CHAPTER II

CONSTRUCTION OF SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES

FROM ALGEBRAIC SYSTEMS

2471 Classical Construction of Orthogonal Latin Squares

and a Generalization

A classical method of construction of mutually orthogonal
Latin squares of prime order P is done by using residue class

modulo p,

2¢71+1 Theorem, Let Zp be the set of residue class modulo P

= AR), (k) P .
Let Lk » (aij ) where = KL + Jy k= 1,2,000 4 p=t

i’ j = 0'1,900, p“1 i.eo

X
(o . o4
k k+1 . . . k+(P-1)
Lk = \ . . » . : ] . . k s 1’2’...p—1
k(p=1) k(p=1)+1 . . ., k(p—1)+(p-’|)J

N
Then L1,L2,...,Lp_1 form a set of mutually orthogonal Latin

squares of order p,

Proof First, we show that Lk’ k=1,,,0,p-1, are Latin squares.
Here the rows and columns are numbered from O to p-1, Assume that

the i*® row (0 &£ i g p-1) contains an element twice, Then there
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exist j,j’ such that j £ 3 (med p) and
ki + = 14+ 4 (mod p). (1)

But from (1) we obtain j = i’ (mod p) which is a contradiction.
Now assume that the jth column (0 & j £ p-1) contains an

element twice. Then there exist i,i’ such that i # i’ (mod p) and
ki + § = ki’+ j (mod p) (2)
From (2) we have ki = ki’ (mod p).

Since k is prime to p, we obtain i =i’ (mod p) which is a
contradiction, Hence Lk is a Latin square. So that we obtain p-1
such Latin squares corresponding to the p~1 values which k can take,
To show tlllat Lis L are orthogonal if k # k', Ve must show
that (ailj{), a_j(_;{ )) i, 3 = 0474404,p=1 are all distinct, Suppose

the contrary, then there exist i, i’, js 37 such that C13) # (1° 39

and
() RN (k) o (1)
(aij N aij ) & (ai,j, ’ ai/ J/) .
Then ki +3j 5 ki'+ j° (mod p) . (3)
kKLt +5 =z k14§ (mod p) o .. . .(4)

From (3),(4) we have

(kx - ¥')i (k = ¥x7)i”  (mod p).

(]

r 4
Since k< p and k'¢ p and k £ k’. Thus k - k #0 (mod p).,
This gives i = if (mod p).,

From this together with (3) we obtain

/

i s 3 (mod p).



Hence ity 3 = BWo¥) .
which is a contradiction.

QeE.D,

Observe that in the above proof we make uses of the
followings :

i)  the set Z_ = {0,1,...,p-1J form a ring,

ii) k is a non-zero divisor in - P

1ii) k-k’ is also a non-zero divisor.
Therefore, if we replace Zp by any ring R ={ O,xz,...,xq} with a
subset A of nonzero divisors of R such that the differences of any
two distinct elements of A are also non-zero divisors of R and for

each a € A, we define

g ) (a) 4 ; 5.
L, = (aij ) where BpAoed.+ §, ae€A,i, jeR

Then {La’ a € A} form a set of mutually orthogonal Latin squares

of order q. We shall prove this fact in Theorem 2,1.3 below.

2¢142 Definition, Let N be the set of all non-zero divisors of a
ring R, Let M be a subset of N such that the cardinality of M is
greater than or equal to 2 and for all My, m, € M4 m, # m, implies

ma= m, & N, M is called a mutual set,

2,743 Theorem, Let R be a ring of order q, Let A be a mutual set

g?) = ai+j, ae A, i, j e R

of R, Let 1L = (af?)) where a
a e g | 3

Then { Lal ag A } forms a set of mutually orthogonal Latin squares

of order q.
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Proof First, we show that La’ a & A, are Latin squares, Suppose

the contrary, then there exist j, 3’ such that j#£ j/ and

Y Tkl T
aij = aij’ (1)

or there exist i, i’ such that i #Z i”7 and

af?) = agf? (2)
i] 173
Iz (% holds, then
- o A 4
ai_+-j ‘= ai-=+ j .,

By cancellation law for addition, we get j = 3%
If (2) holds, then
o o / .
ail # JV=7ai’+ Yy ,

By cancellation law for addition, we get

: =7
al .= ai ,

a(i-i”) 0.

Since a is a non-zero divisor of R, Hence i = 1, 1In any case we
obtain a contradiction, Hence La is a Latin square,
To show that La is orthogonal to Lb for a # b. e must show

Aty

i3 ) are distinct for all i, j. Suppose the contrary,

that (agé),
1]
then there exists i, j, 1’, ;7 such that (i43) # (47,3") and

(a2 (b))= (aif), (b) .

ij 0 243 e

Hence ai + j ai’+ 37, (3

n

bi + j b4+ 37 . (&)



From (3) and (4) we have

(a = b)i = (a~b)1’,
hence (a « BMF « 47) = '« -
Since a - b is a non-zero divisor,
/7

Hence i = i
From this and (3), it follows that

- 'I

3 2 o
Hence (T 1) = e 17).

which is a contradiction,

QeE,D,

v

2:,1.4 Corollary., Let m = pn, P is prime, n is a positive integer,
Then there exists a set of me~1 mutually orthogonal Latin squares of

order m,

Proof Since the Galois field GF(p™) exists. GF(p")- {O} is a
mutual set, Applying Theorem 2¢1¢3 we obtain a set of m-1 mutually

orthogonal Latin squares of order m = pn.
Q.E.D,

22 Other Generalizations of the Classical Construction

Observe that the multiplicative group of éll non=~zero elements
of the finite field GF(p) is cyclic, Let g be a generator of Zp—{O}

and put.



[ o g° £ % g gP-?

o+k o+} o k e

g g {"' g O gO+ + gP

tk 2 » L] . - - .

. . ) . . L

-2)+k  (p=2)+k -2)+k  Ppe
g(p 2)+ gt P ) s g(p 2)% = 2J
L ,

where k = 041,444, p~2,
Then { io, E1,..., ip-z } is also a set of p-1 mutually

orthogonal Latin squares of order p,

"

If we define S : Zj_—’zp by S(x) = gx, we may rewrite Ek

as follows :

r 0 g g . . - g

o
n
-

k, p- . P= - 1 k - =
$5(e"?) SURT)es” Sl o . . S5(P2)ugP ZJ
\
In this setting the entries of the Latin squares are

expressed in terms of sums of elements of the group (Zp,+) and their
images under the mappings Sk. This suggests the following

generalization,

2.2.1'Theorem. Let G be a group consisting of the elements

: 15 A2""’ Am. Let S be an automorphism of G such that S,Sz,...,sq

map no element into itself except the element 1. Then



.
[ 4 o i #d e 9 gl

i . i
S (AZ) S (AE)AZ o .o - g =8 (A2)Am

B ® . . Ll L

A
1 . - . . » .
. . . . L) L4

i i i
\s (Am) S (Am)A2 el A B (Am)AmJ

e
]

0s14es0,49, are mutually orthogonal Latin squares of order q.

Proof First, we show that each Li is a Latin square. Suppose
that it is not a Latin square. Then an element will occur twice in
at least one row or at least one column, that is, there exist r, s

such that r # s and
. | o gl
S (Ah)Ar E S (Ah)As (1)
or there exist k, f such that k £ 4 and
% YN
S (Ak)At = 8 (Al)At 5 (2)

If (1) holds, then multiplying (1) by 57(a )™ to the left, we obtain

Ar = As ’

hence s 5
If (2) holds, then multiplying (2) by A;1 to the right, we obtain

i sk

S (Ak) = S (/\2) ’

4 -1y

S (AkAl y = 1 "

Ak = Ak since S'can leave only 1 fixed,

hence k = 1 .
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In any case, we obtain a contradiction, Hence each Li is a Latin
square,

Next, we show that Li is orthogonal to Lj for i #£ e Let
Lij be the resulting square obtained by superimposing Lj on I&.

Suppose that we have the same pair of elements in the kth row and

}th column and in the rth row and sth column, that is, we have

Si(Ak)AR Si(Ar)As (5

J 3
S (Ak)AI S (Ar)As 5 ' (&)

By taking the inverse clements it follows that from (4) that
apsdaghy gt sdash (5
Multiplying (3) and (5) we obtain
st sy o siia sty |
k k r r
Multiplying by Si(A;1) on the left and by Sj(Ak) on the right of

both sides of the above, we obtain
s*(a-VaYeamns sdaTMsday .
r k i k
Since Si and Sj are automorphisms we have
Si(A;1Ak) = Sj(A;1Ak) .
We may assume that i » Je Then
s3I )y - sda"a)y .
r Gk r. ' k
Because of i £ qy J £ q we have i - J £ g

By assumption, $*™J can leave only 1 fixed, Thus
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Sj(A;ﬂAk) % g

/\.;1Ak TR

Hence Ar = Ak '
and Al = As .

Therefore r=%k and A = s. Hence { LO,..., Lq}' is a set

of mutually orthogonal Latin squares.

QoE-Da

Notice that in the proof of Theorem 2,2.1, the associative
law was not used. In fact, the above result can be further

generalized to the ease where G is a loop.

24242 Definition, We say that (G,.) is a loop if » is a binary
operation on G satisfying the following conditions :

T1e If a,b belong to G, then there exists one and only one

x belonging to G such that a.x = b,

2¢ If a,b belong to G, then there exists one and only one

¥y belonging to G such that y.a = b,

3¢ An element e exists such that eea = ase = a for every element a,

2e2¢3 Theorem, Let G ={ Xq1Xsq000y xm} be a loop with identity e.
If there exists S : G —> G such that

i) S is one=to~ogpe ,

i1) S(e) = e,

iii) for all g # e, S5(g) # 8,

iv)  for all a, b, a(ab) = S(a)b ,
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1
~
v
~—r

and define L where i = XX

: 5 1] 1]

L. = (bi ) where Bis

n
9p]
~
o

He
ot
»

1€ 3, jg m,

then L and'LS are orthogonal Latin squares,

Proof Tirst, we show that L and LS are Latin squares.
Suppose that L is not a Latin square, Then there exist j,j/

such that j Z i’ and
xrr— =Ux (1)
i3
or there exist i, i such /i £ i’ ana

xixj = xi'xj _ (2)

If (1) holds, assume that xixj = x = g and since G is a loop,

L3, 7
13

the condition (1) in definition 2.2,2 implies

X, = p ST
J
' 5 i
Hence S .
If (2) holds, assume that xixj = xi,xj = w and since G is a loop,

the condition (2) in definition 2,242 implies

X o w g
i LA

Hence o Sl .

In any case, we get contradiction., Therefore L is a Latin
square,
Suppose that LS is not a Latin square., Then there exist j,j’

such that 3 # j’ and



R/ A \
iT( 75N\ \4
S(xi)xj = S(xi)xj/ ,?\i < f?fmﬁ' (3)
or there exist i, i’ such that i £ i’ and
S Jx.- = BlE %, ()
e, s,
If (3) holds, assume that S(xi)xj = S(xi)xj/ = ¥ e

Since G is a loop, the condition (1) in definition 2e242 implies

R, = & ¢

J

therefore 3=,
If (4) holds, assume that S(xi)xj = S(xi/)xj LT

Since G is a loop, the condition (2) in definition 2.2,2 implies
(kY OIS0, ) Ko
A i
Since S is one-to-one, therefore

X, = X./s
= C 3

Hence i S,

In any case we get contradiction, Hence LS is a Latin square.
Next, we show that L is orthogonal to LS « We must show

that (aij' bij) are distinct for i,j. Suppose the contrary, then

¥
there exist i,j, i’, j/ such that

(i, 14 ¢4 .19

and (aij’bij) = (ai’j”bi’j’) .
Therefore xixj = xi,xj, (5
S(xi)x. = S(xi/)$j/ ¢ (6)
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Multiplying (5) by X; We obtain
xi(xi’xj’> = xi(xixj) = S(xi)xj = o(xi,)xj, = xi/(xi,xj,)

Since G is a loop, therecfore

x. = X.7 »

i i

Hence i = -4 .
Prom this and (5), it follows that

RN =NIYA

Hence (i,j) =

1
~
.

Y
~-
o,

N

~r
-

which is a contradiction,

243 Construction of Set of Mutually Orthogonal Latin Squares

of Certain Composite Orders

Now we give a construction of a set of mutually orthogonal
e € e
2 n

Latin squares of order m = Py Pyene P where pi are distinct

pPrimes, e; are positive integers, i = 19000y n by using direct sum

of finite rings,

243471 Theorem, Let Rq, Ré be rings, If Mi is a mutual set of Ri,

1 5%2, R = R1 ® R Then we can use M1, M2 to construct a

2 L
mutual set in R of the same size as the smaller of the mutual sets

M, and M2 .

1
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Proof Lot M, = { S5k arq} and M, = {'b1,..., bra} .

Suppose that min { Tas rz} % Fud Since r, £ r,; We can find

distinct qu,..., bjr1 in Moo Claim that A = {(a1, qu),(az,vbjz),

g (arj’ bjr1)} is a mutual set of R, Since ay # .0 bji £ZO0
then (ai, bji) # (0,0) for all i, Suppose (ai, bji) is not nonazero

divisor., Then there exists (a,b) £ (0,0) in R such that

(ai, bji)(a,b) = (O,O)
004434
ls.Ce (aia, bjib) = (0,0) »
This implies that asa’ = 0 and bjib = 0, hence
a = 0 and b = ©

because asy bji are nonzero divisors‘of R1 and RZ respectively,
which is a contradiction. Hence (ai, bji) is nonzero divisor of R,

i = 1’..0’ r1.

For any pairs (a,, bii)alay, biss) if 1 4 1/, then

(ai,bji)-(ai;,bji/) (ai~ 8/ bji- b.i/)

J

it

(a sb..#)
e e - 4

h ¢ = a,=~ a., € 1 2 Yy, e / i
where ase al al/ € M1 and bji” bji bji' & M2 « Hence A is

a required mutual set .
QeEL.D,

2e3¢2 Theorem, ILet R = R,] @ R2 Deee ® Rn. If Mi is a mutual

set of Ri, i= 700040 and m = min m.} y where m, denote the
1¢ig¢n -
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cardinality of Mi’ then there exists a mutual set of cardinality m

in R,

Proof For n = 2, the theorem is true from the previous theorem,
Suppose this is true for n = k, Consider R = R’Q—}Rk+1, where
7

R R1 & R2 ® aeo @Rk. By induction hypothesis, there exists

a mutual set M’ in R’ whose cardinality is m’, where m” = min {mi},
14 igk 5

my denote the cardinality of Mi' Applying the previous theorem again,
there exists a mutual set M in R whose cardinality is m, where

. / ; .
m = min { Moy Mg s and L denote the cardinality of Mk+1 .
Q.E.D.

2¢343 Theorem, Let R = R1 & R2 D oo @Rn. 4 M, is mutual set

of Ri’ i=100eyn and m = min { m.} where m, denote the
1¢ign e

cardinality of Ri’ then we can construct a set of m mutually
orthogonal Latin squaresof order r, Where r denote the cardinality

of R

gr_'_clg_f_ This theorem follows from Theorem 24342 and 2éle3e

Q.E.D,
k’l k2 kr
2.3«4 Corollary. Let n = Py Py ees Py where p, are distinct
primes, Then there exist m mutually orthogonal Latin squares of
k,
order n, where m = min é pil- 1 } N

1€14r
Proof Let R =2 @ 2 @ ooe ® 2 where n, = p 1, i = 1eeuTe
e ——— n1 n2 nl; 1 i

Consider Zn as the Galois field GF(pil). For each i, Zn - go}
5 i
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forms a mutual set of Zn since every elements except O is a nonzero
5
ki'
divisor, If m = min { pi -1 }, then from Theorem 2,3%.3 gives
1£4&

a set of m mutually orthogonal Latin squares of order n .
Q.E.D,

2.4 Complete Sets of Mutually Orthogonal Latin Squares

2ek4.1 Theorem, The maximum number of mutually orthogonal Latin

squares of order n is less than or equal to n-=1.

Proof  Let { L1,L2,..., Lm } be any set of mutually orthogonal
Latin squares of order n., The property of orthogonality is not
changed if a substitution is made on the membg;s of any square,
Hence we may suppose the numbering so chosen that the first row of
every.square is 1,2,.4.40. Hence the number appearing in row 2,
column 1 of each square is one of the n-1 numbers Zaseeste I8 B
number i were to occur of two distinct squares L ,Lq in this
position, then on superimposition of these two squares we would
have the pair (i,i) in cell (2,1) and also in cell (1,i)
contradicting with orthogonality. Hence none of‘the i = 2500
can appear in cell (2,1) of two distinct squares, som £ n - 1,

Therefore, there are atmost n-1 mutually orthogonal Latin squares

of order n .
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2.4,2 Notation, The maximum number of mutually orthogonal Latin

squares of order n will be denoted by N(n).

2,4.3 Dofinition. When N(n) = n-1, the set {L,,,..., Ln_,l} is
called a complete set of mutually orthogonal Latin squares of

order n,

2.4,4 Remarks, We close this Chapter with the following observations.

(1) If m is odd, then in the factorization of m into prime power
e e e
factors, m = p,]1 Py eee prr y every factor is larger than 3., Hence
we have N(m) > 2. So that for odd m we can always construct a pair

of orthogonal Latin squares.

(2) If mis even, then m z O (mod 4) or m = 2 (mod 4), When m= O
(mod 4), the prime power factorization of m is of the form

e 1 r
m = '2P1 8 pr ’

where e» 2 and Ppsecey P are odd primes.,

Hence
e e
min { 26"" 1, p11"" 1,..., prr-' 1} >/ 2.

It follows that N(m) > 2, Hence when m = O (mod 4) we can always

-_

construct a pair of orthogonal Latin squares, 'or the case m = 2

-

(mod 4), we have

é1 e,
m = 2e p,] eee P

T ?
where all pi are odd primes, In this case the above Theorem does

not guarantee the existence of a pair of orthogonal Latin squares

of order m,



	Chapter II Construction of Sets of Mutually Orthogonal Latin Squares from Algebraic Systems

