$, $y \in I$, we have $I \subseteq I_a$.

Suppose $x \in I_a$, then x is compact, $x \leq V\{y|y \in I\}$ and there exists I_1 , a finite subset of I, such that $x \leq V\{y|y \in I_1\}$. Since $V\{y|y \in I_1\} \in I$ and I is an ideal of \mathcal{F} , we have $x \in I$; thus,

 $I_{\Omega} = I$.

To show ψ is homomorphism, let a, b ε L such that a \leqslant b, and let $x \varepsilon I_a$, we have $x \varepsilon F$, $x \leqslant a \leqslant b$, and so $x \varepsilon I_b$. That is $I_a \subseteq I_b$, i.e. $a\psi \subseteq b\psi$. Let $I_a \subseteq I_b$, $a = V\{x | x \varepsilon I_a\} \leqslant V\{x | x \varepsilon I_b\} = b$; $a \leqslant b$. Therefore $\langle L; \leqslant \rangle \stackrel{\sim}{=} \langle I(\mathfrak{F}); \subseteq \rangle$.

1.19. <u>Lemma</u>. For any $\langle A; F \rangle$, $\langle Su(A); \subseteq \rangle$ is an algebraic lattice, denote $\langle Su(A); \subseteq \rangle$ by Su(A). If G is a family of subalgebras, then the meet of G is \bigcap G, the join of G is \bigcap G (UG).

U in G is compact iff U is finitely generated.

Proof. (see in [2], 103-104;).

1.20. Theorem. (Whaley) If m is a cardinal and \mathcal{L} is a non-trivial algebraic lattice such that for all x in L, x is compact implies x contains at most m compact elements, then there exists an algebra A of 1 binary operation, m unary operations, such that $\mathcal{L} \cong Su(A)$.

Proof. Let F = {non zero compact elements of L}
Let I be any set of order m.

For each $x \in F$, let $f_x : I \xrightarrow{onto} \{y | y \in F, y \le x\}$. Let $A = \langle F; V, F_i(i \in I) \rangle$ where $F_i(x) = f_x(i)$ for all x in F. Let $F = \langle F_0\{0\}; V \rangle$, from Lemma 1.18, F is a semilattice with zero. Let $I(\mathfrak{F})$ be the set of all ideals of \mathfrak{F} .

To show $\langle I(\mathcal{F}), \subseteq \rangle \stackrel{\sim}{=} Su(A)$, let $\psi : I(\mathcal{F}) \to Su(A)$ be defined by $\psi(I) = I - \{0\}$ for all I in $I(\mathcal{F})$.

To show I $-\{0\}$ ϵ Su(A), let $x \epsilon$ I $-\{0\}$.

Since $F_i(x) = f_x(i) = y$ for some $y \le x$, $y \in F$, we have $y \in I - \{0\}$, so $F_i(x) \in I - \{0\}$.

Let $x, y \in I - \{0\}$, $x \in I$ and $y \in I$, $x \neq 0$, $y \neq 0$.

Since I is an ideal, we have $x V y \varepsilon I$ and $x V y \neq 0$,

then $x \vee y \in I - \{0\}$. Therefore $I - \{0\} \in Su(A)$.

Clearly ψ is 1-1 and preserves order.

To show ψ is onto, let S ϵ Su(A), consider S υ {0},

let $x, y \in S \cup \{0\}$.

If x or y is zero, then clearly x V y ϵ S υ {0}.

If x and y are not zero, then x, y ϵ S and x V y ϵ S,

that is x V y E S U {O},

let x, y ε F such that x V y ε S υ {0}.

If $x \ V \ y = 0$, then clearly $x = y = 0 \ \epsilon \ S \ \upsilon \ \{0\}$.

Suppose x V y \neq 0, Since f_{xVy} : I $\xrightarrow{\text{onto}}$ {z|z \in F, z \in x V y} and $x \in x$ V y, y \in x V y, we have $f_{xVy}(i) = F_i(xVy) = x$ and $f_{xVy}(j) = F_j(xVy) = y$ for some i, j in I.

Therefore x, y ϵ S and x, y ϵ S υ {0}, and S υ {0} ϵ I(ϵ).

Hence, $\langle I(\mathcal{F}); \subseteq \rangle \stackrel{\sim}{=} Su(A)$.

By lemma 1.18. $\mathcal{L} \cong Su(A)$.

Note. If m is uncountable and some compact element of $\mathcal L$ contains m compact elements, then all algebras A such that $\mathrm{Su}(A) \stackrel{\sim}{=} \mathcal L$ must have at least m operations.

- 1.21. Theorem. For any non-trivial algebraic lattice \mathcal{L} , the followings are equivalent,
- i) each compact element contains only countably many compact elements,
- ii) there exists an algebra A of countable similarity type such that $\mathcal{L} \cong \operatorname{Su}(A)$,
- iii) there exists a commutative groupoid G such that $\text{$\mathcal{L} \cong \mathop{\rm Su}(\textbf{G})$.}$

<u>Proof</u>. (iii) \Rightarrow (ii) is obvious.

 $(ii) \Rightarrow (i) \text{ Suppose not (i), from note, A must}$ have an uncountable number of operations. To show (i) \Rightarrow (iii), let $V = \{\text{non zero compact elements of L}\}$ for each a in V; arrange V into a sequence

 $a' = \langle a'_0, a'_1, \ldots \rangle$ where $a'_0 = a$ and a'_1 are contained in a. If a contains finite number, n, of elements of V, let a' is periodic, with $a'_1 = a'_1$ iff $i \equiv j \pmod{n}$.

For all a, b in V, define

$$a * b = \begin{cases} a'_{i+1} & \text{if } b = a'_{i} \\ b'_{i+1} & \text{if } a = b'_{i} \\ a & b & \text{otherwise.} \end{cases}$$

Let $G = \langle V; * \rangle$, clearly G is a commutative groupoid and $Su(G) \stackrel{\sim}{=} I(f)$ via $\phi \Rightarrow \{0\}$ and $Su(G) \ni G_i \Rightarrow G_i \cup \{0\} \in I(f)$.

To show $G_1 \cup \{0\} \in I(\mathcal{F})$, let x, y $\in G_1 \cup \{0\}$.

If x or y is zero, then x V y = x or y and x V y ϵ $G_1 \cup \{0\}$.

If x and y are not zero, then x, y ϵ G_1 and x * y ϵ G_1 .

In case 1. $x \ V \ y = x \ \varepsilon \ G_1 \Rightarrow x \ V \ y \ \varepsilon \ G_1 \upsilon \ \{0\}$.

In case 2. $x \ y = y \ \epsilon \ G_{\gamma} \Rightarrow x \ y \ \epsilon \ G_{\gamma} \cup \{0\}$.

In case 3. $x \ y \ \epsilon \ G_{\gamma} \implies x \ y \ \epsilon \ G_{\gamma} \upsilon \ \{0\}$.

Let x, $y \in V$ such that $x \ V \ y \in G_{\eta} \cup \{0\}$.

If $x \ V \ y = 0$, then $x = y = 0 \ \varepsilon \ G_1 \cup \{0\}$.

If $x \ V \ y \neq 0$, $x \leq x \ V \ y$, $y \leq x \ V \ y$, then there exist m, n in \mathbb{N} such that $(xVy)^m = x$ and $(xVy)^n = y$. Therefore x, $y \in G_1 \cup \{0\}$. Hence $G_1 \cup \{0\} \in I(\mathcal{F})$.

Clearly, this mapping preserves order.

Consequently; $Su(G) \stackrel{\sim}{=} I(\mathcal{F})$ and by lemma 1.18, $Su(G) \stackrel{\sim}{=} \mathcal{L}$.