CHAPTER VI

FIELDS WHICH ARE IRREDUNDANT UNIONS OF SUBFIELDS

1 Introduction.

Let a field F be the irredundant union of its subfields F's. If we consider F as a group under addition, then

$$F = \bigcup_{\mathcal{L}} F_{\mathcal{L}}$$

is the irredundant union of its subgroups F. Also, if we consider F. $\{o\}$ as a group under multiplication, then

$$F \setminus \{ \circ \} = \bigcup_{\alpha} (F_{\alpha} \setminus \{ \circ \})$$

is the irredundant union of its subgroups $F_{\mathcal{L}}\{o\}$. Thus in both cases, they must first be groups which are irredundant unions of subgroups as in Chapter III.

First, we will consider finite fields as follows:

2 Finite Fields can not be Irredundant Unions of Subfields.

Let F be a finite field. We have known that $F \setminus \{o\}$ is a cyclic group under multiplication, so it follows from 1 that F can not be an irredundant union of its subfields. Then we have

- 2.1 Theorem. No finite field can be an irredundant union of its subfields.
 - 3 Groups of Mappings Defined on n-fields Which are n-groups.

For convenience, we will call a field which is an

irredundant union of n subfields an n-field. Similar for an n-gro

Let F be a field. Define

$$G = \left\{ \begin{array}{l} I_b^a / a \neq 0, a, b \in F \text{ and } I_b^a (x) = ax+b \text{ for all } x \text{ in } F \right\}, \end{array}$$

$$\overline{G} = \left\{ I_b^a / a, b \in F \text{ and } I_b^a (x) = ax+b \text{ for all } x \text{ in } F \right\}$$

and define the operations o and * on G and G, respectively, as follows:

$$(I_b^a \circ I_d^c)(x) = I_b^a (I_d^c(x)) = I_b^a (cx+d) = acx+(ad+b)$$

and

$$(I_b^a * I_d^c)(x) = I_b^a(x) + I_d^c(x) = (a+c)x+(b+d)$$

for all x in F.

3.1 Theorem. If F is an n-field (n > 2), then (G, 0) and (G, *) are n-groups.

<u>Proof.</u> Let $F = \bigcup_{i=1}^{n} F_i$ be the irredundant union of the F_i .

First, we will show that (G, @) is a group.

(i) Let I_b^a , I_d^c be in G. For any x in F we have $(I_b^a \circ I_d^c)(x) = acx+(ad+b) = I_{ad+b}^{ac}(x)$.

Thus $I_b^a \circ I_d^c = I_{ac}^{ac}$ which belongs to G.

(ii) Let I_b^a , I_d^c and I_f^e be in G. Then for any x in F, we have

$$((I_{b}^{a} \circ I_{d}^{c}) \circ I_{f}^{e})(x) = (I_{b}^{a} \circ I_{d}^{c})(I_{f}^{e}(x))$$

$$= I_{b}^{a} (I_{d}^{c}(I_{f}^{e}(x)))$$

$$= I_{b}^{a} ((I_{d}^{c} \circ I_{f}^{e})(x))$$

$$= (I_{b}^{a} \circ (I_{d}^{c} \circ I_{f}^{e}))(x),$$

so that $(I_b^a \circ I_d^c) \circ I_f^e = I_b^a \circ (I_d^c \circ I_f^e)$.

(iii) For any Ia in G. We have

$$I_b^a \circ I_o^1 = I_{oa+b}^{a1} = I_b^a = I_o^1 \circ I_b^a.$$

Then I_0^1 is the identity of G.

(iv) For any I_b^a in G, $a \neq 0$, then a^{-1} exists. Since $I_{-a}^{a-1} \circ I_b^a = I_{-a}^{a-1} \circ I_b^a = I_{-a-1}^{a-1} \circ I_b^a = I_0^{a-1} \circ I_b^a \circ I_{-a-1}^{a-1} \circ I_b^a \circ I_a^{a-1} \circ I_b^a \circ I_a^a \circ I_a^a$

 I_b^a and I_{-a}^a are inverses in G.

Hence (G, 0) is a group.

Similarly, we can show that $(\bar{G}, *)$ is a group with I_0^0 is the identity of \bar{G} and I_b^a and I_{-b}^a are inverses in \bar{G} . Set

$$G_i = \{ I_b^a / a \neq 0, a \in F_i, b \in F \}$$

and

$$\bar{G}_{i} = \{ I_{b}^{a} / a \in F_{i}, b \in F \}$$

for i = 1, 2, ... As above, (G_i, o) and $(G_i, *)$ are subgroups of (G, o) and (G, *), respectively. It is clear that

$$G = \bigcup_{i=1}^{n} G_i$$

and

$$\bar{G} = \bigcup_{i=1}^{n} \bar{G}_{i}$$
.

Now, we want to show that $G = \bigcup_{i=1}^n G_i$ is the irredundant union of the G_i Since $F_j \setminus \bigcup_{i=1}^n F_i \neq \emptyset$ for all j in $\{1, 2, \ldots n\}$, we $i \neq j$ can let x_j be in $F_j \setminus \bigcup_{i=1}^n F_i$, $j = 1, 2, \ldots n$. Suppose that $i \neq j$

 $I_o^{\mathbf{x}}\mathbf{j}$ belongs to G_k for some $k \neq j$. Then $I_o^{\mathbf{y}}\mathbf{j} = I_b^a$ for some $a \neq 0$ in F_k and b in F, so that $\mathbf{x}_j = I_o^{\mathbf{x}}\mathbf{j}$ (1) = $I_b^a(1)$ = $I_b^a(1)$

 $\bar{G} = \bigcup_{i=1}^{n} \bar{G}_{i}$ is the irredundant union of subgroups \bar{G}_{i} .

Hence the theorem is proved completely.

3.2 Remark. Theorem 3.1 is still true, if F is only assumed to be a division ring.

A partial converse of Theorem 3.1 is given by the following theorem:

3.3 <u>Theorem</u>. Assuming the notations preceding 3.1 and if further that

$$G = \bigcup_{i=1}^{n} G_{i}, \overline{G} = \bigcup_{i=1}^{n} \overline{G}_{i}$$

are irredundant unions of their subgroups G_i and \bar{G}_i ; respectively and $\bar{G}_i = G_i \cup \{ I_b^0 / b \in F \}$,

then F is an n-field.

<u>Proof.</u> For i = 1, 2,...n, we define

$$F_{i} = \left\{ a \in F / I_{b}^{a} \in \overline{G}_{i} \right\}$$
.

It is clear that $F = \bigcup_{i=1}^{n} F_i$. We will show that each F_i is a subfield of F.

(i) Let a, b be in F_i . Then there exist c and d in F such that I_c^a and I_d^b are in \overline{G}_i . Since $I_c^a * I_d^b = I_{c+d}^{a+b}$ is in \overline{G}_i and if $a \neq 0$, $b \neq 0$, then $I_c^a \circ I_d^b = I_{ad+c}^{ab}$ is in $G_i \subset G_i$. Then we have a+b and ab are in F_i for any a, b in F_i .

(ii) Since I_0° is in \bar{G}_1 and I_0^1 is in $G_1 \subset \bar{G}_1$, o, 1 are in F_1 .

(iii) Let a be in F_i . Then there exists b in F such that I_b^a is in \bar{G}_i . Since the inverse of I_b^a in \bar{G}_i is I_{-b}^{-a} , —a is in F_i . If a \neq 0, then the inverse of I_b^a in \bar{G} is

 $I_{-a^{-1}b}^{a^{-1}}$ which is in $G_i \subset \overline{G}_i$ and therefore a^{-1} is in F_1 .

Hence F_i is a subfield of F.

Finally, we will show that

$$\mathbf{F} = \bigcup_{i=1}^{n} \mathbf{F}_{i}$$

is the irredundant union of subfields F_i . For each $I = \{1,2,\ldots n\}$, $\bar{G}_j > 0$, $\bar{G}_i \neq \emptyset$, let I_{yj}^{xj} be in $\bar{G}_j > 0$, \bar{G}_i . Suppose that $i \neq j$ I_o^j belongs to \bar{G}_k for some $k \neq j$. Then $I_o^{xj} * I_{yj}^o = I_{yj}^{xj}$ belongs to \bar{G}_k , which contradicts the choice of I_{yj}^{x} in $\bar{G}_j > 0$, \bar{G}_i . If x_j is in F_l for some $l \neq j$, then I_y^j is in \bar{G}_l for some $l \neq j$, then l_y^j is in \bar{G}_l for some $l \neq j$. Therefore $l_y^{xj} * l_{-y}^o = l_o^{xj}$ belongs to l_{l}^{xj} which is a contradiction. Then l_{l}^{xj} belongs to l_{l}^{xj} is l_{l}^{xj} .

Hence the theorem is proved.

