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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the control hierarchy shown in Fig. ~4 Time Optimization (RTO) layer bases

on measured disturbances and proces” /. /_ous model of the plant) to optimize
a given objective function at regpm ™ .ls (fev: __/dfew days) [1]. Subsequently, the
optimal solutions of the RTO ¥ * antore a2 1ce Process Control (APC)

layer. The APC layer, usually e s g o | ¢ S riedictive Control (MPC) strat-
egy bases on the dynamic p= nelled variables at their given

set points [2].

ﬂuﬁa%ﬁ?ﬁw@wm
a e11 a%?ljrcienofc ?j

Increasegy compe 1t10n in the process 1n ustry requires the 1mprove operatlon with
the purpose of reducing the operating cost or maximizing the profit as long as meeting the
product constraints. One of the efficient solutions is to integrate properly the RT'O layer and
the MPC layer. The objectives of the integration optimization/control layers are to deal with
the optimization problem as well as to guarantee the stability and the performance analysis
of the system. However, there are some obstacles which cause the integration task become
a challenging problem. Firstly, two layers use different kind of models: rigorous nonlinear
steady state model (RT'O layer) and dynamic model (MPC layer) that can cause the conflict

between the reference values and the controller predictions. Secondly, two layers usually



operate at different frequencies: the sampling period of the RTO layer usually much higher
than that of the control layer. Hence, the presence of disturbances or parameter uncertainties
is also an important reason that changes the optimum points from the RTO layer to be the
suboptimum targets for the MPC layer [1].

The theories of the integration RTO and MPC have been originated for decades. How-
ever, the formal foundations of the integration approaches are still open issues. Recent re-
searches have been focused on the system with parametric uncertainties in the robust control
framework [1,3]. In which, the 3-layer strucfiyre with the LP/QP layer is inserted between
the RTO and MPC layer is a potential Ll There are some significant results.

However, in those articles, some ¢la : 2inties have not been tackled com-
» to the integration of RT'O and

soration approaches of RTO and
aple RTO and MPC strategies.
To cope with the varying cs#.ie, T/ e w8 e model predictive control
(MMPC) strategy based on -
from that, developing a physic Ar (1 A% a necessary requirement. In
ke TO and MPC problems are

In this research, we are int2

MPC in 3-layer structure basec

o in the control layer. Apart

constructed.

1.2 Literature Review

1.2.1 Integration of BFO 4

.r‘ ed out in section 1.1. In

#eal flith the integration problem.

The necessity of the integl 2
literature, there are several ¢ ;l R ; 0
The collection of many methdds can be found in Adetola [1] aria Rawlings [6].

In [7], Zanin efgl, ha g ‘ A a which.includes the nonlinear
economic objective lﬁcu yﬁ;ﬁgpﬂgwgﬁﬂr proach, the economic
objective optimizatiorﬂ‘s integrated within ? linear MPC controller by an g,Bpropriate weight-
ing matrix. Bi esgouts v ighe Flgue Fohaytie pradiFsng R-layer control
e TN T I S TR

settings time and can be effectively described by linear models. In case of the large distur-

bance for the plant or the large-scale integrated plant, this method is not effective. It can
lead to the high computational burden. To improve the previous work, Souza et al. [8] has
proposed the solution by using the gradient of the economic objective function in the cost
function of the controller. The main advantage of this method is that the resulting opti-
mization/control problem can still be solved with a quadratic programming routine at each
sampling step. Thus, it still preserves some of the advantages of Zanin’s method and can be

solved efficiently without jeopardizing the stability of the closed loop system.



The 2-layer approach can be found in [1], [5] and [9]. In this method, the RT'O problem
needs not be solved at each sample time but based upon disturbance dynamics or plant
condition. This method improves the computational ability of the 1-layer approach. Hence,
it can be applied for large-scale systems. However, the lack of the rigorous strategy for
separation of time scales and the interaction between two layers due to the different models are
the disadvantages of this method since it can reduce the performance of the system. It leads
to the delays in the optimization and the instability of the system. The kind of optimization
techniques can be SS-RTO or D-RTO. The SSRT'O has some limitations with respect to the

achievable flexibility and economic bere & 23 in the dynamic processes with grade

/ real time optimization (D-RTO)
‘eacy st.__ﬂmc optimization to compute set

points, a D-RTO strategy OVV Tiza i Wnpute a reference trajectory.

There still exists the inconsiste L in the two layers. Often, an

transitions and batch processes [124

additional disturbance model, ! t measurements, is added to
resolve this inconsistency [l«#
flo N LSNOP layer is inserted between
the RTO layer and the MEC ge NS W U%na QP-MPC approach. The

> inputs and outputs. This

The 3-layer approach is

W-ates of the nonlinear SS-RTO
and the linear MPC. To be exact, | = baC W f the traditional 2-1ayer structure
in the difference of time scales belweete s =

the set points for the MPC contro L" e,

as in the 2-layer approacll 4 ' g3 of the 3-layer approach

#. and control layer. In Ying et al. [4],
s instead of the constant set-points
for the nominal system ari & i"‘ proach through a specific
application: the Shell heavyjijl trass wued i 1l at the 3-layer structure has
some advantages in terms of LObUSt stability and dynamlc performance due to the additional
layer. Recently, Aly, ation of linear MPC
and RTO in the 3- lﬁ ﬁ&ﬁﬁ%%ﬂﬁl els The proof of the
system inputs- output&onvergmg to their “;argets have been done completely This method
has been de system gains
and the uncﬁﬁﬂﬁqﬂimﬂ ﬁqq%ﬂaﬁﬁ Generally, the
3-layer mtegratlon approach can improve the system stability and dynamic performances in
comparison with the conventional 2-layer approach. However, it also leads to a complex design
problem. There have a few articles relating to the stable integration in 3-layer structure. For
more details, it is refered to [3-5].

The new approach, namely Exiremum Seeking Control approach, is introduced by Guay
and Adetola [1,12,13]. In this method, the controller drives the system states to steady state

values that optimize a chosen performance objective. Krstic et al. [13] deals with the problem

as the performance objective is directly measured online. As the performance objective is



un-measurable, Adetola et al. [1,12] has proposed the solution for this problem. Generally,
extremum seeking control approach can address the closed-loop stability of the overall system.
However, the procedure of this method is relatively complex and the results are true only for

some special classes of system.

1.2.2 Distillation Column

Distillation column is an industrial device which is used to implement the separating process
1 et al. [14], distillation columns account for
/entional fluid processing unit and 70%

éminimize the energy consumption

of this device is a crucial problg rocels C(dtse it results in relatively large

improvements in overall pla7 Jst. | He plication parts of the thesis,

in chemical process industries. According *o
about 40—50% total of the capital inves

energy consumption of an average o

the distillation column is che ~ment the simulation results

of the integration RTO and M}

literature, there are several
publications. For example,*Tor 48 . ) W%sliding modes to eliminate the
ch strategy. Ying et al. [16]
proposes a new strategy for the * : SR N bayer. The integration structure
consists of two optimization/con ' F8-fer W tne split ratio and radial base

function. This thesis formulates fie 1 Lok it ses

) astillation column as a function of

.

the reflux ratio as the formulation 7"' gith the objective of minimizing the
energy consumption. Chj:! " | fwing characteristics of the

distillation column that a; y ’ BY' Jx optimization:

e High reflux ratio ;I L'J

High differential product &alses o

e BUYINYNTNYINT

WIRIN TN NI INYIAY

It leads to the choice of a propylene splitter, the distillation column for used in the petroleum

refining processes, to implement the RTO problem. The model being developed by Skogestad
( [17], model D) satisfies two conditions of online optimization: high reflux ratio and a
relatively low volatility. The real time optimization (RTO) problem is formulated with the
purposes of minimizing the energy consumption. It is also assumed that the high utility
cost fluctuates by varying one parameter in the utility cost to observe the change of the
optimum values from the RTO layer. The details for the formulation and solution of the
RTO problem will be shown in chapter 2. The MPC has been selected for controlling the



RTO f = economic objective = f (c1,ar,Qc,..)
R le
MPC Condenser Qc

Distillate
Product

Feed

e —
Mixed of Propylene *:

Reboiler

distillation column since MPC he#foe lo®d to meet the specialized control
needs of petroleum refineries. Howeva—rre umn is an ill-conditioned process so
it is difficult to control. ; 1‘ il . cg=not provide an adequate

performance with set p01 ‘veral methods have been

]
techniques to reject dlsturb ~2s and maintains closed loop stadity. Multivariable nonlinear
MPC of an ill-conditioned dis¢iljation column cagybe solved by usmg the quasi-ARMAX

model with fuzzy lo @ %o e cﬂlﬂ m ﬂ gi for controlling an ill-
conditioned process e same number of manipulated mputs as controlled outputs is to
delete one or some controlled variables froff the control @ective. This mhod is used in the

s VOV 3 0 SIS PV ) B i

since it is simfje and the probability that the MPC controller finds a solution will increase

proposed to deal with thls p mtroduces the zone control

(see [18,20] for more details). Another reason to use this method is that the distillation
column has only one output target in the optimization problem. The bottom composition X
which is controlled by the manipulated variable - the vapor flow rate V. Another output, the
distillate composition Xy, is kept in an allowable range and has not appeared in the objective

function since another input, the reflux ratio R is the variable from the RTO.



1.3 Research Objectives

The main objective of this thesis is to develop the integration of RTO and MPC in the
3-layer structure for the nominal model and multiple models. The steady-state RTO and
MPC techniques are exploited to deal with the optimization problem, the stability and the
performance responses of the system. Specifically, the finite horizon MPC designed bases
on state-space model of the process is used in the control layer. Whereas, the steady-state
RTO layer is assumed to be decoupled from the control layers (QP and MPC). In case of the

variation of the parameter of the process, |\ Jinle MPC strategy is employed.
Distillation column, a good c: \l/ ’d MPC problem, is also be a part
of this research. The RTO prokl™ : isU’ /iumn (the propylene splitter) is

formulated as an RTO problen™ — W f + — ] ]c ) gives the targets for the

control layer. The dynamic 11i80e i3 developed for simulation of

3

the controllers in the contr== L i®eration foundations will be

compared with other integra

1.4 Contributions

1. A new design of the int#ra % the 3-layer structure for the

distillation column.

2. A new design of the integ_‘, tiaEE <4 MPC techniques in the 3-layer

structure for the distillation -"93': )

1.5 Thesis Outline ;, ,,\;

The organization of the the 'I IS a8 I0LGwes onapwer 2 s t ,"L basic knowledge. Chapter
3 is about the distillation coluiinn modelling. T odlﬁed integration of RTO and MPC
in the conventional e nominal model are
introduced and app@}uﬂqmﬂ m‘jﬂmﬂ‘j‘ apter b presents the
mtegratlon approaches for the multiple m#dels using geyltiple MPC. The conclusions and

s QIRANERFEI U INEIR Y

1.6 Conclusmn

This chapter presents the motivation and the objectives of the thesis. The literature review
about the RTO problem and methods to control the distillation column is also briefly re-
viewed. In next chapters, the details about the integration of RTO and MPC problem are

implemented.



CHAPTER II

BASIC KNOWLEDGE

2.1 Real Time Optimization

RTO (or online optimization) is a kind J v control techniques which attempts to

periodically update the set pomts 1 /. bresence of disturbances or param-
eter uncertainties. T ,‘egies; L/éded into steady-state real time
optimization (SS-RTO) and dy - tim op‘rﬁD RTO) [21].

This thesis employs the sie: . o ) 1mplement the integration ap-

proaches. In SS-RTO, a rig

set-points. The general desc;

®ess is used to calculate the

blem is

(2.1)
where f represents the process ec Hmis——— sed W the rigorous steady state model
of the process. y, u are a set of out} = friables. g1, go are sets of inequality
and equality constraints which desc= ﬁpd o .,"-"L material and energy balance in the

process at the steady-stat .r 4 A54blem gives the optimizing

‘|~‘UI‘ bl layer (MPC controller).

'FI L Nh'
iF |

2.2 RTO for Dlstlllatlun Column

e AUEANENINEODL. ..

output-input targets (yreo V

Symbo Description P Nom inal Value Umt
A NN I m’ﬂﬁm Elﬂm EJ
9 Cy Value of bottom propylene 0.26 $/kmol
C; Value of bottom propane 0.20 $/kmol
Cy Cost per pound of propylene 0.35 $/kmol
C} Cost per pound of propane 0.33 $/kmol
Cy Value of overhead propylene 0.44 $/kmol
C:z Value of overhead propane 0.44 $/kmol

A Latent heat 287 Btu/kmol

The parameters for the propylene splitter in the RTO layer are shown in table 2.1.

That data comes from Chen et.al [14] which will be used to formulate the economic objective



function for the RT'O problem of the propylene splitter. The RTO formulation is originated

from the specific economic objective function of a propylene splitter [14]. Let us define
f = Propane sales + Propylene sales — Utility costs — Raw material costs (2.2)

= {Cd(1-X3)D + CY'(1-Xp)B} + {CaXqD +CpyXpyB} — {C1Qr + CoQc}

- {ex;F + Ch1-XpF}

where the steady-state values are in table and all parameters for RTO problem are
in table 2.1 [14]. It is noted that thqJ #' # 5 (two final elements of Eq. 2.2 with
Cy, Cp, F and X £) are assumed W v / rocess. It is also assumed that

In accordance with the econoimic s o Y, \\ rq. 2.2, other equations being
used to describe the steady-#e_ " R mmn (the rigorous nonlinear
N

The minimal reflux ratio at » i - ¢ 108%an be obtained

The Eduljee correlation: to find t

N — N, .,w '
TN A 2.4
AV : (2.4)

The Fenske equation: to coi _ N b

X, 1—X,,) -~

fl uar"iwwa””‘” gli)
The overall material balance and the cor‘ponent mateSal balance are@uked to derive the

bommandsmqoﬂaan‘m AR1INEQEY

— D+B (2.6)
X;F = XuD+ X3B (2.7)

The optimization variables are defined based on two variables: the reflux ratio R and the

bottom product purity Xs.

e The Procedure to Solve the Optimization Problem (2.2-2.6) as follows.

1. All variables are transformed into the manipulated variable - the reflux ratio R.



2. The distillate composition Xy is assumed to be fixed at its minimum value (0.99 mole

fraction) as in Edgar [23].

3. Other variables are derived from the variable R. The range of variables in g; are defined

specifically in the chapter 3. g2 is derived from (2.3 - 2.6).

4. As aresults, the steady-state RTO problem for the distillation column can be quantified

as the optimization problem

where

nd fmincon is used to solve
ing input target for the control

layer Ryto. Then, the optim’ PG e Wis derived from (2.6).

The solutions for the RT'O problem as 5 _
to 17x 1076 ($/Btu) are shown ingdif ==& s izing targets will be the setpoints
for the MPC controllers. % i_

Y

in the wtility cost varies from 3x 1076

e
-
)
b

Table 2.2: Optimum | [Jlut10is
Cl (X 10_6) tho
19.02

18
17.
17.4

2.3 Model Predictive Control

wu for il e propylene splitter.
Xprto | CT (x107°) | Rrto | Xorto
0.067 13 15.92 | 0.099

Wg ’] m‘i 15.79 | 0.106
) 1 15.65 | 0.113
0.Q86

: . 16 5.52 | 0.120
spminein ey

0.124
The term Model Predictive Control (MPC) does not designate a specific control strategy but

N O Ot R W
e -

a very ample range of control methods which make an explicit use of a model of the process
to obtain the control signal by minimizing an objective function. Normally, the standard
MPC process composes of three steps: future state/output prediction, objective function
optimization and control signal implementation. In which, the model is the corner stone

which is used to explicitly generate the future state/output prediction based on the control
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implementation and the values up to the instant time {. Whereas, the optimizer block is
used to generate the control signal implementation based upon the specific objective function
optimization and the predefined constraints (Fig. 2.1). Generally, the main advantages of

MPC are summarized as follows [21]:

e Efficient handling of a large number of variables and handling constraints.

e The optimization problem can be formulated in a number of ways.

e Efficient control where the variablas

e Feed forward capabilities for

Past Inputs
and Outputs
E—

Model

Future Inputs

Optimizer

Cost Funtion T TConstraints

(A). Basic MPC.

Figure 2.1: Bez0i | s

k

In this thesis, the finite hoF.=

in accordance with the stc . -

‘¥v. interactive.

M0 Future Inputs

Predicted Outputs
y(k+ilk)

_|_|—|_ u(k+ilk)

k+M
Zontrol horizon

| o
| k+P

Output horizonr

(B). MPC strategy

M PC strategy.

‘ne integration approaches

= < horizon model predictive

control (MPC) is the MPC sZ.tegy in whicir viie iength of the iy =d1ct10n horizon and control
horizon are finite. The state-spgcgamodel for the djsgrete-time system is assumed as [24]

A UL, 'ﬂﬂnﬁk‘ﬂlﬂﬂ na

y(k)

—‘mem

(2.9)

T ’@M'l@ N m i ‘}l 111 -

Let Azp(k) = a:m (k+1) —zn(k), A

) = u(k + 1)

incremental form to implement the MPC problem is derived as

z(k+1)
y(k)

Az(k) + BAu(k)
Cx(k)
‘}:] B= [Cfgm], C=[0n In]

u(k), the state-space model with

(2.10)
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Note that z(k) € R™ where n = ny,, +n, and let Dy = Cy, By, be the static gain of the system.
According to Boom et. al. [25], the state-space model with incremental form will give a good
steady-state behavior in the presence of the reference signal. For the MPC reference tracking

problem including output-input targets, let us define the objective function as

k+NP k+Nc
T = 3 lyGlk) —yset = Osllg+ D Nulilk) — usetlln (2.11)
j=k+1 j=k+1
k+N¢

where

e N, and N, are the predictig ;
® Yset and Uger are optimizing '

e 0}, is the slack variable that ° g5 ™ | domain of the MPC problem.

The formulation of th&Op: 41~ 6 §F Jod <8 & “iacs both input-output targets.
Typically, in the RTO layer. 4 -4 . ANt mpute the economic target
values for both output and s £ & "% stated in Brosilow [26], the
formulation (2.11) is in case o e 2umber of controlled variables
(ny > ny). In that case, it is de , of view) to also try to achieve

some setpoints on the manipulate gfnn===+ 3 MR RTO layer by adding a cost term
k+N. o :

> llulilk) — usellz-
j=k+1

-

The general MPC formul

I
! Uk, Qg

subject to ﬂ: E’ﬁiﬁ it mfﬂ Hfﬁ;ﬂ ‘

< Umax; (2.12)

e ARSI U AREL ...

implementation control input at the k** sample which will be transfered into the process.

2.4 Conclusion

This chapter presents briefly about the basic knowledge of real time optimization and model
predictive control. The RTO for distillation column based on the rigorous model is formulated
and solved. The finite horizon MPC strategy which is used for the integration approaches in
this thesis is also presented. The RTO solution of the distillation column will be used in the

next chapters for the simulation.



CHAPTER III

DYNAMIC MODEL AND CONTROL OF DISTILLATION
COLUMN

As being stated in chapter 1, the pra 31 =

gives the optimum reflux ratio ‘2

MPC controller appropriatety.

(model D-Skogestad [17]) is used
nn is formulated and solved in
2 solution of the RT'O problem
“an X;. To incorporate with the

v "\..\»' ol with the R — V structure is

%, '

To W
W8N lowrate V), is responsible for
kY

Propylene splitter.

e variable that is driven to

Symbol Nominal Value Units
B Bottom flow rate 0.39 kmol/min
D Overhead flow rate 0.61 kmol/min
L Liquid flow ra® 11.86 kmol/min
14 Vapor flow raf 12.48 kmol/min
F Feed rate (mic " 2. 1.00 kmol/min
R™ | Reflux ratio (= | D) 19.32
X IS*) Fraction of propqu&(ﬂa the bottom mgduct 0.10 mole fraction
X4 Fractio | ﬁcw EJ ’] f] = 0.995 mole fraction
Xy Fractioﬂ ﬁﬂ:ﬂ:m gj)dmw 0.65 mole fraction
qr Nominal fraction of liquid in fed = LY
v QRSN I INGI§H
T Tigne constant for liquid dynamics v : min
Ny Feed at stage 39
M; Liquid holdup on each stage 0.50 kmol
Relative volatility 1.12
(x) Variables with optimum targets from the RTO layer

In this chapter, with the attempt of constructing the dynamic models for the Advance Process
Control layer (MPC controllers), the Skogestad’s package [27] is used. The package includes

of 5 files: colamod.m, colarv.m, cola linearized.m, cola rvlin.m, command colarv.m.
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The function of each file is as follows.
e File colamod.m contains all the basic column model equations.

e File colarv.m MATLAB interface to colamod.m with the close level loops (distillate

and bottom flowrate D, B are used to control reboiler and condenser holdup Mp, Mp).

e File cola linearized.m and cola rvlin.m are used to create the linearized model
around some specific equilibrium point for the distillation column. The linearized mod-

J<,2N7 number of states (Np: number of

b s

truncate the linearized - : lin m : "NT states) are truncated by

els are in the state-space form whi

trays of the distillation columi

e File command colarv.mcor ™ lPea,te the linearized models and

using the balance realiz>*2
states (see [27], [28] for r-

iterion upto small number of

The nonlinear equa,tib]n‘~ - W%column operation are shown
in Appendix chapter. The rod®ct quality according to the
psults in the table 3.2. The
objectives of the control probler R LT 2% to keep the quality product in
t th

feedrate, the distillate compositicl adjasd = / ap®ition are in the allowable range.

change of the feed rate for t,
0" inal operating condition of the
However, as the feedrate is reduced.} ,_.9

illate composition is strictly reduced.

As the feedrate is 1ncrease ‘)y is igtreased over the maximum

allowable value. In the re1 \:" feedrate does not change

during the operation of the =) e

W

10.17

g/ 2.06

a&g

In order to obtain the linear model from a nonlinear model, it is assumed that the variables

deviate only slightly from some operating conditions, then the nonlinear equation can be
expanded into a Taylor’s series. In this thesis, two files (cola_linearized.m, cola rvlin.m)
will be used to implement the linearization. The linearization of the control model leads to

220" order linear model in the state space form around the steady-state value.

i) = Azx(t) + Bu(t) (3.1)
y(t) = Cz(1)
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where
[ xl(t) — X188 1
Ta(t) — Toss T1(t) — T1 g5 R(t) — R
2(t) = , ; y(t) = I P u(t) = _
: T220 (t) — T220,ss V(t) — Vs
| 220 (1) — Z220 65
The steady-state gain is
Do)
The full-order linear model which J8E8 P s two outputs in Eq. 3.1 is then
reduced to low order linear Mod s = / simation. The small order linear

model (6 states) is suitable to ® 1ct1ﬁf the MPC controllers. In this
thesis, we use this method te : 2in | ari SO camsrresponding with 3 values of
the reflux ratio R (according_ m - table 2.2).

Nominal Operating P: Nominal Operating Point

Gin Gt

(A) The operation range '_l of the 1TSS R opera ” 1 range of the multiple
model = Thodels

Flgu&%%lr% HYNINYAD T

The s1mphﬁed state s;lajce models with 6 s€ates are as falo

a@ﬂ ?M N%’]@ w7ﬂkqoﬁnﬂ Xgo = 0.995

e Nominal o

(mole fractlonn Xpo = 0.106 (mole fraction); Fy = 1.00; Zpe=0

[—0.621 —4.827 0.848 0.142 0.059 —0.548] [ 0.001 0.033

5440 —0.672 -1.305 1.712 —0.016 -0.203 —0.001 —0.079

4 0 0 —0.956 —1.230 —0.010 0.111 B — —0.005 —0.195

N 0 0 2338 -—1.396 0.052 0332 |  |[-0.0002 0.057 |’
0 0 0 0 —0.007 0.001 -0.012  0.021
.0 0 0 0 0 —0.047] | —0.009  0.013 |
0 0 0 0 —0.002 0.001

—0.089 —0.012 0.075 0.163 —0.026 —0.035|"
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The eigenvalues of A are (-0.647 + 5.124 i; -1.176 + 1.6811i ; -0.007; -0.047), hence the linear
system at G is stable.

e Model G1: R = 17.462; V = 11.336 (kmol/min); X4 = 0.992 (mole fraction); X; = 0.107
(mole fraction) (corresponding with C; = 6x 1076 §/Btu - table 2.2).

[—0.572 4.854 —0.308 0.738 —0.216 0.065 | [ 0.001  0.024 ]
—5.391 —0.722 -2.107 -0.441 0.088  0.007 0.001  0.082

A = 0 0 -1.668 1444 0107  0.019 B - 0.004  0.190 ,
0 0 -2.109 —0.68 —0.009 —0.003 —0.080
0 0 : —0.010 0.019

|0 0 | —0.015  0.018 |

c—| O 0% — _0.003]
ol S _0.021

The eigenvalues of A; are (##55~ - N -'.“1;-0.0061), hence the linear

system at G is stable. ‘ ' B \ ,

e Model Go: R = 16.643; V
(mole fraction) (correspond#iyg -

[—0.466  5.246 [ 0.007 —0.058]
—4.931 -0.822 0.002  0.062
Ay — 0 0 —0.005 —0.187 ,
0 0 —0.005 0.091
0 0 —0.011 0.021
|0 0 | —0.015  0.017 |
o l 3 R ).004]
-0 1 4 U3 —0.019)

iF |
The eigenvalues of Ay are (-.644 + 5.083 i; -1.173 £ 1.664i; -U.020;-0.006), hence the linear
: o

AN INENDS

The responses of eac corresponding he step 1n each input channel are shown
in Fig. 3.2. The Fig. 3.2 shows that the fesponses of ¥ model G; an@the model Gy are
close to eacthWV’ﬂl@aha'iﬂ%wn tw{far% %]n&llﬂl}a iBlel, the model
Gy seems to give the most displacements with the responses of G; and Go. The Hankel
singular values of the original linearized models are shown in Fig. 3.3. Since the truncated
models have 6 states, the 7t singular value on the Fig. 3.3 demonstrates the result of the

approximation approach for each full linearized model.

3.2 Hankel Norm Approximation

e The Hankel norm of a stable system is obtained when one applies an input w(t) up to ¢t =0

and measures the output z(t) for ¢ > 0, and select w(t) to maximize the ratio of the 2-norms
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of these two signals.

e — L (32)
wlt) [T ()2 de

The Hankel norm is a kind of induced norm from past inputs to future outputs. It can be

shown that the Hankel norm in Eq. 3.2 is equivalent to the value:

1G ()i = vV e(PQ) (3.3)

where P, () are the controllability Gram ¥ vability Gramian [28]. The correspond-

ing Hankel singular values are the = . \ : »f the eigenvalues of PQ).

(3.4)
e Optimal Hankel norm appre ; . [s) of order n, find a reduced
order G%(s) of degree k such th- imation error ||G k(s) || -
is minimized. According to" ko 4 e \ 1 Urror between G(s) and the

value of G(s).

IsC required to drive the outputs

Apart from tracking to the targe: e it 1

of the distillation column (X, 2# ingl to guarantee the quality of the

product. The inputs are also be rest: _}E,"' T ranges due to the limitation of the

controller. We uses the te 1§ d it faion column model.

)

1. Inputs (R, V) are a Y fainal values:

0 <V < 25.728 (kmol Hin) ana v eraummmeee " 3. dil .

2. Disturbances F ﬂled to be consfdit

3. The output co uﬂ%mﬂngnﬂa:]ﬂ‘;io<&,<020 (mole
fraction).

e AR RN IALURIINYN R < o

(kmol/m’n ).

3.4 Conclusion

This chapter introduces the operation of a distillation column. The appropriate dynamic
models of this distillation column are derived. Subsequently, the MPC controller configuration
which are used for the nominal and multiple models based design are shown. The results of

this chapter will be used for the applications of the theoretical foundation in next chapters.
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X102 Input R L 107 Input V (kmol/min)
10 T T T T T T T T T

460
Time (min)

T T T

AXb

600 800 1000 1200
Time (min)

400

Figure 3.2: The output resp™uses of the nominal models Go,™" and G2 (6 states) and its

corresponding linearized model @20 states). L7

0.06

“ —— Hankel singular values of G no

005} ¢ = @/ - Hankel singular values of G | |
ARIAINTUNRIINY VN B

‘ =t

0.04{ q : i

© 0.03 _
0.02- _
001 _

0 = j \ \ \ \

0 10 20 30 40 50 60

Time (min)

Figure 3.3: The Hankel singular values of the original linearized models.



CHAPTER IV

INTEGRATION OF RTO AND NOMINAL MPC

4.1 Introduction

J j the 2-layer and the 3-layer structures
; /1e steady-state RTO and the finite

g Ale MPC problem of the nominal

‘ﬁ(Go - chapter 3) being used for

ss model. Hence, the mismatch

In this chapter, the integration of RT Q2 |
based on the nominal state-space m NN
horizon MPC are used to do the i
case (chapter 4), we assume that
the MPC controller and it also uer #*
between the model and the = o ' \ Wunt in this chapter. In this
case, the state feedback cont C controller based design is

as follows.

. Controlled Outputs
—

y

Reference

R

s 1 el u&mmlm NI o s o o

model.

o e propcd) WQ ANAIRUAITABAR B o

layer is dynanfically decoupled from the control layers with the sampling period Ty in the
unit of hours. The sampling period of the control layers (QP/MPC) are the same units of
minutes. The controllers receive the optimizing targets from the RTO layer. There are no
interactions from the control layers toward the RTO layer. Note that the steady-state rigorous
model is used for the RTO layer and the dynamic linear model as distillation column model

(chapter 3) is used for control layer.



19

4.2 Integration of RTO and MPC

4.2.1 The 2-layer structure approach

T bous) RTO layer

state data

Figure 4.2: T" o0 i "“\\ er structure.

Enforcing a strict constr \ M times will lead to infeasible

MPC problem. Hence, to infcgr: Layer in this work, the MPC

controller is defined with two inal output-input targets to
equal their desired values at the orizon. To enlarge the feasible

region, the soft constraints are us: y defining the slack variable 6, ;.

The MPC problem

(4.1)
subject to (2.12) and
(k|k + N — Yrto — Yy ,k (4.1a)
where J; is defined 1n 2. w1th mo 1fi ca 10NS: Yget, Uset a,fn!‘; are replaced by Yo,
Urto and Oy ctiv Constr ints .1a, 4. 1b aﬂfor the t mM outputs-inputs,
respectlvely ﬁﬁl ﬁ Q ﬂsEJw a %J
Auk] [Auk] T [Auk]
J = H +C + C, 4.2
' [ey,k by k d by k ¢ 4.2)
where
o [T+ S+ MTEIM  —3TQ4I,
B -IT'Q,® o, +p
. 267, (Hm(k)T - Iyyrto) + 2MTEIT (u(k — 1) — tro)
f =
_ =207 Q1 (Mz(k)" = Tyyito
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Co = (ulk—1) = urio) " LEIT (u(k = 1) = uo) + (2(B) T =y 1) Q1 (Ma(k) — Lyyreo)

and
Q 0 E 0 S 0
Q1= ' , B = ' , Si= '
0 Q 0 E 0 S
I, O 0 CA CB 0 0 ... 0
Iy Iy 0 C A? CAB CB 0 0
M = ! :
Inu Inu Inu CAN]J Nc
Iy = [Iny Iny Iny]T L] € Rtumem)x(na)
The MPC problem becomes to \ ~ stion (4.2), subject to constraints
of the problem (4.1). ;:"

This approach is based on t iructure (2-layer structure).

As being stated in section 2.7 Wion (4.1) is that unless there
is sufficient degree of freedom g < e ' J to zero, we will have the

/ i \ .
steady-state in which all of t #1 nd, ‘ MAreach the setpoint.

a "Udes,k yss(k)

Qmmrﬁiﬂmﬂﬁ%wmaﬂ

Flgure 4.3: The schematic diagram of the 3-layer structure.

In this section, the 3-layer integration structure is introduced. It differs to the 2-
layer structure in which the QP layer is inserted to re-compute the achievable set points
for the MPC layer (Figure 4.3). By regularly updating the setpoints for the MPC layer at
each sampling instant of the MPC controller using the QP layer, it probably increases the
feasible domain for the optimizer in case of the disturbance or parameter varying in the RTO
layer [4]. The simulation results in next section will show more details about the difference

of this integration structure with the 2-layer structure.
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Let us define

J2 =" ||ydes — yrto”Qy + [luges — Urto”Qu + ”Ek”Qe

The QP problem becomes

min Jo (4.3)
Ydes, k> Udes,k> €k
subject to
Umin < Udez k. < Umax
where @y, @, and (). are posiT. \ 5 smices; € is a slack variable that
softens the bound yqes ;. ThE®O™ J. Dy is the static gain of the

y(k + N, — 1]k — 1).

(4.4)

subject to (2.12) and
y(k|k + Np) — Ydes,k — Hy,k =0 : (4.4a)
u(k — 1) — udes p + I Aup. = Quuai® eV (4.4b)
where J3 is defined as in ; l;:" 0y, are replaced by Yges k-,
Uget ), and Oy i, respectively. =1 4 =< ninal output, input targets.

J
' i

Remark 1:

All the MPC probleﬂﬂﬁﬁlw Hmﬂﬂﬂrﬂ?nml QP probler(z:f))
ammﬁmm’j'mmaa

where x is the unknown variable and Q, p, A, b, F, g are corresponding matrices in MPC and
QP problem. The solution for this problem can be obtained by an available software; for

example cvx [29].

Remark 2:

The integration is implemented by defining the terminal input-output constraints in the
MPC problem with the purposes of driving the inputs-outputs converge to the optimum
input-output targets from the upper layer. The convergence properties have not been proved

formally. The complete integration approaches should be concerned in the future work.
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4.3 Application to Distillation Collumn

In this section, we apply the two proposed integration approaches for the distillation column
model. The comparisons of two approaches are illustrated through two aspects: the transient
responses in the nominal case, the stability test responding to the change of one parameter
in the RTO layer. First, we survey the transient responses of the closed loop system as some
parameters vary to chose the most suitable parameters. The distillation column model (Gy)
in chapter 3 is used in the simulation. One of the inputs in the dynamic model, the reflux
ratio R = L/D, is a variable from the P} T

ence, in the MPC problem formulation

(as Eq. 2.11), the reflux ratio R is ; . W/ /:tlve function as the input element.
The degree of freedom of the sys: : 15 /ifhe remaining input V, that will
drive the output target, (bottor® — ‘ﬁ;i‘cs optimum value (as in Table

2.2). The remaining output, GiSvit: il S odthicted in the specific constraint.

In this task, some of paramec ##3 i \ griaried to determine the most
efficiency one. The results“iror g - Ho that: the parameters (N,
= 10; N, = 3; A = 1) give ti4 ‘

index according to the Integra’ S == P - Werion.  Hence, that parameters

e small of the performancen

i _
] [ 1
0 | - 70 80 %0 100

Tlme (mln)

emn ANTUNNIIY mﬁ'siﬁiis?

0.08 —

Xb (Mole fraction)

0.06- -

| | | | | | | |
200 300 400 . 50/ . 600 700 800 900 1000
Time (min)

0.05

Figure 4.4: The transient responses of system output X and input R of the 2-layer as the

prediction horizon varies.
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control horizon varies.

70 80 90

100

—Np =10; Nc =3; IAE = 0.553.

..... Np =10; Nc =1; IAE = 1.770.

B Xbrto

- = =N =10;N_=2; IAE = 5.306. N

800 900

1000

of the 2-layer as the

195
19
185
[ad
18
1751
17 | FAEE S T W R Y
0 10 %
0.11

0.1

0.09

Xb (Mole fraction)

0.04—

0.03

0.06 *

0.05—

¢

ARIAINTUUNIY

0071 -

4 | |
m . i

=\ =1; IAE = 0.553.
===X=10; IAE = 0.816.
= 100; IAE = 4.864.

400

L
Timesofmin) o

700 800 900

1000

Figure 4.6: The transient responses of system output X3 and input R of the 2-layer as the

weighting coefficient varies.
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4.3.2 Transient Responses

Design Algorithm and Parameters for Simulation

Step 1. Starting from the nominal values in Table 3.1 [17] and the parameters in Table 2.1 [22];
the RTO problem for the distillation column is solved to compute the optimum input-

output targets (Rrto, Xbrto) as in Table 2.2 for the control layer (Tito = 200 min).

Step 2. The RTO layer transfers the optimum input-output targets to the control layers (QP of
3-layer, MPC of 2-layer). The control’

based on the linear model. The sa8%

)
1 min. During the first timeyg L/ ‘/)yer, the transient response of the

hen compute the set-points for the process

- of the controller are TM PC — TQ P =

distillation column is obta: SeE—G—— | ==
Step 3. After 200 min, the RTy. 1oads e process. It is assumed that
the parameter C in tha#%. . o Msww value which affects to the

economic objective fun: of the RTO problem gives

the new targets for the c-

Step 4. In the second samplilig r stcp two is repeated and the

transient responses of ".d to converge into the new

set-points.
RTO layer: is simulated in two tir g1 — ‘:. o— W) min. The 1% time interval (215
- 200" min): C; = 6 - 1076 ($/Btu), ®.he RTO problem give Ry, = 17.444
and Xprto = 0.054 (see Table 2.2 -
The 2™ time interval (20 -
is updated at the first mintfe, -

i |

gives Ryo = 16.62 and Xy ;I 0.073 (see ravic z.2).

MPC layer and QP lagep L i i - - i pags are restricted in the
allowable ranges as nu a) mr ﬁ;ﬂ]ﬁﬁn ollers are chosen after
U

several iterations.
¢ o 3
me e QRANYAIUNR ) IVNYTINE
0] & L 100d “o
% S P=|" 1000], N, =10, N, = 3; Typc =

0 1
Q_[O 1]’ _[O 0]’ _[O 1|’
Top = 1 min.

=~ he data from the process
I %ltion of the RTO problem
1l

i¥ |

- The 3-layer structure

10 1000 0
Qy_Q“_[o 1]’ Cf_[ 0 1000]‘

Fig. 4.7 and Fig. 4.8 show that both proposed integration systems ensure the stability
for the system after some sampling periods. It is illustrated by the convergence of the re-
sponses toward to their targets. The cost functions of two structures asymptotically decrease
to 0 in Fig. 4.9.
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Due to the adddition of the QP layer, the input responses of the 2-layer structure have
higher overshoots in comparison with those of the 3-layer one (Fig. 4.7). The cost function
of the MPC layer (3-layer structure) is splitted with the QP layer, hence its peak is smaller
than that of the 2-layer structure. As the cost function of the QP layer (3-layer structure)
decreases to 0, the cost function of the MPC layer starts to decrease (Fig. 4.9). The Fig.

4.10 shows that the economic objective functions of two structures are similar to each other.

19.5
= 3-layer structure
19 = = = 2-layer structure H
----- rto
o 185
S
X 18 E
2
=175 B
o
17 B
165 L
350 400
14
135 B
= 13 B
E
=
S 125 B
£
=
S B
115 B
11 L
0 350 400
Figure 4.7: 1 1y structure.

- ——
-
0.9955 W, d
i ]

0.995
0.9945
¥
0.994

- "“J NYNINYINT |

;).991 - = 7 L

9 | N1IVEIQE
M.' ! A ri A0

= = = 2—layer structure

----- Xbrto

><[1 (Mole fraction)

X, (mole fraction)

L L L
150 200 250 300 350 400
Time (min)

Figure 4.8: The transient responses of system outputs of the 2-layer, 3-layer structure.
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= = = 2-layer structure
= 3-layer structure

W Z-layer and 3-layer structure.

Figure 4.9: Cost functions in M
0.35 T
= 3-layer structure
= = = 2-layer structure
0345~ B
0.34— —
5
g :
5 03%5F - B
~, L1 )
— et
0.33— —
/ ‘ -

“ARAINTU M INGIAY
q
Figure 4.10: Economic objective functions (after omitting the raw material cost): C; varies

from 6 x 107% to 9 x 107% (§/Btu) after the first 200?* min.
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4.3.3 Stability Test

In this task, the diffirence of two integration approaches and the effect of the prediction

horizon length are evaluated in two aspects.
& Finding the mazimum ollowable range of parameter C1 in the utility cost of the RTO layer.

Assume that from 21% to 200" min, C; = 3 x 1078 $/Btu. In this task, the previous MPC
controllers and the new MPC controllers with (N, = 20, N, = 5) are used to find the
maximum allowable range of C| which still ensures the stability of the system after the first

200" minutes in three cases of the restydy rate of inputs.

o Case 1: Au=3%
e Case 2: Au=4%
e Case 3: Au=6%

The results in the table 4.1

comparison with that of the

nas larger feasible domain in
rrediction horizon increases,
the feasible domain also enlar

Table 4

The simulation result for tu b 27 = 10, N, = 3) response to
C; = 10x107% $/Btu, is sh AI | in Figure .11 A5 Can be seenfdie MPC controller of 2-layer

structure gives the outputs resgopses exceed theirgbpunds, those of the 3-layer structure are

it o bR RY. adwﬂ%ﬁa‘w BIANT

& Wave Setpoints Tmﬂzctory.

In this test, %Wﬁeﬂﬂﬂfﬂaﬁm ﬁﬂ(e;) (f](ﬂ (%Jllates between
two points: mgpimim Rrio (Apref = bref ‘and maximumll Ry (Xpre F=

0.032; Rprey = 19.022) is used. The 4 MPC controllers above are still be used. The maximum
rate of inputs over the magnitude of inputs which allow the controllers guarantee the inputs,

outputs in the allowable range and tracks to the setpoints are as follows.

Table 4.2: Maximum Rate of Inputs over Its Magnitude.
Case | N,=10, N,=3 | N, =20, N, =5

2-layer 3—1ayer 2-layer 3—1ayer
0.07 0.001 0.04 0.001
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Results in the table 4.2 shows that the controller of the 3-layer structure allows the input,
output track to the target even as the rate of inputs are significantly small (0.001). Whereas,
for the 2-layer structure, the maximum rate of inputs are much higher than that of 3-layer
structure. As the prediction horizon is increased, the maximum allowable rate of input is
reduced.

Fig. 4.12 shows the input-output responses of the 2-layer and 3-layer MPC controller
(Np=10, N,=3) as the rate of inputs are restricted at 0.03 times per their input magnitude.

As can be seen, only the MPC controller of.the 3-layer structure gives the input-output in

7z,

the allowable range and tracks to the sc %

4.4 Conclusion

. ana MPC based on the nominal

3-layer structure. Then, we

This chapter presents the intChra: o
model. The integration app:
applied the integration appre w8 controllers design based on
the nominal dynamic model of ‘4 3) give the transient responses
for each integration structu; WS

The simulation results ¢’ :”x arally gives the larger feasible
domain for the varying paramet: 1 \-ison with the 2-layer structure.
The cost function in the MPC #

2-layer structure due to the addiil

ciire is also smaller than that of

\Z

AULINENINYINT
PAATUAMINYAE
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Figure 4.12: The input R-output X; responses of the nominal integration approaches (2-layer
and 3-layer structure) (N, = 10, N, = 3) as the limitations rate of input is 0.03



CHAPTER V

INTEGRATION OF RTO AND MULTIPLE MPC

5.1 Introduction

In this chapter, the integration approaci) nd 2-layer structure) for the uncertain

#model is similar to the nominal case.

‘/d)r the control layers varies in the
ele lentﬁorresponds with each operating

systems are proposed. The RTO pros

The difference is in the assumptis = dynart
finite set of models (multiple mo

point of the process which is wcit /s . wte space model. The motivation

—

X'

—

Figure 5.1: The output- feec J,ck MPC controller for the d1s =#ation column based on the

multiple models using the switghjmg scheme.

ﬂUEJ’J'VIEWl?WEJ’]f‘i

MPC 1 Process

Figure 5.2: The output-feedback nonadaptive MPC controller for the distillation column
based on single model.

of the multiple models approach comes from the fact that, normally, the controller being
designed to control the process based on the assumption of nominal models and neglecting
all internal and external uncertainties. It simplifies MPC formulation dramatically, but may

impair the controller performance and/or the closed-loop stability. In practice, as a linear
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controller is applied to control a nonlinear process, it is limited to relatively small operating
regions. The accuracy of the process model has a significant effect on the performance of the
closed-loop system for those being designed bases entirely on model prediction [30].

An approach is to divide the process into several operating regions, each region is ap-
proximated by a linear model. The control strategies, which are based on multiple models,
have appeared in the control literature in three different contexts [31]: Model scheduling strat-
eqy, Adaptive control scheme and Robust control strategy. In this thesis, we apply one of the

adaptive control scheme based on multiple rpodels in designing the controller for distillation

obtained integration foundatiorg
by 3 models Gy, G1, G2 chapte:

The switching controisct ¢ | St eI on the values of the input

“lation column (belng descrlbed

reflux ratio R at the correspe age of this approach is that
: of tile operating levels; whereas,
Mollers can used [32]. On the
around the nominal operating
. ition, the mismatch between the
process and the model probably aegrz ne ciosed loop systems’s performance
and stability.
To compare the res
trollers with output feedb 4

multiple MPC approaches. ':

A b)) nonadaptive MPC con-
Y ). integration of RT'O and

L

The Switching Control

e BUEINENIWANT o s

model pair is chosen as the deviatjpn of the inpyt reflux ratiogly in the range of

o AR AN U TRGAFY <o

2. As —2.65 < AR < —1.85, the controller-model pair 1 is chosen with G = G1. That

range corresponds with R = R; = 17.46 until R = Ry = 16.64.

3. As —3.85 < AR < —2.65, the controller-model pair 2 is chosen with G = G5. That
range corresponds with R = Ry = 16.64 until R = Ry, = 15.54.

All the data of the process models can be found in chapter 3.
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5.2 Integration of RTO and Multiple MPC

Generally, the integration approaches and the RTO problem formulation are similar to the
nominal case in chapter 4. What are the main differences between the integration approaches
of this chapter with the integration based on the nominal model in chapter 47 First, there
are multiple models being used for describing the process (distillation column) in several
operating points. Second, the MMPC is used in the design for the dynamic models. The

controller-model pair is switched in each pair as the function of the manipulated variable R.

5.2.1 The 2-layer structure apza

Ztiple MPC in 2-layer structure.

sontroller. The MPC controller

of the manipulated variables,

The Fig. 5.3 (A) illustrates the "
As can be seen, the RTO layef
designed bases of the each mo-
the reflux ratio R. The simuiat w.approaches for the distillation
column are in section 5.4. V. -

The RTO problem of th i s J N ulated and solved in chapter
2. The MPC problem with ivuva) v o o 1= : rimulated based on a prediction
| apter 2. The difference with
in the design. In this chapter,

we only illustrate the results or t i SR H5c % tnrough the distillation column

5.2.2 The 3-layer stry.d

The Fig. 5.3 (B) illustrat s " J[PC in 3-layer structure.
The QP layer is added to r ;I MpULE o

parts are similar to the 2-layer .approach above.

s Apphcamﬂummmw NS
n i vt maaa A EAVRAL 8RS ) I

that, the nonaaaptlve model predictive control strategies (the MPC control strategy based

—iic MP, controller. The remainning

on the nominal model/the process varies) are implemented to illustrate the efficiency of the

multiple MPC strategies.

5.3.1 Tunning Parameters

The simulations are implemented by varying the prediction horizon, the control horizon and
the coefficient A of the weighting matrix in the input element of the MPC cost function. We

also use the Integrated Absolute Error (IAE) criterion to evaluate the transient responses of
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R | Xb QP
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s, wayshAs
ss3201d
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$S920.1d
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“ddd )/ R ‘
Figure 5.3: The integration str. . A Ll '\\-a M PC: (A) 2-layer approach and
(B) 3-layer approach. —_ ,

OWILCTIITY
algorithms

Simulation ?

Figure 5.4: The design algorithm of the integration RTO and multiple MPC based on switch

controller.
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each controller. The simulations shows that the MPC controller with (N,=10; N.=3; A\=1)
gives the smallest TAE index. Thus, we chose that parameters for doing simulations in next

sections.

5.3.2 Transient Responses

e Choosing Parameters RTO layer: is simulated in two time intervals with T3, = 200 min.
- 1%t time interval (21°¢ - 200" min): C; = 6-10° ($/Btu), the solutions of the RTO problem
give Ryto = 17.46 and Xy, = 0.053 (see Tal

- 27 time interval (201°¢ - 400" mi # # 3/Btu), the data from the process is
updated at the first minute of th- ™ SaT /” e solution of the RTO problem
gives Ryo = 16.64 and Xi,ppo =™ — '

o MPC layer and QP layer: the zimum outputs are restricted in

the allowable ranges as defiill

.'\;_\
-_mr the controllers are chosen
as chapter 4. :

- The 2-layer

00 10
o=[p i ==lo o]
Tyvpc = Tgp = 1 min.

- The 3-layer structure

Qy:Qu:[(l) (1):|7 Ce:|:

Fig. 5.8, 5.9 and 5.10 ¢ -;L— 45 tive, nonadaptive). Fig.
)
5.11, 5.12 and 5.13 compza 4

The simulation results show "'I at Tie

‘I-r‘ ,, nonadaptive) structure.
— a,da“ ‘ve approaches have smaller
overshoot in comparison with th t of the nonadaptive approaches The reason is beacause the
adaptive approach, ﬁ g to another operating
regime, the MPC-mm}ﬁﬁre mﬁm mﬁlﬁscally updated. On the
contrary, the nonadap e approach, the MPC -model onl used the nonmvnodel around the

nominal OpeQHW(ﬂt ﬁwﬂmuwﬂm a ﬂratmg regime.
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Figure 5.7: The transient responses of system output X and input R of the 2-layer as the

weighting coefficient varies.
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MPC (2-layer structure).



== Multiple MPC (3-layer structure)
= = = Nonadaptive MPC (3-layer structure)

_____ Rio

l

50

I
100

150

1 1
200 250 300 350
Time (min)
T

400

.
I
2

V' (kmol/min)
T

115

50

Figure 5.11: The MPC in

0.9955

0.995

0.9945

0.994

0.9935—

(kmol/min)

0.993

> 09925

X

0992

0.9915—

Xb (kmol/min)
°
8
T

0.07—

400

I I
300 350

inle MPC (3-layer structure)
e MPc (3-layer structure)

FlY

Figure 5.12: The MP@Joutpu

2

N

107
o
c

o2
107

‘ e

I
100

I
150

1 1
200 250 300 350
Time (min)

400

Figure 5.13: The cost of the nominal MPC and multiple MPC (3-layer structure).

100

150

200
Time (min)

37



38

5.3.3 Stability Test

& Finding the mazimum ollowable range of parameter C1 in the utility cost of the RTO layer.

Assume that from 21%* to 200" min, C; = 3 x 107% §/Btu. In this task, the multiple MPC
controllers (N, = 10, N,=3) and the multiple MPC controllers with (N, = 20, = 5) in
2-layer and 3-layer structures are used to find the maximum allowable range of 01 Wthh still
ensures the stability of the system after the first 200** minutes in three cases of the restriction

in the rate of inputs.

o Case 1: Au=3% !
o Case 2: Au=4% g /
e Case 3: Au=6% — ._/d

The results in the table 5.1 ¥ 7 a™ias larger feasible domain in

comparison with that of thsg : f SN S rediction horizon increases,

the feasible domain is enlarg

The simulation result fone=
structure) and (N, = 10, V
As can be seen, the MPC c« I roller o.°%

their bounds, those of the 3- lay;r structure are stlll inside the bound conditions and track to

e X G1910)) ‘VIEWIﬁW 81173

& Wave Setpoints Trdfbctory.

In this task, and nonadap-
PRI la =N Faiehal £ AN 11k e
that the setpoﬁlts oscillate between two points: maximum R, (R=19. 022 X3=0.032) and

minimum R, (R=15.456, X;,=0.124). The simulation results (Fig. 5.15) confirm that the

multiple MPC gives better transient responses in comparison with that of the nonadaptive

iSitrollers (2-layer, 3-layer
£ tu is shown in Fig. 5.14.

B give< I € outputs responses exceed

MPC since its transient responses have less setting time and smaller overshoot in comparison
with those of nonadaptive MPC.
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Figure 5.15: The output responses with the wave reference trajectory of the 2-layer structure.
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5.4 Conclusion

In this chapter, the integration of RTO and multiple MPC have been introduced and applied
for the distillation column. There are some points that differs to the nominal case (chapter 4).
First, the system is described separately in several regimes depending on the value of the reflux
ratio R that is transfered from the RTO layer. Second, the multiple MPC based multiple
models using switching algorithm is implemented according to the predefined algorithms.
The simulation results of the application to the distillation column demonstrate the

wealth of the controller design based on t

odels in comparisons with the controller

based on the nominal model. Spey /es of the multiple controllers have
less overshoot and smaller settig / ‘“t of the nominal (nonadaptive)
controller. . : —

AUEINENINYINS
RN ITUUMING AT



CHAPTER VI

CONCLUSIONS

6.1 Summary of Results

of Real Time Optimization (RTO) and

In this thesis, we propose the integratioy,
Model Predictive Control (MPC) as / to distillation column. Chapter 1
_/Jm MPC in literature. We have

presents the literature review ak

reviewed the integration of 'C yer% layer and 3-layer structure.
Subsequently, the motivatiory b UM in 3-layer structure by using
finite horizon MPC is derive=* ™8.C control problems for the

distillation column are also v e W 8o pylene-propane (a kind of

Chapter 2 presents t#® 4 Y @ N RO Optimization and Model
3 lemn for the propylene-splitter
and the finite horizon MPC pro g Jf g &8 N Ning targets.

Chapter 3 constructs th&d i Al thet WsiTlation column. Based on the

Skogestad’s method [27], the dyn#ni« 1‘5{ a2k tit®tion column are obtained from a
series of equations which describe thr e istillation column. The data of this

distillation column comes ¥ou; ofTe obtains 3 models which

describe the process in 3 ;. . = .\:" odels will be used in the
simulation of the integratio ., P
Chapter 4 introduces t: - integration of R1'O and finite ho? “J ‘on MPC. The RTO problem

of the distillation column (a p'rmlene sphtter ﬁyformulated and solved from a specific

economic objective ﬂc Hh’} W ﬂ W%* ﬂ ?fPC controller (reflux
ratio R and bottom §pmposition Xp). Subsequently, the formulation of RTO and finite
horizon MP truc rovided. The
objectives of (ﬁeﬁ\)ﬁaﬁnﬂﬁ ﬁ! mtﬁh ﬁoﬂm a] gjs the variables

track to the ta&ets from RTO layer. The added QP layer in the 3-layer structure recomputes
the targets for the MPC layer. The differences of 2 integration approaches are illustrated
in the distillation column applications. It is shown that the transient responses of 2-layer
structure are faster than that of 3-layer structure. On the contrary, the 3-layer structure
provides a larger feasible domain for the varying of a variable in the RTO layer due to the
addition QP layer.

Chapter 5 formulates the integration of RT'O and multiple MPC. In this chapter, it is

assumed that the process (distillation column) is described by a set of model (in stead of a
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nominal model - chapter 4). The multiple MPC techniques has been shown to be effectively
control the varying process. The formulation of integration RTO and multiple MPC is similar
to the nominal case (chapter 4). The only difference locates in the switch controller being
used in the design - that is used for the MPC controller. In this case, the controller- model
pair is updated based on the measured variables of the process. The simulation results are
repeated as in the nonadaptive case.

In summary, the main contributions of this thesis are to introduce the integration of

RTO and MPC, RTO and multiple MPC ir -layer structure, and their applications to the

in several aspects.

6.2 Conclusion

This thesis presents the integs L S e) MPC in 3-layer structure
and their applications to the ##'; LR S s illustrate the efficiency of
the integration RTO and MPC 4 : L “Sgon with the 2-layer structure.

The multiple MPC using tL4#%5w, sheg ~ % Mciency in comparisons with

1. The integration is implemented “rminal input-output constraints in the

MPC problem with the p
mum input-output ggE S «d integration approaches
should be concernedds A

b | ) l”;
fch other integration approaches™*hich have been proposed in

s-outputs converge to the opti-

2. Make the comparison -

the literature and usingf)ﬁr controllers. @br example, the multiple MPC can be

replaced by Pxﬁq‘us&l S YR N T 5.

3. Develop the integration approaches gor other ap ications. Smceﬁe integrations of

RTO a@ mﬁﬁrﬂ@mhﬂ mra Wﬂ Ejand integrated

pI‘OCGSSGﬁ

4. Develop the numerical methods for solving the RTO and MPC problems. In this thesis,
the RTO problem of the distillation column is solved by MATLAB optimization toolbox.
Whereas, the finite horizon MPC, which is formulated as QP problem, is solved by using
cvx software. This is still an active area for developing the numerical methods of solving

the optimization problems in this thesis.
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Appendix

Dynamic Equations to describe the Propylene Splitter
The assumptions and the dynamic equations to describe the mathematical model of a distil-
lation column are as follows [27].

o Assumptions

Constant relative volatility

(L - the light component (prorz ant (propane))

Constant molar flows: at stead=

No vapor holdup (immediate

o Dynamic Equations

The states are the mole fractions of thP (propylene) z; and the liquid holdup

BN
M; — a total of 2Nt state LV

..
el

The vapor-liquid equilibri Y ] |
i=1:Np—1: | i ’

. e 3
yZ 1+ a_dxz ( )

oo o UL ANUNINEIAT o

relative volatility betwien light and heavy ‘pomponent

ne o QRARA AT UIRADNEIVR Blhorsans i

states.
t=1:Np— 1:
Vi=W (4)
(V4 is the feed at the bottom tray).
t=Ny:Np—1:
Vi=Vi+(1—gp)F (5)

Liquid flow’s equation and the linearized tray hydraulics with time constant 7, also includes

coefficient A for effect of vapor flow (”K2-effect”).
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t=2:Nyg:
L; = Loy + (Mz — MOz'/T) + )\(Vi_l — Vo) (6)
t=Ny+1:Np—1
L; = Lo + (M; — My; /7) + M(Vie1 — Vi) (7)
Lyt =Lt (8)

Time derivatives from material balances for (1) total holdup and (2) component holdup in

each stage of the column as follows.

1=2:Nr—-1:

, (9)
d(M;z;) /¢ _ = 1 | Lize - 1 — Viys (10)
Correction for feed at the feed '’ 8 mixed into the feed stage
(11)
(12)

Reboiler (assumed to be an eq
(13)
(14)

Total condenser (no equil'y ;
dMNT —""—D ||\ (15)
ﬁwﬁ gj Nz — (16)

SN

Compute the derlvatlag for the mole fractigns from d = xzdM + M

o QRAY nIMEMANENY

All the equations above are in the file colamod.m as in disk recording. The model is non-
linear with 2Nt states. The model has 4 manipulated inputs including [L7, Vr, D, B]; 2
disturbances [F, X¢| and 2 outputs [Xg, Xp]. We will used D to control the level Mp and B
to control the level Mp. This is done by two proportional controllers with both gains equal

to 10 (see the file colarv.m in disk recording).
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