CHAPTER V

ON THE ABELIAN GROUP C2 x C2 ... x C2 (N TIMES)

1 Introduction.

Let the abelian group $V_n = C_2 \times C_2 \times \cdots \times C_2$ (n times). It is obvious to see that the order of the abelian group of V_n is 2ⁿ and each non-trivial element of V_n is of order 2. We can let the abelian group V_n be as follows:

$$V_n = \{1, a_1, a_2, \dots, a_n\}$$

Then we have

$$a_1^2 = a_2^2 = \cdots = a_n^2 = 1.$$

Moreover, the abelian group V_n can be expressed as the irredundant union of subgroups $A_1, A_2, \dots, A_{2^{n-1}}$ where $A_i = \{1, a_i\}$

 $i = 1, 2, \dots 2-1$

for

We will consider groups which are homomorphic preimages of the abelian group $\,V_{_{\rm TP}}^{}.$

2 Groups Which can be Mapped Homomorphically onto the abelian group Vn.

2.1 <u>Theorem</u>. If a group G can be mapped homomorphically onto_n the abelian group V_n , then G is an irredundant union of 2-1 subgroups,

<u>Proof</u>. Let φ be a mapping such that

 $\varphi: G \longrightarrow V_n$

is an onto homomorphism. Set

$$\begin{array}{rcl} G_{i} & = & \varphi^{-1}(a_{i}) \bigcup \varphi^{-1}(1) \end{array}$$
for i = 1, 2, ..., 2ⁿ-1. It is easy to see that G_{i} is a subgroup of G for all i in 1,2,..., 2ⁿ1 and

$$\begin{array}{rcl} G & = & \bigcup^{2^{n}-1}_{i=1} & & n \\ & & i=1 & & n \\ \end{array}$$
Finally, if for some j = 1,2,...n, $G_{j} \subset \bigcup^{2^{-1}}_{k=1} G_{k}$, then for $k \neq j$
any y in $G_{j} \sim \varphi^{-1}(1)$, y belongs to G_{k} for some $k = 1,2,...m$
and $k \neq j$, so that

$$1 \neq a_{j} = \varphi(y) \in \{1, a_{k}\},\$$

which is impossible. Hence the union is irredundant .

Moreover, it is easy to see that the subgroups G_i 's which we have constructed, have the following properties:

 $G_{i} \cap G_{j} = \tilde{\varphi}^{1}(1)$
for all i, j in 1, 2, ... 2-1 , and $i \neq j$.

In case n = 2, we have proved that a group is a 3-group if and only if it can be mapped homomorphically onto the Klein 4-group V which is the abelian group $V_2 = C_2 \times C_2$. However, whether the converse of the Theorem 2.1 holds or not in general has not been solved. But we can

prove a partial converse as follows:

2.2 <u>Theorem</u>. Let a group $G = \bigcup_{i=1}^{n} G_i$ be the irredundant union of its subgroups G_i with the additional properties: (i) $K = \bigcap_{i=1}^{2^{n}-1} G_i$ is a normal subgroup of G, (ii) there exist g_1, g_2, \dots, g_n in G such that g_i^2 is in K and $g_i g_j = g_j g_i$ for all i, j in $\{1, 2, \dots, n\}$, and $\begin{cases} G_1, G_2, \dots, G_n \\ 2^{-1} \end{cases} = \begin{cases} A_{i_1 i_2 \cdots i_j} / 1 \leq i_1 \leq i_2 \cdots \leq i_j \leq n \\ j = 1, 2, \dots, n \end{cases}$ where $A_{i_1 i_2 \cdots i_j} = [K \cup \{g_{i_1} g_{i_2} \cdots g_{i_j}\}]$, $1 \leq i_1 < i_2 < \dots < i_j \leq n, j = 1, 2, \dots n.$

Then G can be mapped homomorphicall onto the abelian group ${\rm V}_{\rm n}\, {\boldsymbol \cdot}$

<u>Proof</u>. Let Ψ be a mapping from G onto G/K as follows:

defined by

Then ${\mathcal P}$ is an onto homomorphism. We only need to show that ${\rm G}_{/K}$ is the abelian group ${\rm V}_n$. By assumption we have

$$G = \bigcup_{\substack{1 \leq i_1 \leq \cdots \leq i_j \leq n-1 \\ j = 1, 2, \dots n}} \left[K \bigcup \{g_i \cdots g_i\} \right]$$

is the irredundant union of 2-1 subgroups $[KU\{g_1, \dots, g_i\}]$. Then the elements of the set

$$B = \left\{ g_{i_1}g_{i_2} \cdots g_{i_j} / 1 \le i_1 < i_2 < \cdots < i_j \le n, \right\}$$

j = 1,2,... n

are all distinct and each of them does not belong to K. Since g_i^2 is in K for all i in{1,2,...n}, the square of each element of B must belong to K. From these, we have

$$G_{/K} = \{K\} \cup \{(g_{i_1} \dots g_{i_j})K / 1 \le i_1 \le i_2 \le \dots \le i_j \le n, j = 1, 2, \dots n\}$$

and the elements of $G_{/K}$ are all distinct. Since g_i^2 is in K for all i in $\{1, 2, ...n\}, (g_iK)^2 = K$. Then $\{K, g_iK\}$ is a cyclic subgroup of $G_{/K}$ for all i in $\{1, 2, ..., n\}$. From

$$G_{/K} = \{K\} \cup \{(g_{i_1} \cdots g_{i_j})K / 1 \le i_1 < i_2 < \cdots < i_j \le n, j = 1, 2, \cdots n \}, we have$$

$$G_{/K} = \{ K, g_1 K \} \times \{ K, g_2 K \} \times ... \times \{ K, g_n K \},$$

since $g_i g_j = g_j g_i$ for all i, $j in \{1, 2, ..., n\}$, i.e., $G_{/K}$ is an abelian group. So we have $G_{/K}$ is an abelian group of the form $C_2 \propto C_2 \propto ... \propto C_2$ (n times).

Hence the theorem is proved completely.

2.3 <u>Remark</u>. We can state Theorem 2.1 and 2.2 in terms of isomorphism as follows:

1. Let G be a group and K a normal subgroup of G. If $G_{/K}$ is isomorphic to the abelian group V_n , then G is an irredundant union of 2-1 subgroups and the intersection is K.

2. Let a group
$$G = \bigcup_{i=1}^{n} G_i$$
 be the irredundant union of its

subgroups
$$G_{i}$$
 with the additional properties:
(i) $K = \bigcap_{i=1}^{2-1} G_{i}$ is a normal subgroup of G ,
(ii) there exist $g_{1}g_{2}, \dots, g_{n}$ in G such that g_{i}^{2} is in K and
 $g_{i}g_{j} = g_{j}g_{i}$ for all i, j in $\{1, 2, \dots, n\}$ and
 $\{G_{1}, G_{2}, \dots, G_{2^{n}-1}\} = \{A_{i_{1}i_{2}}, \dots, i_{j} / 1 \leq i_{1} \leq i_{2} < \dots < i_{j} \leq n, j = 1, 2, \dots, n\}$
where $A_{i_{1}i_{2}}, \dots, i_{j} = [K \cup \{g_{i_{1}}g_{i_{2}}, \dots, g_{i_{j}}\}]$,
 $1 \leq i_{1} < i_{2} < \dots < i_{j} \leq n, j = 1, 2, \dots, n.$

Then $G_{/K}$ is isomorphic to the abelian group V_n .

