CHAPTER V

ON THE ABELIAN GROUP $C_{2} \times c_{2} \cdots \cdots c_{2}$ (N TIMES)
1 Introduction.
Let the abelian group $V_{n}=C_{2} \times C_{2} \times \ldots \times C_{2}$ (n times). It is obvious to see that the order of the abelian group of V_{n} is 2^{n} and each non-trivial element of V_{n} is of order 2. We can let the abelian group V_{n} be as follows:

$$
V_{n}=\left\{1, a_{1}, a_{2} \ldots, a_{2 \rightarrow 1}\right\} .
$$

Then we have

$$
a_{1}^{2}=a_{2}^{2}=\cdots a_{2}^{2}=1
$$

Moreover, the abelian group V_{n} can be expressed as the irredundant union of subgroups $A_{1}, A_{2}, \ldots, A_{2^{n}-1}$ where

$$
A_{i}=\left\{1, a_{i}\right\}
$$

$$
\text { for } \quad \text { Chui }
$$

We will consider groups which are homomorphic preimages of the abelian group $V_{I I}$.

2 Groups Which can be Mapped Homomorphically onto the abelian group V_{n}.
2.1 Theorem. If a group G can be mapped homomorphically onto ${ }_{n}$ the abelian group V_{n}, then G is an irredundant union of $2-1$ subgroups,

Proof. Let φ be a mapping such that

$$
\varphi: G \longrightarrow V_{n}
$$

is an onto homomorphism. Set

$$
G_{i}=\varphi^{-1}\left(a_{i}\right) \cup \varphi^{-1}(1)
$$

for $i=1,2, \ldots, 2^{n}-1$. It is easy to see that G_{i} is a subgroup of G for all i in $1,2, \ldots, 2^{\frac{n}{-1}}$ and

$$
G=\bigcup_{i=1}^{2^{-\frac{n}{1}}} G_{i} .
$$

Finally, if for some $j \in 1,2, \ldots n, G_{j} \subset \bigcup_{\substack{k=1 \\ k \neq j}}^{2-1} G_{k}$, then for
any y in G_{j} ’ $\bar{\varphi}^{-1}(1), y$ belongs to G_{k} for some $k=1,2, \ldots$. and $k \neq j$, so that

$$
1 \neq a_{j}=\varphi(y) \in\left\{1, a_{k}\right\},
$$

which is impossible. Hence the union is irredundant.
Moreover, it is easy to see that the subgroups G_{i} 's which we have constructed, have the following properties:

$$
\begin{equation*}
G_{i} \cap G_{\text {มหาว }}={ }_{n} \varphi^{-1} \tag{1}
\end{equation*}
$$

for all i, j in $1,2, \ldots 2-1$, and $i \neq j$.
In case $\mathrm{n}=2$, we have proved that a group is a 3-group if and only if it can be mapped homomornhically onto the Klein 4 -group V which is the abelian group $V_{2}=C_{2} \times C_{2}$. However, whether the converse of the Theorem 2.1 holds or not in general has not been solved. But we can
prove a partial converse as follows:
n
2.2 Theorem. Let a group $G=\bigcup_{i=1}^{2-1} G_{i}$ be the irredundant union of
its subgroups G_{i} with the additional properties:
(i) $K=\bigcap_{i=1}^{2-1} G_{i}$ is a normal subgroup of G,
(ii) there exist $g_{1}, g_{2}, \ldots g_{n}$ in G such that g_{i}^{2} is
in K and $g_{i} g_{j}=g_{j} g_{i}$ for all i, j in $\{1,2, \ldots n\}$, and

$$
\left.\left\{G_{1}, G_{2}, \ldots G_{2}\right\}_{2-1}\right\}=\left\{A_{i_{1} i_{2}} \ldots i_{j} / \begin{array}{l}
1 \leqslant i_{1}<i_{2} \ldots<i_{j} \leqslant n \\
j=1, \ldots, \ldots n
\end{array}\right\}
$$

where $A_{i_{1} i_{2}} \ldots i_{j}=\left[K \cup\left\{g_{i_{1}} g_{i_{2}} \ldots g_{i_{j}}\right\}\right]$,

$$
1 \leqslant i_{1}<i_{2}<\cdots<i_{j} \leqslant n, j=1,2, \ldots n .
$$

Then G can be mapped homomorphicall onto the abelian group V_{n} 。

Proof. Let φ be a mapping from G onto G / K as follows:

$$
\varphi: G \longrightarrow{ }^{G} / \mathrm{K}=\text { ? }
$$

defined by

$$
\mathrm{g} \longmapsto \mathrm{gK} .
$$

Then φ is an onto homomorphism. We only need to show that G / K is the abelian group V_{n}. By assumption we have

$$
\left.G=\underset{\substack{1 \leqslant i_{1}<\ldots<i_{j}, n \cdot 1 \\ j=1,2, \ldots n}}{\bigcup}\left[K g_{i_{j}} \cdots g_{i}\right\}\right]
$$

is the irredundant union of $2^{n}-1$ subgroups $\left[\begin{array}{lllll}\mathrm{KU}\left\{s_{i_{1}}\right. & \cdots g_{i} & \}\end{array}\right] \cdot$
Then the elements of the set
$B=\left\{g_{i_{1}} g_{i_{2}} \ldots g_{i_{j}} / \begin{array}{c}1 \leqslant i_{1}<i_{2}<\ldots<i_{j} \leqslant n, \\ j=1,2, \ldots n\end{array}\right\}$
are all distinct and each of them does not belong to K . Since g_{i}^{2} is in K for all in $\{1,2, \ldots n\}$, the square of each element of B must belong to K . From these, we have

$$
\left.\begin{array}{rl}
G / K=\{K\} \cup\left\{\left(g_{i_{1}} \ldots g_{i_{j}}\right) K / 1 \leqslant i_{1}<i_{2}<\ldots<i_{j} \leqslant n,\right. \\
j & =1,2, \ldots n
\end{array}\right\}
$$

and the elements of .C. K are all distinct. Since $\mathrm{g}_{\mathrm{i}}^{2}$ is in K for all 1 in $\{1,2, \ldots, k\},\left(g_{i} K\right)^{2}=K$. Then $\left\{K, g_{i} K\right\}$ is a cyclic subgroup of G / k for all in $\{1,2, \ldots \mathrm{n}\}$. From
$G_{/ K}=\{K\} \bigcup\left\{\left(g_{i_{1}} \cdots g_{i_{j}}\right) K / 1 \leqslant i_{1}<i_{2}<\ldots<i_{j} \leqslant n\right.$, $j=1,2, \ldots n\}$, we have
$G_{/ K}=\left\{K, g_{1} K\right\} \times\left\{K, g_{2} K\right\} \times \ldots \times\left\{K, g_{n} K\right\}$,
since $g_{i} g_{j}=g_{j} E_{i}$ for all i, j in $\{1,2, \ldots n\}, i$.e., G / K is an abelian group. So we have G / K is an abelian group of the form $\mathrm{C}_{2} \times \mathrm{C}_{2} \times \ldots \times \mathrm{C}_{2}$ (n times).

Hence the theorem is proved completely.
2.3 Remark. We can state Theorem 2.1 and 2.2 in terms of isomorphism as follows:

1. Let G be a group and K a normal subgroup of G. If G / K is isomorphic to the abelian group V_{n}, then G is an irredundant union of $2^{\frac{n}{n}}$ subgroups and the intersection is K.
2. Let a group $G=\bigcup_{i=1}^{n-1} G_{i}$ be the irredundant union of its
subgroups G_{i} with the additional properties:
(i) $K=\bigcap_{i=1}^{2-1} G_{i}$ is a normal subgroup of G,
(ii) there exist $g_{\uparrow} g_{2}, \ldots g_{n}$ in G. such that g_{i}^{2} is in K and $g_{i} g_{j}=g_{j} g_{i}$ for all i, j in $\{1,2, \ldots n\}$ and $\left\{G_{1}, G_{2} \ldots G_{2^{n}-1}\right\}=\left\{A_{i_{1}} i_{2} \ldots i_{j} / 1 \leqslant i_{1}<i_{2}<\ldots<i_{j} \leqslant n\right.$, $j=1,2, \ldots n\}$
where $\left.A_{i_{1} i_{2}} \ldots i_{j}=\left[K \cup \hat{S}_{\dot{i}_{1}} g_{i_{2}} \ldots g_{i_{j}}\right\}\right]$,
$1 \leqslant i_{1}<i_{2}<\ldots<i_{j} \leqslant n, j=1,2, \ldots n$.
Then G / K is isomorphic to the abelian group V_{n}.

