Chapter IV

RESULTS AND DISCUSSION OF RESULTS

This chapter describes the results from application of the RTIM Model to the Ban Map Pu-Ban Khai Feeder Road. Comparisons of details have been made for construction costs, vehicle operating costs and maintenance costs between the output of the Model and the values estimated by VALLENTINE, LAURIE & DAVIES (1976). Road deterioration in terms of roughness, which effects several parameters of the Model, has been discussed. Time cost output has also been compared with the available data from T.P.O'SULLIVAN (1973). Finally, the components of the total transportation cost of the study road have been shown both as non-discounted costs and as costs discounted to their present worth in 1975. Also, percentage splits of the total cost of transportation into amortized construction costs, vehicle operating costs, and time costs have been shown and comparison was made with those found by SINTHUSARN (1976).

Construction Costs

Detailed construction costs of Section I and Section II as calculated by the Model, and summarized costs of the two sections representing the construction costs of Ban Map Pu-Ban Khai Feeder Road, are shown in Table 16. Table 17 compares the con-

Table 16 Construction Costs Calculated by the Model, Baht

	Sec	tion I	Sect:	on II	Section I&II	
Item	Quantity m ³	Cost	Quantity m ³	Cost ≱	Quantity m ³	Cost
Excavation	80,475	1,450,166	209,337	3,772,253	289,812	5,222,419
Embankment	123,852	6,269,383	121,034	6,126,750	244,886	12,396,133
Barthwork cost		7,719,549		9,899,003		17,618,552
Site clearance cost	22.40 Ha	122,170	38.61 Ha	210,579	61.01 Ha	332,749
Shoulder cost	29,133	2,598,664	29,744	2,653,214	58,877	5,251,878
Imp. subgrade	7,280	368,513	0	0	7,280	368,513
Subbase	9,230	823,316	0	0 .	9,230	823,316
Base course	22,490	5,035,511	38,313	8,578,280	60,803	13,613,791
PDSD	3,250	3,439,280	5,569	5,893,074	8,819	9,332,354
Pavement cost		9,566,620		14,471,354		24,137,974
Drainage cost		3,060,849		8,228,072		11,288,921
Miscellaneous costs		2,940,680		5,415,052		8,355,732
Overhead and super- vision costs		2,871,938			7,368,438	
Total construction cost	2	28,980,470		45,373,774		74,354,244

Table 17 Comparison of Construction Costs of Ban Map Pu-Ban Khai Feeder Road, Baht

Item	By the Model	By Linear Interpolation of VL&D Estimates	Percent Diff.
Earthworks	17,618,552	19,766,324	-10.9
Site clearance	332,749	334,383	0.5
Pavement and shoulders	29,389,852	25,510,240	+15.2
Drainage	11,288,921	11,288,921	· -
Miscellaneous	8,355,732	8,355,732	1
Design and supervision	7, 368, 438	7,178,116	+ 2.6
Total	74,354,244	72,433,716	+ 2.6

struction costs of those calculated by the Model with those obtained by the use of linear interpolation of the VL&D estimates as described in Chapter III. Two problems arose from the application of the Model to the Ban Map Pu-Ban Khai Feeder Road. The first problem was to put the miscellaneous cost data and drainage cost data in terms of currency; these resulted in the figures shown in Table 16. The constraints of the Model required that only one pavement type be used in each computer run, but there were several pavement types used in the VL&D designs for Section I and Section II, so the second problem arose. Equivalent values for the thickness of each pavement layer were calculated as input

data to make the pavement quantities estimated by the Model to be equal to those estimated in the VL&D calculations. The result was that the pavement and shoulder cost from the Model was 15.2 percent overestimated. The chief reason for the difference is that the thickness of each pavement layer specified in the input data was the thickness after compaction, whereas the Model calculated the quantities using a compaction factor of 0.8 (from the default option of its program) as a denominator. Thus, the quantities obtained would increase 25 percent. If only one unit cost of material were used, the cost of the pavement would accordingly increase by 25 percent. As there were different kinds of pavement layers, and each had its own unit cost as input data, the excess pavement and shoulder costs could deviate in the range from zero to +25 percent. It is evident that VALLENTINE, LAURIE & DAVIES (1976) estimated the pavement quantities without the use of a compaction factor. If in the present study the pavement thickness had been decreased to overcome the presence of the compaction factor, the strength of the pavement, in term of thickness (which was a factor controlling the deterioration of the road), would decrease resulting in a shorter life of the road.

Equivalent widths of clearing for Section I and Section II were 14.0 m and 13.0 m, respectively, the resulting cost, combined for the two sections, showed little difference due to the rounded values of the input data. VALLENTINE, LAURIE & DAVIES (1976) did

not specify clearing over the full right-of-way because of the anticipation of severe problems with erosion in the silty-sandy soils of the route, and of the desire to perform only the necessary construction work. The amount of clearing and grubbing was calculated by a computer programme using cross-sections at 100-m intervals, so the present study had to employ equivalent values based on the total cost for the route of this items.

Earthwork costs calculated by the Model would come out different to the VL&D values because of the use of ground data input to the Model instead of using values estimated from linear interpolation of the total earthwork cost for the whole route.

Nevertheless, the total construction cost calculated by the Model was quite close to the prorata estimate by VL&D; there was only 2.6 percent difference. The results obtained for construction costs were in good agreement with the research done by SINTHUSARN (1976).

Road Deterioration

The deterioration relationships incorporated into the Model were derived from Kenya field data, or from data of other sources when the Kenya data were unsatisfactory or incomplete. The Model represented the deterioration rate in terms of roughness which was expressed in mm/km measured with a fifth-wheel bump-integrator towed at 30 kph. This roughness is a function of the pavement

strength and the total cumulative traffic loading in millions of equivalent (8,200 kg) standard axles. The mean initial roughness a new paved road of surface-dressed type, which was used in the present study, was taken as 2,500 mm/km. During the simulation of the life of the road, roughness would increase with the increase in number of cumulative standard axles travelling along the road. The Model considered that the paved road would fail when the roughness exceeded 4,000 mm/km, and the relationships used were valid below a cumulative loading of 2.5-million equivalent standard axles. The Model required that upgrading be done if road deterioration reached its limit, otherwise the program would terminate. In order to make sure that the life of the study road would not end within the analysis period, upgrading as a maintenance operation was specified. The present study used an asphaltic concrete overlay (0.05-m. thick) as a means of upgrading the deteriorated surface. The initial roughness for this type of pavement was taken as 1,500 mm/km. Details of road deterioration for Section I and Section II are shown in Table 18. In Section I, roughness reached its limit of 4,000 mm/km in the 14th year. At that time overlaying took place and thence the condition of the upgraded road was used; ie, restarting the analysis with an initial roughness of 1,500 mm/km and ignoring the cumulative standard axles which had previously passed along the road before upgrading. Certainly, this resulted in additional maintenance cost and would have an effect on the vehicle opera-

Table 18 Road Deterioration of Section I and Section II

Year	Standard	l Axles	Cumulative of Standar at End of	rd Axles		hness /km
	Outward	Inward	Outward	Inward	Mid Year	End of Year
	Section	I				
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	38,452 41,229 43,776 46,553 49,100 52,395 55,865 59,217 62,570 65,922 69,274 73,202 77,240 81,485 85,641	38,452 41,229 43,776 46,553 49,100 52,395 55,865 59,217 62,570 65,922 69,274 73,202 77,240 81,485 85,641	0.04 0.08 0.12 0.17 0.22 0.27 0.33 0.39 0.45 0.52 0.58 0.66 0.08 0.16 0.24	0.04 0.08 0.12 0.17 0.22 0.27 0.33 0.39 0.45 0.52 0.58 0.66 0.08 0.16	2,547 2,645 2,750 2,861 2,978 3,103 3,236 3,377 3,527 3,685 4,026 1,522 1,568 1,616	2,595 2,696 2,803 2,918 3,039 3,167 3,305 3,450 3,766 3,936 4,116 1,544 1,591 1,640
	Section	II				
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	27,882 29,839 31,796 33,871 35,828 38,421 40,954 43,480 45,902 48,435 50,961 53,833 56,934 59,807 63,026	27,882 29,839 31,796 33,871 35,828 38,421 40,954 43,480 45,902 48,435 50,961 53,833 56,934 59,807 63,026	0.03 0.06 0.09 0.12 0.16 0.20 0.24 0.28 0.33 0.38 0.43 0.43 0.48 0.54 0.60 0.66	0.03 0.06 0.09 0.12 0.16 0.20 0.24 0.28 0.33 0.38 0.43 0.43 0.60 0.66	2,519 2,559 2,602 2,647 2,695 2,747 2,801 2,860 2,921 2,987 3,055 3,128 3,204 3,285 3,370	2,539 2,580 2,624 2,670 2,720 2,773 2,830 2,890 2,953 3,020 3,091 3,165 3,244 3,326 3,413

ting cost, as will be described next. In Section II, the usable life of the road continued until the end of the analysis period and upgrading was not necessary. Table 18 also shows that, because of the periodic surface dressing used as a maintenance operation in the Model, the road did not deteriorate seriously. This effect is discussed in the section on maintenance.

Vehicle Speed

The relationships used in the Model for calculating the speed for each type of vehicles are entirely dependent on road characteristics. For a paved road, vehicle speed is a function of altitude, rise and fall of road, horizontal curvature, and road width. For an unpaved road, the effect on altitude was neglected by the Model, but additional factors on the moisture content of the surface material and the rut depth (another index indicating the deterioration of an unpaved road) were included. The Model calculated vehicle speed and fuel consumption for each type of vehicle in each direction as shown in Table 19. For the two study sections in the present research, roadway widths were

Vehicle speeds are expected to decrease as the width of the road decreases. The results of earlier work in Kenya by ABAY-NAYAKA (1974) showed that speeds were significantly reduced on roads narrower than about 5 m so this effect was incorporated into the Model. The reduction of speed for light vehicles on paved roads is greater than for those running on unpaved roads, but for heavy vehicles the result is opposite to this.

Table 19 Speeds and Fuel Consumptions of Vehicles in Section I and Section II by the Model

Section I

Altitude (met	res)	83.	0				
Rise of road	outward	5	Fall	Fall of road		tward	7
in m/km	inward	7	j i.	n m/k	m i	nward	5
Vehicle type		PC	LT	HB	MT	HT	ST
Average speed	outward	98	83	69	65	65	65
in km/hr	inward	97	82	68	63	63	63
Fuel consump-	outward	125	199	278	275	323	355
tion L/1000km	inward	130	207	292	289	3 36	369
Fuel consump-	outward	8.00	5.03	3.60	3.64	3.10	2.82
tion km/L	inward	7.69	4.83	3.42	3.46	2.98	2.71
Lubricating oi consumption I	1 /1000km	1.20	1.80	4.00	4.00	4.00	4.00

Section II

Altitude (met	Altitude (metres)		0				
Rise of road	outward	-2	Fall	of ro	au	tward	4
in m/km	inward	4	i	n m/k	mi	nward	2
Vehicle type		PC	LT	HB	TM	HT -	ST
Average speed in m/km	outward	101	85	71	67	67	67
	inward	100	84	70	65	65	65
Fuel consump-	outward	125	197	273	269	317	349
tion L/1000km	inward	131	207	288	284	332	364
Fuel consump-	outward	8.00	5.08	3.66	3.72	3.15	2.87
tion km/L	inward	7.63	4.83	3.47	3.52	3.01	2.75
Lubricating oi consumption L	1 /1000km	1.20	1.80	4.00	4.00	4.00	4.00

greater than 5.0 m. Consequently, there was no speed reduction due to road width. The average fall of road in Sections I and II was higher along the outward direction (increasing chainage) than along the inward direction, but the average rise of the road was lower along the outward direction than along the inward direction. Thus, the vehicle speed was higher in the outward direction. In order to obtain the components of vehicle operating cost, an average value of speed for each type of vehicle was determined.

Vehicle Operating Cost

The vehicle operating costs used in this study comprise the economic costs of maintaining and operating vehicles on the study road. Almost all of these data were based on VALLENTINE, LAURIE & DAVIES (1976) costs, except for the vehicle crew's time cost and the passenger or cargo time cost which were obtained from SINTHUSARN (1976). The Model divides road user cost into two categories: vehicle operating cost and time cost. The vehicle operating costs employed by the Model can be divided into two groups. The first group — comprising those which remain constant throughout the analysis period — consisted of fuel, lubricating oil, interest and crew's time costs. The second group — which change for every year of analysis — consisted of tyres, spare parts, vehicle maintenance labour, vehicle depreciation, and overhead and standing costs, as shown in Tables 20 and 21. The analy-

Table 20 Vehicle Operating Costs for Section I, Baht/km

Veh. Type	Year	Fuel	Lubri- cating Oil	Tyres	Spare Parts		Veh. Depre- cia- tion	Inter- est	Crew Time	Ohead and Stand- ing Cost	Total User Cost
PC	3 14 15 17	0.2720	0.0102	0.0462	0.2335	0.0585	0.4677 0.4545 0.4568 0.4501	0.2530	0	0.1328	1.2753 1.4606 1.1477 1.1504
LT	3 14 15 17	0.4322	0.0153	0.0329 0.0765 0.0152 0.0152	0.2716	0.0531 0.0903 0.0172 0.0228		0.1144	0.4000		1.7386 2.0108 1.5488 1.5611
HB	3 14 15 17	0.5444	0.0340	0.1043	0.0198	0.0348 0.0681 0.0103 0.0126	0.3320	0.1725	1.0000	0.5710 0.5995 0.5492 0.5499	2.9974
MT	3 14 15 17	0.5381	0.0340	0.2254	0.6793	0.2050 0.3119 0.1777 0.1860	0.5414	0.3078	1.1250	0.8594 0.9407 0.8147 0.8195	4.2972 4.7036 4.0734 4.0975
НТ	3 14 15 17	0.6293	0.0340			0.3437	0.5632	0.2840	0.6000	0.8096 0.9044 0.7496 0.7554	4.5220
3 T	8 9 14 15 17	0,6915	0.0340	0.3603 0.3649 0.3920 0.3061 0.3094	7.3224 4.1978	0 0.0960 0.5330 0.3280 0.2620	2.0130	1,2940	C.5000	2.3914 1.9512 3.1855 2.3411 2.1869	11.9569 9.7560 15.9277 11.7056 10.9343

Table 21 Vehicle Operating Costs for Section II, Baht/km

Veh.	Year	Fuel	Lubri- cating Oil	Tyres	Spare Parts	Veh. Maint. Labour	Veh. Depre- cia- tion	Inter- est	Crew Time	Ohead and Stand- ing Cost	Total User Cost
PC-	3			0.0194	0.1027	0.0313	0.4677	0.0570	_	0.1157	1.2730
	17	0.2730	0.0102	0.0345	0.1700	0.0466	0.4579	0.2530	0	0.1245	1.3698
LT	3			0.0321	0.1289	0.0522	0.2115	0.1144		0.3462	1.7312
	17	0.4305	0.0153	0.0571	0.2316	0.0843	0.1991		0.4000	0.3831	1.9154
НВ	3			0.0905	0.0681	0.0341	0.3382	0 1000	25 1.0000	0.5682	2.8410
	17	0.5354	0.0340	0.0983	0.1105	0.0539	0.3299	0.1725		0.5836	2.9181
MT	3			0.1957	0.4250	0.2037	0.6034	0.3078	1 1250	0,8556	4.2782
	17	0.5280	0.0340	0.2124	0.6002	0.2808	0.5379	0.5078	1.1290	0.9065	4.5327
HT	3			0.2603	0.6127	0.2546	0.5568	0.0040	0 5000		4.0268
	17	0.6191	0.0340	0.2826	0.7734	0.3138	0.5526	0.2840	0.6000	0.8649	4.3243
ST	8			0.3481	0	0	6.6857	1	1	2.3858	11.928
	9	0.6813	0.0340	0.3500	1.1655	0.0879	3.5353	1.2940	0.5000	1.9120	9.560
	17		i i	0.3695	7.4141	0.5501	1.6756	3 20		3.1296	15.648

sis period of the present study was 17 years. The first and second years were the construction period. The third year was the first year in which the road was open to traffic, and the 17th year was the last year of the analysis period. As overlaying took place in the 14th year on Section I, it was decided to show the values of the components of vehicle operating costs in the 14th and 15th years in Table 20. Vehicle type ST (Semi-trailer) was forecasted to be in service on the study road in the 8th year; therefore, this was used as the beginning year for this type of vehicle. From these two tables, it may be seen that tyres, spare parts and vehicle maintenance labour costs increased with the value of roughness as previously described. As roughness decreased, these costs decreased too, except for the vehicle depreciation cost which was found to be influenced by the vehicle-age spectrum predicted by the Model. A comparison of the differences in vehicle operating costs of Section I and of Section II can be summarized as follows.

There were no variations in lubricating oil, interest or crew time costs as the relevant input data for these elements were the same for the two sections. Fuel cost showed small differences because of differences in the road geometry. Costs for tyres, spare parts and vehicle maintenance were not greatly different at the beginning year; but, in subsequent years these costs showed larger differences because the deterioration of the

two road sections was not the same. In Section I, overlaying took place in the 14th year because the roughness exceeded the limit set in the Model. Hence, without upgrading, the road could not be kept in service. Tyres, spare parts, and vehicle-maintenance labour cost decreased in the 15th year as a result of the new roughness value associated with the asphaltic-concrete overlay pavement. It should be emphasized strongly that the better type of pavement results in an important reduction in vehicle operating costs.

In order to make a comparison between the vehicle operating costs predicted by the Model with those of VALLENTINE, LAURIE & DAVIES (1976), the 3rd-year costs of the representative Section I were chosen. Table 22 compares the components of vehicle operating costs for each type of vehicle at the same range of speed. Fuel costs predicted by the Model for all vehicle types were all higher than the VL&D values. This was especially so for light trucks; a possible explanation is that the study vehicle used in Kenya to represent light commercial vehicles had a 1,600-cc engine which is larger than the 1,300-cc typical size of the VL&D study. Oil consumption costs predicted by the Model were all higher. As this cost was simply oil consumption multiplied by the unit cost of oil, the difference came from the unequally predicted oil consumption values as shown below.

Table 22 Comparison of Vehicle Operating Costs Predicted by the Model* with VL&D Study, Baht/km

					,	
Item	PC	LT	НВ	MT	HT	ST
ALL AND ALL AN	VALLE	NTINE, I	AURIE &	DAVIES		
Speed (kph)	88.0	80.0	72.0	64.0	64.0	64.0
Fuel Oil Tyres	0.2173 0.0090 0.0450	0.2302 0.0105 0.0509	0.3823 0.0200 0.0836	0.3904 0.0204 0.1624	0.4881 0.0204 0.2532	0.6758 0.0218 0.3545
Repairs and maintenance Depreciation	0.1586	0.1889	0.3199	0.3546	0.5011	0.5441
and interest	0.1364	0.2902	0.4200	0.7175	0.6859	3.1586
Sub-total	1.1684	0.7769	1.2261	1.6457	1.9490	4.7550
Overheads	0	0	0.0475	0.0723	0.0846	0.0846
Total	1.1684	0.7769	1.2736	1.7180	2.0336	4.8396
			MODEL*			
Speed (kph)	97.5	82,5	68.5	64.0	64.0	64.0
Fuel Oil Tyres	0.2720 0.0102 0.0199	0.4322 0.0153 0.0329	0.5444 0.0340 0.0908	0.5381 0.0340 0.1962	0.6293 0.0340 0.2611	0.6915 0.0340 0.3649
Repairs and maintenance Depreciation and interest	0.1366	0.1846	0.1042	0.6331	0.8735	1.3851 4.8293
Sub-total	1.1594	0.9909	1.2841	2.3128	2.6386	7.3048
Crew time	0	0.4000	1.0000	1.1250	0.6000	0.5000
Overhead & standing cost	0.1159	0.3477	0.5710	0.8594	0.8096	1.9512
Total	1.2753	1.7386	2.8551	4.2972	4.0482	9.7560
		Percent	differe	nce	<u> </u>	
Fuel Oil Tyres	+ 25 + 13 - 56	+ 88 + 46 - 35	+ 42 + 70 + 9	+ 38 + 67 + 21	+ 29 + 67 + 3	+ 2 + 56 + 3
Repairs and maintenance	- 14	- 2	67	+ 78	+ 74	+154
Depreciation and interest	- 2	+ 10	+ 21.	+ 27	+ 22	+ 53
Sub-total -	- 1	+ 27	+ 5 .	+ 40	+ 35	+ 53
Total	+ 9	+124	+124	+150	+ 99	+101

^{*}Section I, 3rd year of analysis

77 - 1 - 1 - 2 M	Oil Consumption	in km/litre
Vehicle Type	Model	<u>VL&D</u>
PC	833	1,000
LT	555	770
HB	250	450
MT	250	450
HT	250	450
ST	250	450

It is obvious that tyre costs predicted by the Model for light vehicles were lower; but, for heavy buses and medium and heavy trucks their costs were slightly higher. For light vehiclas, tyre cost was dominated by road roughness, but for heavy buses and medium and heavy trucks, tyres cost was influenced by both the road roughness and the gross vehicle weight. Costs of repairs and maintenance, and depreciation and interest could not be reasonably compared as there are differences in the methods used by the Model and by VL&D. VL&D used average characteristics of each vehicle type for the analysis, but the Model calculated the characteristics of each vehicle type by using the forecast traffic volume distributed into the vehicle-age spectrum. Obviously, this Model aims towards a realistic picture of the traffic. There were differences in the treatment of other components of vehicle operating cost between the Model and the VL&D study. The Model included crew-time cost as a component in vehicle operating costs, and included the overhead and standing cost for every

type of vehicle. VL&D included the crew-time cost in addition to the passenger-time cost, and included the overhead costs for heavy commercial vehicles and buses. Thus, the overall ensemble of vehicle operating costs of the Model was higher than those of VL&D as shown in Table 22.

Time Cost

The Model enables the cost of passenger time (or cargo time) to be separated from the vehicle operating cost. Journey times were found from the road length and the vehicle speed and these were used to cost the passenger's time. Differences in the geometry of Section I and Section II resulted in different vehicle speeds and in differences in time costs. The time cost for Section I is higher because of lower speeds which resulted in longer journey times, as shown in Table 23.

Table 23 Passenger Time Costs for Section I and Section II, Baht/km

Vehicle Type	Section I	Section II
FG	0.3074	0.2995
$\Gamma \Phi$	0,1211	0.1180
HB	0.7329	0.7100
FIT	0.1093	0.1059
HT	0.1093	0.1059
ST	0.1093	0.1059

As data on the unit time cost for each vehicle type could not be deduced from the reports of VALLENTINE, LAURIE & DAVIES (1976), the present study used data from SINTHUSARN (1976) and compared the time costs as obtained from the Model with the values suggested to the Department of Highways by T.P.O'SULLIVAN & PARTNERS (1973) shown in Table 24.

Table 24 Comparison of Time Cost Predicted by the Model with the T.P.O'SULLIVAN Study, Baht/km

Vehicle Type	Model (Section I)	T.P.O'SULLIVAN	Percent Difference	
PC	0.3074	0.3730	- 17	
LT	0.1211	0.2240	- 46	
HB	0.7329	0.8270	- 11	
MT	0.1093	0.1640	- 33	
HA	0.1093	0.1640	- 33	
ST	0.1093	0.1640	- 33	

The time costs calculated by the Model were all lower than the values from T.P.O'SULLIVAN. This is due to the Model assigning crew time cost as a component of vehicle operating cost, therefore excluding it from the time cost. An exception was made for passenger cars because there would be no crew time cost on this vehicle type, so the present study underestimated this cost for passenger cars. Nevertheless, as the time cost is entirely dependent upon the data, if the same source of data were used, there would only be a slight differences resulting from different values of predicted speeds.

Road Maintenance Cost

Because there were no data available concerning standard schedules and details for maintenance of rural roads, the present study used all the packages for maintenance operations from the default options of the Model and used plant-hire rates, labour rates, and material costs from SINTHUSARN (1976) whose data were obtained from the Department of Highways. Table 25 and Table 26 show the maintenance operations for Section I and Section II, respectively, and these operations are discussed in the following paragraphs.

Shoulder maintenance

Shoulder maintenance techniques used in the Model are based on the maintenance requirements developed in the MIT Model. Section I had unpaved shoulders with a paved surface of 6.5-ml width, thus the shoulder maintenance required by the Model con-

lt was noticed during the Kenya study (HODGES, 1975) that if the width of the pavement running surface was greater than 6.5 m, traffic rarely encroached on the shoulders except in emergencies, whereas if the paved running surface was less than 6-m wide many of the lorries travelled with their near-side wheel overlapping the shoulder. The maintenance of the shoulders of roads which have a paved running surface wider than 6.5 m therefore consists of vegetation control (usually merely grass cutting) and, to ensure adequate surface drainage, grading of the loose gravel which accumulates at the edge of the pavement.

Table 25 Road Maintenance Output of Section I

Year	Maintenance Ope	erations	Cost %	Annual Cost %
3-6	Shoulder mowing Shoulder grading Drainage maintenance Maintenance overheads	area 72,000 m ² area 76,800 m ² 960 cu.m of sed- iment removed	3,820 1,722 10,072 1,718	17,332
7	Eight(surface)patching Heavy (base) patching Surface dressing	area 526.3 m ² area 104,000 m ²	8,221 15,981 412,141	
	Shoulder mowing Shoulder grading Drainage maintenance	area 72,000 m ² area 76,800 m ² 960 cu.m of sed- iment removed	3,820 1,722 10,072	
	Maintenance overheads		49,715	501,672
8-10		s in year 3	,	17,332
11	Light(surface)patching Heavy (base) patching	area 1,262 m ² area 1,262 m ²	19,699 38,296	
	Shoulder mowing Shoulder grading Drainage maintenance	area 72,000 m ² area 76,800 m ² 960 cu.m of sed-	3,820 1,722	
	Maintenance overheads	iment removed	10,072 8,097	81,706
12	Light(surface)patching Heavy (base) patching Surface dressing		69,179 134,501 412,141	
	Shoulder mowing Shoulder grading Drainage maintenance	area 72,000 m ² area 76,800 m ² 960 cu.m of sed-	3,820 1,722 10,072	
	Maintenance overheads	iment removed	69,458	700,892
13	Same as	s in year 3	N. Carlotte	17,332
14	Overlay (volume of materials 6,500 cu.m)	area 104,000 m ²	6,971,120	
	Shoulder mowing Shoulder grading Drainage maintenance	area 72,000 m ² area 76,800 m ² 960 cu.m of sed- iment removed	3,820 1,722 10,072	
	Maintenance overheads	L	768,541	7,755,275
15-16		s in year 3		17,332
17	No road	maintenance		0

Table 26 Road Maintenance Output of Section II

Year	Maintenance Ope	rations	Cost ≱	Annual Cost &	
36	Shoulder grading Drainage maintenance	area 118,800 m ² 1,782 cu.m of sediment removed	2,669 18,696		
	Maintenance overheads		2,350	23,715	
7	Surface dressing	area 178,200 m ²	722,195		
	Shoulder grading Drainage maintenance	area 118,800 m ² 1,782 cu.m of sediment removed	2,669 18,696		
	Maintenance overheads		81,792	825,352	
8-11	Same as	Same as in year 3			
12	Surface dressing.	area 178,200 m ²	722,195		
	Shoulder grading Drainage maintenance	area 118,800 m ² 1,782 cu.m of sediment removed	2,669 18,696		
	Maintenance overheads		81,792	825,352	
13-16	Same as in year 3				
17	7 No road maintenance				

sisted of a single edge-grading each year (graded area was assumed to be 4,800 m²/km) and grass mowing. The number of grass mowings required by the Model is one for every 500 mm of annual rainfall, and the complete width of the shoulder is assumed to be at such times. Section II had unpayed shoulders with a payed surface of 6.0-m width, the shoulder maintenance as required by the Model consisted of one edge grading each year and no shoulder mowing because the shoulders would be in service from time to time by the heavy vehicles.

Drainage maintenance

The Model used the equation from the MIT Highway Cost Model to estimate the amount of sediment to be removed each year, as shown in Tables 25 and 26. This type of maintenance was specified in order to keep side drains and culverts in good condition.

Patching

The Model assumed that the depth of all patching would extend to the bottom of the base layer of the pavement and for costing purposes, patching was separated into one for the base material (Heavy base patching) and another for the surfacing (Light surface patching). The amount of patching is assumed to be independent of road width for two-lane roads wider than about 6 metres. As it is unlikely that paved roads would be designed

with widths less than 6 metres, patching was assumed in the Model to be independent of road width. Whenever pavement cracking exceeds 5 m/m^2 , the Model decrees that patching is needed. In Section I the Model predicted that patching would be required in the 7^{th} , 11^{th} , and 12^{th} years.

Surface dressing

The present study used re-surface-dressing as the maintenance policy, so the Model would provide the study road with this type of maintenance whenever one of the following limits was exceeded:

- a) the mean cracking in the wheel tracks on either side of the road reached 1 m/m^2 ;
- five years had elapsed since the previous surface dressing; or
- c) the traffic loading since the previous surface dressing reached 1.5-million equivalent axles in either direction.

The Model predicted that the limit of time would be exceeded first for both Section I and Section II. Therefore, surface dressing would take place at five-year intervals: the 7th and 12th years.

Overlaying

The data obtained in Kenya indicated that the amount of cracking was approximately a linear function of the traffic loading, prior to its value exceeding 3 m/m². Therefore, the Model used this limit as a threshold condition at which overlaying would be required for a pavement which was not re-surface-dressed under routine maintenance. The present study specified re-surface-dressing as part of the normal maintenance policy, so the average cracking was not allowed to exceed 1 m/m². Then the limit of roughness became the threshold condition at which an overlay would be required for the pavement. A roughness value of 4,000 mm/km was used in the present study as a maximum limit for both Section I and Section II. The Model predicted that only Section I would reach this roughness limit. This would occur in the 14th year at which time overlaying would be carried out to extend the life of the road.

Overheads and supervision costs

The overheads and supervision costs used in the Model were taken as a percentage of the total maintenance cost for completeness of the program. The present study used 11 percent for this item for both Section I and Section II.

Comparison of road maintenance costs

The cost of maintaining bitumen roads suggested by VL&D for the Ban Bung-Khai Feeder Road can be listed under the following four headings.

- (1) General maintenance of right-of-way, clearing drains, cutting grass, repairs to road furniture, lane markings, etc.

 These costs are fixed per kilometre of road; they are dependent upon the general topography and climatic conditions. Therefore, they are not related to the amount of traffic using the road.
- (2) Maintenance of shoulders; the shoulders of bitumen roads in Thailand are frequently of lateritic or gravel materials.

 As a result of vehicles encroaching onto the shoulders from time to time, some material is lost, so replacement of material and reshaping is required. These costs were based on the predicted amount of encroachment by vehicles for various traffic volumes and carriageway widths.
- (3) Maintenance of the bitumen surface such as repair of pot holes and damaged carriageway edges. The cost of repairing pot holes (the same as patching of the Model) was used as a fixed cost, but the cost of edge maintenance is related to the volume of traffic and the carriageway width as shoulder maintenance in item (2).

Totalling these three items of cost -- using the estimated labour, plant, and materials requirements for the conditions

existing in the route corridor -- resulted in determination by VL&D of the following formulas.

Road	Class	Carriageway	Width			Formul	La	
	F ₂	6.5 m		C	=	7,900	+	0.30
	F ₃	6.0 m		C	=	7,900	+	0.40

where C = economic cost of maintenance of bitumen road in Baht/km

- Q = number of vehicles per day, excluding motorcycles, using a road
- (4) Periodic resealing of the surface: it was necessary to determine the frequency with which resurfacing should take place and the following periods of surface treatment were used.

For primed and double surface dressed roads

When the traffic at the time of resurfacing exceeds 3,000 vpd, the provision of a 25-mm thick wearing course of bitumen concrete is used at intervals of 12 years. The ADT of Section I and Section II did not exceed 3,000 vpd, therefore the costs of surface dressing for these sections were determined by VL&D as follows.

Road Class	Carriageway Width	Surface-Dressing Cost, Baht per km
F ₂	6.5 m	100,000
F ₃	6.0 m	93,000

Table 27 shows the calculated annual maintenance costs of Section I and Section II using the formulas proposed by VL&D.

Table 27 Calculated Annual Maintenance Costs of Section I and Section II Using Formulas Proposed by VL&D, Baht

Year	ADT	Cost Items (1)+(2)+(3)	Cost Item (4)	Annual Cost	Total Cost
		Secti	on I (16.0	km)	
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	574 648 720 794 867 943 1,040 1,135 1,232 1,328 1,425 1,552 1,681 1,811 1,941	129,155 129,510 129,856 130,211 130,562 130,926 131,392 131,848 132,314 132,774 133,240 133,850 134,469 135,093 135,717	1,600,000 - 1,600,000	129,155 129,510 129,856 130,211 1,730,562 130,926 131,392 131,848 1,732,314 132,774 133,240 133,850 1,734,469 135,093 135,717	6,780,917
		Secti	on II (29.	7 km)	
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	464 548 631 715 797 882 1,003 1,124 1,245 1,365 1,487 1,653 1,653 1,990 2,161	240,142 241,140 242,126 243,124 244,098 245,108 246,546 247,983 249,421 250,846 252,296 254,268 256,287 258,271 260,303	2,762,100 	240,142 241,140 242,126 243,124 3,006,198 245,108 246,546 247,983 3,011,521 250,846 252,296 254,268 3,018,387 258,271 260,303	12,018,259

Map Pu-Ban Khai Feeder Road. It can be seen that the maintenance cost predicted by the Model displayed a higher value for Section I (resulting from the cost of overlaying: 7.75 millions Baht), a lower value for Section II, and a lower value for the combination of Sections I & II. Excluding the maintenance cost of periodic surface dressing and overlaying, the annual maintenance costs predicted by the Model (shown in Table 29) were less than one-seventh of those obtained using the VL&D method (shown in Table 27). Maintenance operations for both the Model and the VL&D method seem to be carried out similarly, but the costs displayed large differences. Discussion of these differences could not be reasonably made as there were no details about the components of maintenance operations described by VL&D.

Table 28 Comparison of Maintenance Costs of Ban Map Pu-Ban Khai Feeder Road. Baht

Item	Section I	Section II	Sections I & II
liodel	9,212,865	1,935,284	11,148,149
VL&D Method	6,780,917	12,018,259	18,799,176
Percent difference from VL&D	+35.9	-83.9	-40.7

Total Transportation Cost

The total cost of transportation is made up of the road cost and road user cost. Road cost consists of amortized construction cost and the annual maintenance cost. Road user cost consists of the annual vehicle operating cost and the annual time cost. The analysis of the Ban Map Pu-Ban Khai Feeder Road was carried out for a period of 15 years, excluding the two-year construction period which was assumed to be 1977 and 1978. Fifty percent of the construction costs were assigned to each of these two years. All the unit rates applied in the analysis were referred to August 1974 prices in term of economic rates. The discount rate used was 12 percent; and this was the same as the rate of interest on borrowed capital to purchase a vehicle. Table 29 gives breakdowns of the total transportation costs for Section I and Section II; the combination of these two sections is shown in Table 30. All costs were converted to their present worth at the beginning of 1975 with 12 percent discount rate as shown in Table 31, 32, and 33 for Section I, II, and their combination, respectively. It is obvious from Table 33 that the maintenance cost of the Ban Map Pu-Ban Khai Feeder Road is only a small portion (about one percent) of the total transportation cost; construction cost is about 21 percent; and road user cost, including time cost, is the highest portion of 78 percent. Research on this RTIM Model was recently conducted for a primary

Table 29 Total Transportation Cost of Section I and Section II
Baht

Year	Construction	Maintenance	Vehicle Operation	Time	
Secti	lon I				
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988	14,490,235 17,332 17,332 17,332 17,332 501,672 17,332 17,332 17,332 81,706 700,892 17,332		9,569,600 10,626,128 11,586,255 12,561,636 13,514,053 14,660,670 16,010,137 17,372,390 18,810,603 20,271,024 21,809,884	864,92 1,003,48 1,138,20 1,276,75 1,412,18 1,553,16 1,712,68 1,870,85 2,030,44 2,190,40 2,349,99	
1990 1991 1992 1993	28,980,470	7,755,275 17,332 17,332 0 9,212,865	23,772,626 21,209,008 22,709,035 24,158,457 258,641,506	2,559,495 2,775,069 2,986,621 3,202,833 28,927,106	
	8.90%	2.83%	79.39%	8.88%	
Secti		2.83% = 325,761,94	79.39%	8.88%	
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	8.90% Total cost	2.83%	79.39% 7 13,498,887 15,380,714 17,072,262 18,689,108 20,263,011 22,161,646 24,625,838 27,091,526 29,563,200 32,028,842 34,620,336 38,156,315 41,765,395 45,229,520	1,300,554 1,583,429 1,863,057 2,143,833 2,422,183 2,706,074 3,074,288 3,449,050 3,812,813 4,179,747 4,557,756 5,065,091 5,585,796 6,094,409	
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	8.90% Total cost on II 22,686,887	2.83% = 325,761,94 - 23,715 23,715 23,715 825,352 23,715 23,715 23,715 825,352 23,715 23,715 23,715 23,715 23,715 23,715 23,715 23,715 23,715	79.39% 13,498,887 15,380,714 17,072,262 18,689,108 20,263,011 22,161,646 24,625,838 27,091,526 29,563,200 32,028,842 34,620,336 38,156,315 41,765,395	1,300,554 1,583,429 1,863,057 2,143,833 2,422,183 2,706,074 3,074,288 3,449,050 3,812,813 4,179,747 4,557,756 5,065,091 5,585,796	

Table 30 Total Transportation Cost of Ban Map Pu-Ban Khai Feeder Road (Section I&II), Baht

Year	Construction	Maintenance	Vehicle Operation	Time
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	37,177,122 37,177,122	- 41,047 41,047 41,047 41,047 1,327,024 41,047 41,047 105,421 1,526,244 41,047 7,778,990 41,047 41,047	- 23,068,487 26,006,842 28,658,517 31,250,744 33,777,064 36,822,316 40,635,975 44,463,916 48,373,803 52,299,866 56,430,220 61,928,941 62,974,403 67,938,555 73,058,755	- 2,165,483 2,586,909 3,001,257 3,420,585 3,834,363 4,259,238 4,786,970 5,319,904 5,843,255 6,370,156 6,907,752 7,624,586 8,360,865 9,081,030 9,819,095
	74,354,244	11,148,149	687,688,404	83,381,448
1.	8.68%	1.30%	80.28%	9.74%

Total cost = 856,572,245

Table 31 Total Transportation Cost of Section I, Present Worth in 1975 (12% discount rate), Baht

	0	Madada	Waladala			Cumulative	
Year	Construc- tion	Mainte- nance	Vehicle Operation	Time	Mainte- nance	Vehicle Operation	Time
1977 1978	10,313,884		-	-	_	_	-
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	7,200,0)1	9,835 8,781 7,840 7,000 180,909 5,580 4,983 4,449 18,725 143,418 3,167 1,265,068 2,524 2,254	5,383,553 5,241,062 5,073,465 4,873,335 4,720,378 4,602,570 4,459,098 4,310,946	508,397 514,867 515,662 509,250 500,081 492,359	9,835 18,616 26,456 33,456 214,365 219,945 224,928 229,377 248,102 391,520 394,687 1,659,755 1,662,279 1,664,533 1,664,533	5,430,068 10,813,621 16,054,683 21,128,148 26,001,483 30,721,861 35,324,431 39,783,529 44,094,475 48,242,370 52,226,997 56,104,871 59,193,880 62,146,990 64,951,987	490,786 999,183 1,514,050 2,029,712 2,538,962 3,039,043 3,531,402 4,011,608 4,476,937 4,925,143 5,354,483 5,771,997 6,176,175 6,564,559 6,936,434
	19,522,715	1,664,533	64,951,987	6,936,434	Total cost	= 93,075,6	69
	20.98%	1.79%	69.78%	7.45%		100%	

Table 32 Total Transportation Cost of Section II, Present Worth in 1975 (12% discount rate), Baht

	Construc-	Mainte-	Vehicle		Cumulative			
Year	tion nance Operation	Time	Mainte- nance	Vehicle Operation	Time			
1977 1978	16,148,110	-	_	~	-	-	-	
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	±+,4±1,30)	13,457 12,015 10,728 9,578 297,632 7,636 6,818 6,087 5,435 168,885 4,333 3,868 3,454 3,084	7,659,660 7,792,387 7,722,667 7,548,263 7,307,093 7,135,509 7,079,399 6,953,780 6,775,188 6,553,803 6,325,073 6,224,192 6,082,967 5,881,701 5,677,730	737,972 802,218 842,757 865,863 873,469 871,290 883,792 885,293 873,807 855,268 832,694 826,235 813,549 792,524 768,203	25,472 36,200 45,778 343,410 351,046 357,864 363,951 369,386 538,271 542,604 546,472 549,926 553,010	7,659,660 15,452,047 23,174,714 30,722,977 38,030,070 45,165,579 52,244,978 59,198,758 65,973,946 72,527,749 78,852,822 85,077,014 91,159,981 97,041,682 102,719,412	1,540,190 2,382,947 3,248,810 4,122,279 4,993,569 5,877,361 6,762,654 7,636,461 8,491,729 9,324,423 10,150,658 10,964,207 11,756,731	
	30,566,075	553,010	102,719,412	12,524,934	Total co	st = 146,36	53,431	
	20.88%	0.38%	70.18%	8.56%		10	00%	

Table 33 Total Transportation Cost of Ban Map Pu-Ban Khai Feeder Road, Present Worth in 1975 (12% discount rate), Baht

	0	36	77 - 1- 1 - 7 -		3 3	Cumulative	
Year	Construc- tion	Mainte- nance	Vehicle Operation	Time	Mainte- nance	Vehicle Operation	Time
1977	26,461,995		-	-	-	-	-
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	84	23,292 20,796 18,568 16,578 478,541 13,216 11,801 10,536 24,160 312,303 7,500 1,268,936 5,978 5,338	13,089,728 13,175,940 12,963,729 12,621,728 12,180,428 11,855,887 11,681,969 11,412,878 11,086,134 10,701,698 10,309,700 10,102,066 9,171,976 8,834,811 8,482,727	1,310,615 1,357,624 1,381,525 1,382,719 1,371,371 1,376,151 1,365,499 1,339,136 1,303,474 1,262,034	937,291 2,206,227 2,212,205 2,217,543		9,408,763 10,774,262 12,113,398 13,416,872 14,678,906 15,922,655 17,140,382 18,321,290
	50,088,790	2,217,543	167,671,399	19,461,368	Total cost	= 239,439	100
	20.92%	0.92%	70.03%	8.13%		1009	6

highway in Thailand by SINTHUSARN (1976). His analysis led to the following conclusion.

"Vehicle operating costs over a nine-year period of service were found to be about 85 percent, road maintenance costs less than 1 percent, and construction costs about 15 percent of the total cost of transportation."

From the preceding quotation, it may be seen that percentage of vehicle operating cost was higher for the primary highway than for the feeder road studied in the present research. The differences in percentage apportionment of total cost of transportion may be analysed as follows.

Fig. 6 shows the postulated relationships between the annual amortized construction and road maintenance cost, the annual vehicle operating cost, and isopleths of traffic volume (T_1, T_2, \ldots, T_n) . Line P represents the minimum amortized cost at which a road could be constructed and maintained. Point X represents the value of vehicle operating cost for traffic T_1 on a road annually costing amount C_c . Line 2 represents the lower limit of vehicle operating cost which would result from T_1 vehicles travelling along the best quality road of the lowest standard. It is known that the best quality of road would require the expenditure of the highest level of road cost. However, as the amortized road cost increases, it is postulated that the vehicle operating cost decreases. For example, in Section I of the study road in the present research, the expenditure of an addi-

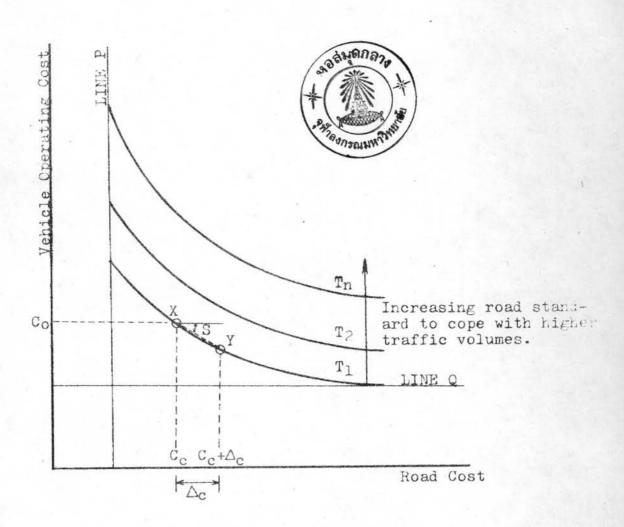


Fig. 6 Vehicle Operating Cost and Road Cost Curves

tional road cost for an asphaltic-concrete overlay on the existing surface-dressed pavement resulted in a reduction of vehicle operating cost. If $\Delta_{\rm c}$, an additional road cost, were spent to upgrade the road, the new relationship between road cost and vehicle operating cost would be represented by point Y. It is believed that the locus of points X....Y is hyperbolic with line Q as one of its asymptotes.

At point X:
$$\frac{\text{Vehicle Operating Cost}}{\text{Total Transportation Cost}} = \frac{C_0}{C_0 + C_c}$$
 (1)

At point Y:
$$\frac{\text{Vehicle Operating Cost}}{\text{Total Transportation Cost}} = \frac{C_0 + S(\Delta_C)}{C_0 + S(\Delta_C) + C_C + \Delta_C}$$
(2)

where S = slope of the secant connecting X and Y, and $\Delta_C = \text{additional road cost.}$

To compare Eq. (2) with Eq. (1), we can write:

$$\frac{C_{O}-j}{C_{O}+C_{C}-j} \longrightarrow 0 \text{ as } j \longrightarrow C_{O}$$
 and
$$\frac{C_{O}}{C_{O}+C_{C}+k} \longrightarrow 0 \text{ as } k \longrightarrow \infty$$

So, increasingly negative values of $S(\Delta_c)$ (represented by j), and increasingly positive values of Δ_c (represented by k), would lead to point Y having a lower ratio of vehicle operating cost to total transportation cost than point X for the descending part of any of the curves shown in Fig. 6. That is, the ratio decreases, for a given volume of traffic, as the quality

of the road improves. Thus, for a given volume of traffic, it would be concluded that a higher road cost would result in a lower ratio of vehicle operating cost to total transportation cost.

The descending property of the curves shown in Fig. 6 arises from the notion that a better quality road (having a higher road amortization cost) would result in a lower vehicle operating cost for a given volume of traffic on that road. While this is probably true for most situations, it may not be generally true. For example, if the chief gain rendered by the better quality road were an increase in the operating speed of vehicles, there could result a positive-slope relationship between road cost and vehicle operating cost. This could stem from occupants' time having a low value, coupled with a high cost of fuel (the consumption of which increases with speed). However, for Section I of the present study road, overlaying with asphaltic-concrete pavement in the 14th year resulted in a substantial reduction in vehicle operating cost. Thus, the notion of a descending (negative slope) curve is applicable to the Ban Map Pu-Ban Khai Feeder Road. In the previous study of a primary highway (SINTHUSARN, 1976) large values of traffic growth in the latter portion of the analysis period seem to have masked the beneficial influence of large expenditures for pavement upgrading. The comparison between the feeder road with

Sinthusarn's primary highway is further complicated by the addition of the value of time to the vehicle operating cost in these analysis. Nonetheless, the ratio of (veh.op.cost + time cost)/ (total transp.cost) for both the feeder road (78%) and the primary highway (87%) are remarkably close.

Vehicle operating cost is directly proportional to the amount of traffic forecast to travel on the road. Generally, road class is associated with traffic volume; thus, a higher standard road would be be used for a higher traffic volume. Thus, the relationship between vehicle operating cost and amortized road cost for a given level of traffic volume would likely be one of a family of curves as shown in Fig. 6.

It is recommended that further research be conducted on the consistency of the ratio of vehicle operating cost to total transportation cost for primary highways and feeder roads.

Of course, the main thrust should be to provide guidance in selecting a road planning strategy that would minimize the denominator of Eq. (2), (that is, to minimize the total transportation cost). This occurs where S is at its greatest negative value for a given level of traffic in the postulated relationships, which themselves need further study.

Nevertheless, the use of the RTIM Model in the present research resulted in a reasonable apportionment of the total transportation cost. An analysis by WINFREY (1969) led to the

following conclusion:

"Motor vehicle operating costs as a whole are about 88 percent of the total highway transportation cost; the highway cost accounts for the remaining 12 percent. Therefore, motor vehicle operating costs are the key factor in the analysis of highway transportation costs."