CHAPTER IV

GROUPS WHICH ARE UNIONS OF THREE PROPER SUBGROUPS

The materials of this chapter are drawn from reference [1].

1 Introduction.

In this chapter we consider groups which can be written as (set - theoretical) unions of three subgroups.

To specific, suppose the group G is given by the nontrivial union:

$$
G=A \cup B \cup C
$$

where A, B and C are subgroups of G.

If A is a subgroup of B, we are effectively dealing with two subgroups of G, and this is not possible by 2.1 of ChapterIII. Similar for the other cases. Hence we may assume the configuration of the following Figure 1 where A', B' and C^{\prime} must be nonempty sets.

Figure 1.
where

$$
\begin{gathered}
A^{\prime}=A \backslash(B \cup C), B=B \backslash(C \cup A), C=C \backslash(A \cup B) \\
L=(A \cap B) \backslash C, M=(C \cap A) \backslash B, N=(B \cap C) \backslash A, \\
K=A \cap B \cap C .
\end{gathered}
$$

For convenience, we will call such a group G a 3-group.
Appling $3.1,3.3,3.5,4.2,4.3$ and 4.5 of Chapter III, we have the followings:
(a)
$L=M / \neq N=\phi$
(b) A^{\prime}, B^{\prime}, and C^{\prime} contain their inverses.
(c) If a^{\prime} is in A^{\prime} and b^{\prime} in B^{\prime}, then áb is in C^{\prime}.
(d) If a^{\prime} is in A^{\prime}, then a^{\prime} is in $B \cup C$.
(e) If every element of a group G has $2^{\text {nd }}$ root
in G, then G can rot be an irredundant union of three subgroups.
(f) Let G be a finite group of order N and let

3 be the smallest prime dividing N. Then G is not an irredundant union of three subgroups.

2 Homomorphisms of 3 -groups.

To prove the main theorem, we will introduce three lemmas as follows:
2.1 Lemma. If a^{\prime} and a_{1}^{\prime} are in A^{\prime}, then $a^{\prime} a_{1}^{\prime}$ is in K.

Proof. The element $a^{\prime} a_{1}^{\prime}$ belobgs either to A^{\prime} or to K. Suppose that it belongs to A^{\prime}. Let b^{\prime} belong to B^{\prime}. Consider the element b'áá ${ }_{1}$ as follows:

Apply (c) twice; we have (bad) a' ${ }_{1}^{\prime}$ is in B^{\prime}. By assumption and (c) again, $b^{\prime}\left(a^{\prime} a_{1}^{\prime}\right)$ is in C'. Hence we arrive at two contradicting statements and ada must be in K .

2.2 Lemma. K is a normal subgroup of G.

Proof. It is clear that K is a subgroup of G.
Let a^{\prime} be in A^{\prime} and k in K. Then we have ka' belongs either to A^{\prime} or to K., If $k a^{\prime}$ is in K, then $k^{-1}\left(k^{\prime}\right)=a^{\prime}$ is in K. Thus ka must be in A^{\prime}. By (b) and 2.1, we have $a^{-1} k a^{\prime}$ is in K. Therefore $K a^{\prime}=$ á K.

Similary we can show that $K b^{\prime}=b^{\prime} K$ and $K c^{\prime}=c ́ K$ for any b^{\prime} in B^{\prime} and c^{\prime} in C.

Hence K is a normal subgroup of G.

2.3 Lemma. $a^{\prime} K=A$ for any á in A^{\prime}.

Proof. Let k belong to K. Then ak is in $A=A \cup U$. If ask is in K, then (ak) $k^{-1}=a^{\prime}$ is in K. Thus ask is in A^{\prime}. Therefore af is a subset of A. Suppose that there is an element a_{1}^{\prime} in A ' but not in ad. Then by (b) and 2.1 we have $a^{\prime-1} a_{1}^{\prime}$ is in K. Hence $a_{1}^{\prime}=a^{\prime} k$ for some k in K, which is a contradiction.

Hence the lemma is proved.
2.4 Difinition. If G is the group such that $G=\left\{1, a_{1}, a_{2}, a_{3}\right\}$ with the relations $a_{1}^{2}=a_{2}^{2}=a_{3}^{2}=1$ and $a_{1} a_{2}=a_{2} a_{1}=a_{3}, a_{2} a_{3}=a_{3} a_{2}=a_{1}, \quad a_{3} a_{1}=a_{1} a_{3}=a_{2}$, then G is said to be the Klein 4 - group and denoted by V.
2.5 Theorem. A group G is an irredundant union of three subgroups if and only if it can be mapped homomorphically onto the Klein 4 - group.

Proof. The "if" part follows clearly from (c), 2.1, 2.2 and 2.3 .

To prove the converse, let φ be a homomorphism of G onto $V=\left\{1, a_{1}, a_{2}, a_{3}\right\} \cdot$ Set
and
Let
and

It is obvious to see that A, B and C are subgroups of G and $G=A \cup B \cup C$. Since A^{\prime}, B^{\prime} and C^{\prime} are disjoint nonempty sets, G is the irredundant union of subgroups A, B and C.

Hence the theorem is proved.
2.6 Remark. It follows from 2.5 that
and

$$
\begin{array}{r}
A^{\prime} B^{\prime}=B^{\prime} A^{\prime}=C^{\prime}, \quad{ }^{\prime} C^{\prime}=C^{\prime} B^{\prime}=A^{\prime}, C^{\prime} A^{\prime}=A^{\prime} C^{\prime}=B^{\prime} \\
A^{2}=B^{\prime 2}=C^{2}=K .
\end{array}
$$

3 Decompositions of 3 -groups.

It follows from 2.5 that G is finite, it must be order 4 m . Clearly there are many groups of order 4 m which are not unions of three subgroups . For example, the cyclic group $C_{4 m}$ of order 4 m . More generally, no locally
cyclic group can be unions of three subgroups,
this follows from 1 of Chapter III.

On the other hand there are many examples of groups of order 4 m which are unions of three subgroups. We shall consider a few examples. A decomposition of a group G is a set of subgroups whose union is G and is irredundant.

Example 1. The Klein 4 - group admits a decomposition $\left\{\mathrm{c}_{2}, \mathrm{C}_{2}, \mathrm{c}_{2}\right\}$, where as usual C_{n} denotes the cyclic group of order n.

Example 2. There are five groups of order 8. Disregarding C_{8}, we are left with $C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}, D_{4}$ (the dihedral group of order 4) and Q (the quaternion group)
and Q^{4} admits a decomposition $\left\{C_{4}^{4}, C_{4}, C_{4}\right\}$.

Example 3. For each positive integer m, the dihedral group $D_{2 m}$ of order 2 m is the group generated by a and b with relations

$$
\begin{gathered}
a^{2 m}=b^{2}=(a b)^{2}=1 \\
D_{2 m} \text { admits a decomposition }\left\{C_{2 m}, D_{m}, D_{m}\right\}
\end{gathered}
$$

Example 4. For each even m, the dicyclic group of order 4 m generated by a and b with relations

$$
a^{2 m}=1, a^{m}=(a b)^{2}=b^{2}
$$

admits a decomposition consisting of a $C_{2 m}$ and two dicyclic groups each of order 2 m .

Thus far we have characterized the groups which are 3 - groups. The following questions are to be sattled.

Question 1. Can a 3 - groups have "different" decompositions?

Question 2. Can two "different" 3 - groups have the same decomposition ?

As to be expected, both questions are answered affirmatively by the following two examples.

Example 5. $C_{2} \times D_{4}$ has the two distinct decompositions $\left\{C_{4} \times C_{2}, D_{4}, D_{4}\right\}$ and $\left\{C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}, C_{2} \times C_{2} \times C_{2}\right\}$

Example 6. The group of order 16 generated by a, b and c with the relations

$$
a^{2}=b^{2}=c^{2}=1, a b c=b c a=c a b
$$

has a decomposition $\left\{\mathrm{C}_{4} \times \mathrm{C}_{2}, \mathrm{D}_{4}, \mathrm{D}_{4}\right\}$, the latter is also a decomposition of $\mathrm{C}_{2} \times \mathrm{D}_{4}$ (cf. Example 5).

If a group is non-abelian, then the subgroups of a decomposition can be abelian (Q) or non-abelian (Ω). This give four possible types of decompositions; namely $\{a, a, a\}$, $\{a, a, n\},\{a, n, n\}$ and $\{n, n, n\}$. The decomposition $\{a, a, n\}$, however, cannot occur.
3.1 Lemma. If the group G has the decomposition $\{A, B, C\}$ with A and B are both abelian, then C is also abelian.

Proof. Let $c^{\prime}, c_{1}^{\prime}$ be in C^{\prime} and k in k. Then there exist a^{\prime} in A^{\prime}, b^{\prime} in B^{\prime} and k_{1} in K such that $c^{\prime}=a^{\prime} b^{\prime}$ and $c_{1}^{\prime}=c^{\prime} k_{1}^{\prime}$. Since A and B are both abelian, we have

$$
\begin{aligned}
c_{1}^{\prime} & =\left(a^{\prime} b^{\prime}\right) k_{1} \\
c^{\prime} c_{1}^{\prime} & =\left(a^{\prime} b^{\prime}\right)\left(a^{\prime} b^{\prime} k_{1}\right)=\left(a^{\prime} b^{\prime} k_{1}\right)\left(a^{\prime} b^{\prime}\right)=c_{1}^{\prime} c^{\prime} \\
\text { and } c^{\prime} k \quad & =\left(a^{\prime} b^{\prime}\right) k=k\left(a^{\prime} b^{\prime}\right)=k c^{\prime} .
\end{aligned}
$$

The remaining three type of decompositions can all occure as the following examples show.

Example 7. The group Q has the decomposition $\left\{\mathrm{C}_{4}, \mathrm{C}_{4}, \mathrm{C}_{4}\right\}$ which is of the type $\left\{\theta_{2}, O_{2}, Q_{\}}\right.$.

The group $D_{2 m}$ has the decomposition $\left\{C_{2 m}, D_{m}, D_{m}\right\}$ which is of the type $\{a, n, n\}$.

The group $S_{3} x / V$ has the decomposition $\left\{D_{6}, D_{6}, D_{6}\right\}$ which is of the type $\{n, n, n\}$.

We summerize these results in the following theorem;
3.2 Theorem. Each decomposition of a 3 - group is one of the type $\{Q, Q, Q\},\{Q, n, n\}$ and $\{n, n, n\}$.

If a 3 -grou pis abelian, then its center is G. For non-abelian 3 - groups we have the following two results:
3.3 Theorem. A non-abelian 3 - group G has an abelian decomposition (ie., a decomposition of the type $\{a, a, a\}$) if and only if the center of G is K.

Proof. Let G have a decomposition $\{A, B, C\}$ and Z be the center of G.

Firstly, suppose that A, B and C are abelian. Then Z contains K. Suppose that $Z \neq K$; without, loss of generality. we may let a_{z}^{\prime} be in Ánz. For each c^{\prime} in c^{\prime} there exists
$a b^{\prime}$ in B^{\prime} such that $c^{\prime}=a_{z}^{\prime} b^{\prime}$. Since A, B and C are all abelian, we have

$$
c^{\prime} b=\left(a_{z}^{\prime} b^{\prime}\right) b=b\left(a_{z}^{\prime} b^{\prime}\right)=b c^{\prime}
$$

for any b in B. Then elements of B and C^{\prime} commute. It follows that the elements of B and C commute .

Similarly we can show that elements of A and B and elements of A and C commute.

Hence G is abelian, which contradicts the assumption. Therefore $Z=K$.

Conversely, let $Z=\mathbb{K}_{0}$ For any $a^{\prime}, a_{1}^{\prime}$ in A^{\prime}, k in K, there, exist a_{2} in A^{\prime} and k_{1} in K such that $a=a_{2}^{\prime} k$ and $a^{\prime}=a_{1}^{\prime} k_{1}$. Thus we have
and

$$
\begin{aligned}
& a^{\prime} a_{1}^{\prime}=\left(a_{1}^{\prime} k\right)_{1}^{\prime}=a_{1}^{\prime}\left(k_{1}^{\prime} 1_{1}^{\prime}\right)=a_{1}^{\prime} a^{\prime} \\
& a^{\prime} k=\left(a_{2}^{\prime} k\right) k=k\left(a_{2}^{\prime} k\right)=k a^{\prime} .
\end{aligned}
$$

Hence A is abelian.
Similar arguements show that B and C are abelian.
3.4 Theorem. If G admits a decomposition $\{A, B, C\}$ of the type $\{a, n, n\}$, then the center Z of G is contained in A.

Proof. Suppose that there exists a b_{z}^{\prime} in $B^{\prime} \cap z$, let b^{\prime}, b_{1}^{\prime} be in B^{\prime} and k in K. Then there exist k_{1}, k_{2} in K such that $b^{\prime}=b_{z}^{\prime} k_{1}$ and $b_{1}^{\prime}=b_{z}^{\prime} k_{2}$. So we have

$$
\begin{aligned}
b^{\prime} b_{1}^{\prime} & =\left(b_{z}^{\prime} k_{1}\right)\left(b_{z}^{\prime} k_{2}\right) \\
\text { and } b^{\prime} k & =\left(b_{z}^{\prime} k_{1}\right) k \\
& =k\left(b_{z}^{\prime} k_{2}\right)\left(b_{z}^{\prime} k_{1}\right)=k b^{\prime} .
\end{aligned}
$$

Hence B is abelian, which contradicts the assumption. Thus $\mathrm{B}^{\prime} \cap \mathrm{Z}=\phi$. Similarly we can show that $\mathrm{c}^{\prime} \cap \mathrm{z}=\phi$.

Example 8. For D_{6} which has the decomposition $\left\{\mathrm{C}_{6}, \mathrm{~S}_{3}, \mathrm{~S}_{3}\right\}$, we have the center Z is such that $A \cap Z \neq \phi$, that is the center Z contains elements of A^{\prime}.

If a group G has a decomposition $\{A, B, C\}$ of the type $\{n, n, n\}$, it is clear that Z can not contain elements from A^{\prime} and B^{\prime} and not C^{\prime}, since $Z \cap A$ and $Z \cap B$ are groups and a group can not be expressed as an irredundant union of two subgroups (2.1 of Chapter III). But there is the possibility that Z contains elements of A^{\prime}, B^{\prime} and C^{\prime} in this case Z is itself necessarily a 3 -group with decomposition $\{Z \cap A$, $Z \cap B, Z \cap C\}(Z$ may of Course be a 3 - group in other cases). The existence of such a decomposition requires that K be non-abelian. Because if, K is abelian, there exists an a_{z}^{\prime} in $Z \cap A^{\prime}$ and for any $a^{\prime}, a_{1}^{\prime}$ in A^{\prime} and k in K, there exist k_{1}, k_{2} in k such that $a^{\prime}=a_{z}^{\prime} k_{1}^{\prime}$ and $a_{1}^{\prime}=a_{z}^{\prime} k_{2}$. Then we have

$$
a^{\prime} a_{1}^{\prime}=\left(a_{z}^{\prime} k_{1}\right)\left(a_{z}^{\prime} k_{2}\right)=\left(a_{z}^{\prime} k_{2}\right)\left(a_{z}^{\prime} k_{1}\right)=a_{1}^{\prime} a^{\prime}
$$

and

$$
a^{\prime} k=\left(a_{z}^{\prime} k_{1}\right) k=k\left(a_{z}^{\prime} k_{1}\right)=k a^{\prime} .
$$

Hence A is abelian, which is a contradiction.
Example 9. For $S_{3} \times V$ has a decomposition $\left\{D_{6}, D_{6}, D_{6}\right\}$ with none of $Z \cap A^{\prime}, Z \cap B^{\prime}, Z \cap C^{\prime}$ is empty.

4 Groups of Inner Automorphisms of 3 -groups and Their Degeneracies.

Let a 3-group G have the decomposition $\{A, B, C\}$. Let $I^{\prime}(A)$ be the set, of inner automorphisms of G defined by elements of $A ; i . c .$,
$I^{\prime}(A)=\left\{i(a) / a \in A\right.$ and $(i(a))(x)=a^{-1}$ xa for any x in $\left.G\right\}$. Then $I^{\prime}(A)$ is a subgroup of $I(G)$, the group of inner automorphisms of G., Moreover

$$
I(G)=I^{\prime}(A) \cup I^{\prime}(B) \cup I^{\prime}(C) .
$$

4.1 Theorem. The group of inner automorphisms of a 3 -group G with decomposition $\{A, B, C\}$ is a 3 - group or degenerated relative to $\{A, B, C\}$, in the sense that it is one of $I^{\prime}(A)$, $I^{\prime}(B)$ or $I^{\prime}(C)$.

Proof. We have $I(G)=I^{\prime}(A) \cup I^{\prime}(B) \cup I^{\prime}(C)$. If $I(G)$ is the irredundant union of the three subgroups $I^{\prime}(A), I^{\prime}(B)$ and $I^{\prime}(C)$, then $I(G)$ is a 3 - group. On the other hand, if $I(G)$ is not the irredundant union of these subgroups, then by 2.1 of Chapter III, we have $I(G)$ is one of $I^{\prime}(A), I^{\prime}(B)$ or $I^{\prime}(C)$.

We note that the degeneracy (as defined in 4.1) does not necessarily exclude I(G) from being a 3 - group, as is showa by the next example. However, we are considering the structure of $I(G)$ relative to the decomposition $\{A, B, C\}$ of G so that the name "degenerate" is appropriate.

Example 10. Q has a decomposition $\left\{C_{4}, C_{4}, C_{4}\right\}$ and

$$
\begin{aligned}
& I(G)=V \text { (nondegenerated). } \\
& C_{2} \times D_{4} \text { has a decomposition }\left\{C_{4} \times C_{2}, D_{4}, D_{4}\right\} \text { and } \\
& C_{I}(G) \text { IN }=I\left(D_{4}\right)=V \text { (degenerate). }
\end{aligned}
$$

4.2 Theorem. A non-abelian 3 - groups has am abelian decomposition if and only if the group of inner automorphisms is the Klein 4 - group.

Proof. Let a non-abelian 3 - group G has an abelian decomposition. By 3.3, the center Z of G is K. Let φ be such that

$$
\begin{aligned}
\varphi: G & \longrightarrow I(G) \\
g & \longrightarrow i\left(g^{* 1}\right) .
\end{aligned}
$$

defined by

Then φ is an onto homomorphism. Thus $G / \operatorname{ker} \varphi$ is isomorphic to $I(G)$. To show that $\operatorname{Ker} \varphi=Z$, let g be in $\operatorname{Ker} \varphi$. Then we have $\varphi(g)=i\left(g^{-1}\right)=1$ is in $\varphi(G)=I(G)$ so that $\left(i\left(g^{-1}\right)\right)\left(g_{1}\right)=g_{1}$ for any g_{1} in G and therefore $g_{1} g^{-1}=g_{1}$, which implies that $g_{1} g={g g_{1}}$. Hence we have $\operatorname{Ker} \varphi$ is a subset of Z.

Again, let k be in $z=K$. Since $\mathrm{kg}_{1} \mathrm{k}^{-1}=\mathrm{g}_{1}$ for any g_{1} in $G,\left(i\left(k^{-1}\right)\right)\left(g_{1}\right)=g_{1}$. So we have $\varphi(k)=1$ and k is in $\operatorname{Ker} \varphi$.

Hence $\operatorname{Ker} \varphi=Z$ so that

$$
I(G)=G / Z=G / K \quad ;
$$

which is the Klein 4 -group by 2.5 .
Conversely, let I(G) be the Klein 4-group. From the "if" part, we have $\varphi: G \mapsto I(G)$ is an onto homomorphism. If follows from 2.5 that G is a 3-group. By the proof of 2.5, we have constructed a decomposition $\{A, B, C\}$ with $K=A \cap B \cap C=\varphi^{-1}(1)$. To show that $K=Z$, let k be in K $K=\bar{\varphi}^{-1}(1)$. Then we have $\varphi(k)=i\left(k^{-1}\right)=1$ so that $\left(i\left(\mathrm{k}^{-1}\right)\right)(\mathrm{g})=\mathrm{kgk}^{-1}=\mathrm{g}$ and therefore $\mathrm{gk}=\mathrm{kg}$. Hence K is a subset of Z.

Again, let z be in Z. Since $\mathrm{zgz}^{-1}=\mathrm{g}$ for any g in G_{7} $\left(i\left(z^{-1}\right)(g)=g\right.$. So we have $i\left(z^{-1}\right)=s \varphi(z)=1$ and z is in $\bar{\varphi}^{-1}(1)=K$. Hence $K=Z$ and it follows from 3.3 that G has an abelian decomposition.

A relationship between the 3-group structure and degeneracy of $I(G)$ is given by
4.3 Theorem. Let $\{A, B, C\}$ be a decomposition of the 3-group G. The group inner automorphism of G is degenerated relative to $\{A, B, C\}$ if and only if the center
of G contains elements other than from $K=A \cap B \cap C$.

Proof. To prove the "if" part, we may, without loss of generality, assume $I^{\prime}(B)$ is a subset of $I^{\prime}(C)$. Then for each b^{\prime} in B^{\prime}, there exists a k in K or a c^{\prime} in C^{\prime} such that $i\left(b^{\prime}\right)=i(k)$ or $i\left(b^{\prime}\right)=i\left(c^{\prime}\right)$. If $i\left(b^{\prime}\right)=i(k)$, then for any g in G we have $b^{-1} \mathrm{gb}^{\prime}=\mathrm{k}^{-1} \mathrm{gk}$. Since b^{\prime} is in B^{\prime} and k in K, there exists $a b_{1}^{\prime}$ in B^{\prime} such that $b^{\prime}=b_{1}^{\prime} k$. Then we have

$$
b^{-1} g b^{\prime}=\left(b_{1}^{\prime} k\right)^{-1} g\left(b_{1}^{\prime} k\right)=k^{-1}\left(b_{1}^{-1} g b_{1}^{\prime}\right) k
$$

Therefore we have $b_{1}^{-1} g b_{1}^{\prime}=g$ so that $g b_{1}^{\prime}=b_{1}^{\prime} g$. Then b_{1}^{\prime} is in $Z \cap B^{\prime}$.

If $i\left(b^{\prime}\right)=i\left(c^{\prime}\right)$, then for any g in G we have $b^{-1} g b^{\prime}=c^{-1} g c^{\prime}$. Since b^{\prime} is in B^{\prime} and c^{\prime} in c^{\prime}, there exists an a^{\prime} in A^{\prime} such that $b^{\prime}=a^{\prime} c^{\prime}$. It then follows as before that a^{\prime} is in $Z \cap A^{\prime}$. Hence the "if" part is proved.

Conversely, let as be in $Z \cap A^{\prime}$. For any b^{\prime} in B^{\prime}, there exists a c^{\prime} in cosuch that $b^{\prime}=c^{\prime} z_{z}$ and for any g in. G, we have

$$
b^{\prime-1} g b^{\prime}=\left(c^{\prime} a_{z}^{\prime}\right)^{-1} g\left(c^{\prime} a_{z}^{\prime}\right)=c^{-1} g c^{\prime} ;
$$

which implies, that $i\left(b^{\prime}\right)=i\left(c^{\prime}\right)$. Then we have $\dot{I}\left(B^{\prime}\right)$ is a subset of $I^{\prime}\left(C^{\prime}\right)$. Hence $I(G)$ is degenerated.

