CHAPTER III ## MAXIMAL STRONGLY FACTORIZABLE SUBSEMIGROUPS OF SYMMETRIC INVERSE SEMIGROUPS In this chapter, we characterize maximal strongly factorizable subsemigroups of the symmetric inverse semigroup on a finite set. Since a regular semigroup in which any two idempotents commute is an inverse semigroup, it follows that a regular subsemigroup of an inverse semigroup is an inverse subsemigroup. Then, a strongly factorizable subsemigroup of an inverse semigroup S is a strongly factorizable inverse subsemigroup of S. Hence, for a subsemigroup T of an inverse semigroup S, T is a maximal strongly factorizable subsemigroup of S if and only if T is a maximal strongly factorizable inverse subsemigroup of S. If X is a set, then for a nonempty subset A of X, let 1_A denote the identity map on A and let 1_A = 0, the empty transformation. Let X be a set. If S is a transformation semigroup on X, then $E(S) = \{\alpha \in S \mid \nabla \alpha \subseteq \Delta \alpha \text{ and } x\alpha = x \text{ for all } x \in \nabla \alpha\}.$ Hence $$\begin{split} \mathbf{E}(\mathbf{I}_{\mathbf{X}}) &= \{\alpha \in \mathbf{I}_{\mathbf{X}} \mid \nabla \alpha = \Delta \alpha \text{ and } \mathbf{x} \alpha = \mathbf{x} \text{ for all } \mathbf{x} \in \nabla \alpha \} \\ &= \{\mathbf{1}_{\mathbf{A}} \mid \mathbf{A} \subseteq \mathbf{X}\} \end{split}$$ because for α ϵ I_{χ} , α is a one-to-one map. A finite group with zero is a strongly factorizable inverse semigroup. Then we have 3.1 <u>Lemma</u>. For a set X, if Y is a finite subset of X, then $G_Y \cup \{0\}$ is a strongly factorizable subsemigroup of the symmetric inverse semigroup on X. If S is a strongly factorizable inverse semigroup, then for e, f ϵ E(S), ef (= fe) = e or ef = f, and hence every nonempty subset of E(S) is a subsemigroup of S, so it has a maximum element by Theorem 1.9. Let X be a set. For $A \subseteq X$, $B \subseteq X$, we have that 1_A , $1_B \in E(I_X)$ and $1_A 1_B = 1_A \cap B \in E(I_X)$. Then for A, $B \subseteq X$, $1_A 1_B = 1_B$ if and only if $B \subseteq A$. 3.2 Lemma. Let X be a set and $\mathscr C$ a nonempty set of subsets of X. Let $S = \{1_A \mid A \in \mathscr C\}$. Then S is a strongly factorizable subsemigroup of the symmetric inverse semigroup on X, I_X , if and only if A \cap B \in $\mathscr C$ for all A, B \in $\mathscr C$, and every nonempty subset $\mathscr C$ of $\mathscr C$ with the property that A \cap B \in $\mathscr C$ for all A, B \in $\mathscr C$ has a maximum element under the partialorder of set inclusion. <u>Proof</u>: Assume that S is a strongly factorizable subsemigroup of I_X . Since S is a semigroup, for all A, B ϵ $\mathscr C$, $1_A 1_B = 1_{A \cap B} \epsilon$ S which implies A \cap B ϵ $\mathscr C$. Next, let $\mathscr C$ be a nonempty subset of $\mathscr C$ such that A \cap B ϵ $\mathscr C$ for all A, B in $\mathscr C$. Then $\{1_A \mid A \in \mathscr C\}$ is a subsemigroup of S, so it is strongly factorizable. Hence { $1_A \mid A \in \mathcal{S}$ } has a maximum element under the natural partial order, say 1_M , M $\in \mathcal{S}$. Thus $1_A 1_M = 1_A$ for all A $\in \mathcal{S}$ which implies $A \subseteq M$ for all A $\in \mathcal{S}$. Conversely, assume that A \cap B \in \mathscr{C} for all A, B \in \mathscr{C} , and every nonempty sebset \mathscr{S} of \mathscr{C} such that A \cap B \in \mathscr{S} for all A, B \in \mathscr{S} has a maximum element under the partial order of set inclusion. Because for all A, B \in \mathscr{C} , A \cap B \in \mathscr{C} , it follows that S is a subsemigroup of I_X . Let T be a subsemigroup of S. Let $$\mathcal{S} = \{ A \in \mathcal{C} \mid 1_A \in T \}.$$ Since T is a subsemigroup of S, we have that $\mathcal{S} \neq \emptyset$ and A \cap B \in \mathcal{S} for all A, B \in \mathcal{S} . By assumption, there exists M \in \mathcal{S} such that $A \subseteq M$ for all A \in \mathcal{S} . Then 1_M \in T and 1_M 1_A = 1_A for all A \in \mathcal{S} , and thus $\{1_M\}E(T) = \{1_M\}T = T$. Hence T is factorizable. 3.3 <u>Lemma</u>. Let X be a set and T a strongly factorizable subsemigroup of the symmetric inverse semigroup on X, I_X . Then for all $\alpha \in T$, $\Delta \alpha = \nabla \alpha$. Proof: Let $\alpha \in T$. Since T is strongly factorizable, there exists $\beta \in E(T)$ such that $\alpha \mathcal{H} \beta$ in T. Because T is a transformation semigroup and $\alpha \mathcal{H} \beta$ in T, it follows that $\Delta \alpha = \Delta \beta$ and $\nabla \alpha = \nabla \beta$ [Chapter II, page 29]. But $\beta \in E(I_X)$, we have that $\Delta \beta = \nabla \beta$. Hence $\Delta \alpha = \nabla \alpha$. It has been showed in [4] that if a semigroup S has an identity 1 and S is factorizable as GE(S), then 1 is the identity of G. If G is a group such that |G| > 1, then it clearly follows that the semigroup G U 1 [Introduction, page 5] is not factorizable. Let X be a set and $\alpha \in I_X$. Suppose that $\Delta \alpha = V\alpha$. Then α is a permutation on $\Delta \alpha$, that is, $\alpha \in G_{\Delta \alpha}$. If $|\Delta \alpha| < \infty$, then the cyclic subsemigroup generated by α , $<\alpha>$, is a subsemigroup of $G_{\Delta \alpha}$, and hence $<\alpha>$ is a subgroup of $G_{\Delta \alpha}\subseteq I_X$ with identity $1_{\Delta \alpha}$. 3.4 <u>Lemma</u>. Let X be a set and $\alpha \in I_X \sim E(I_X)$ such that $\Delta \alpha = \nabla \alpha$ which is finite. Let Y be a subset of X such that $\Delta \alpha \subseteq Y$. Then $\langle \alpha \rangle \cup \{1_Y\}$ is a factorizable subsemigroup of I_X if and only if $Y = \Delta \alpha$, $\frac{\text{Proof}}{\text{Proof}}: \text{Let S} = <\alpha > \text{U} \{1_Y\}. \text{ Since } \Delta\alpha \subseteq Y, \text{ S is a subsemigroup}$ of I_X having 1_Y as its identity. Because $\Delta\alpha = \nabla\alpha$ and $|\Delta\alpha| < \infty$, $<\alpha >$ is a subgroup of I_X with identity $1_{\Delta\alpha}$. If Y = $\Delta\alpha$, then S = $<\alpha>$ which is a group, so it is factorizable. Assume that $\Delta\alpha \subsetneq Y$. Then $S \cong \langle \alpha \rangle$ U 1. Because $\alpha \notin E(I_X)$ and $\Delta\alpha = \nabla\alpha$ which is finite, it follows that $\langle \alpha \rangle$ is a subgroup of I_X and $|\langle \alpha \rangle| > 1$. Then the semigroup $\langle \alpha \rangle$ U 1 is not factorizable. Hence S is not factorizable. \Box 3.5 Lemma. Let Y be a subset of a finite set X. Then $\langle G_X \cup \{1_Y\} \rangle$ is a strongly factorizable subsemigroup of I_X if and only if $Y = \emptyset$ or Y = X. $\frac{\text{Proof}}{\text{Proof}}: \text{ Assume } <G_X \cup \{1_Y\}> \text{ is a strongly factorizable subsemisorup of } I_X. \text{ If } |X| < 1, \text{ then } Y = \emptyset \text{ or } Y = X. \text{ Assume } |X| > 1. \text{ Claim}$ that $Y = \emptyset$ or Y = X. Suppose not, then $Y \neq \emptyset$ and $Y \subsetneq X$. Let $Y = \{a_1, a_2, \ldots, a_m\}$ and $X = \{a_1, a_2, \ldots, a_n\}$ where m and n are positive integers such that m < n and $a_i \neq a_j$ if $i \neq j$ in $\{1, 2, \ldots, n\}$. Define the map $\alpha : X \to X$ as follows, $a_1\alpha = a_2$, $a_2\alpha = a_3$, ..., $a_{n-1}\alpha = a_n$, $a_n\alpha = a_1$. Then $\alpha \in G_X$. Let $\beta = 1_Y\alpha$. Then $\beta \in \langle G_X \cup \{1_Y\} \rangle$, hence by Lemma 3.3, $\Delta \beta = \nabla \beta$. But $\Delta \beta = \Delta 1_Y\alpha = (Y \cap X) \ 1_Y^{-1} = Y$ and $\nabla \beta = \nabla 1_Y\alpha = (Y \cap X)\alpha = \{a_2, a_3, \ldots, a_m, a_{m+1}\}$, hence $\Delta \beta \neq \nabla \beta$ which is a contradiction. This proves that $Y = \emptyset$ or Y = X. Conversely, assume Y = Ø or Y = X. If Y = Ø, then $<G_X \cup \{1_Y\}> = G_X \cup \{0\} \text{ which is a strongly factorizable semigroup by }$ Lemma 3.1. If Y = X, then $<G_X \cup \{1_Y\}> = G_X$ which is a strongly factorizable semigroup because G_X is a finite group. \square 3.6 <u>Lemma</u>. Let Y be a subset of a set X. Then $G_Y \cup \{1_X\}$ is a strongly factorizable subsemigroup of I_X if and only if Y is finite and either $|Y| \le 1$ or Y = X. Conversely, assume that Y is finite and either $|Y| \leqslant 1$ or Y = X. If $|Y| \leqslant 1$, then $G_Y \cup \{1_X\} = \{1_Y, 1_X\}$ which is a strongly factorizable semigroup. If Y = X, then $G_Y \cup \{1_X\} = G_Y$ which is a strongly factorizable semigroup since G_Y is a finite group. Let S be a semilattice. If S is strongly factorizable, then by Corollary 1.12, S is a chain under the natural partial order. If S is a finite chain, then any subsemigroup T of S has a maximum element e and $\{e\}E(T) = eT = T$. Hence a finite semilattice is strongly factorizable if and only if it is a chain. 3.7 <u>Lemma</u>. Let X be a finite set with |X| = n. For each $i \in \{0, 1, ..., n\}$, let Y_i be a subset of X such that $\emptyset = Y_0 \subseteq Y_1 \subseteq Y_2 \subseteq ... \subseteq Y_n = X$ and $|Y_i| = i$. Let Z be a subset of X. Then $\{ 1_{Y_i} \mid i = 0, 1, ..., n \} \cup \{ 1_{Z_i} \}$ is a strongly factorizable subsemigroup of I_X if and only if $Z = Y_i$ for some $i \in \{0, 1, ..., n\}$. Assume that T is strongly factorizable. Then T is a chain and thus $\{Y_i \mid i=0,1,\ldots,n \} \cup \{Z \cap Y_i \mid i=0,1,\ldots,n \}$ is a chain of sets under the partial order of set inclusion. Let |Z|=k. Then $Z \cap Y_n = Z \subseteq Y_k$ or $Y_k \subseteq Z$. Since $|Y_k|=k$, it follows that $Z = Y_k$. Conversely, assume that $Z = Y_k$, then $T = \{1_{Y_i} \mid i = 0, 1, ..., n\}$ which is a finite chain, so T is strongly factorizable. For any set X, let T be a strongly factorizable subsemigroup of I_X . Then for α ϵ T, $1_{\Delta\alpha} = 1_{\nabla\alpha}$ ϵ T. To prove this, let α ϵ T. Then by Lemma 3.3, $\Delta\alpha = \nabla\alpha$. Since T is an inverse subsemigroup of I_X , α^{-1} ϵ T. Hence $\alpha\alpha^{-1} = 1_{\Delta\alpha}$ ϵ T. Thus $1_{\Delta\alpha} = 1_{\nabla\alpha}$ ϵ T. Let X be a finite set with |X| > 1. Let n be a nonnegative integer and Z_0, Z_1, \ldots, Z_n , Y subsets of X such that $\emptyset = Z_0 \subseteq Z_1 \subseteq \ldots \subseteq Z_n \subseteq Y, |Z_{i+1} - Z_i| = 1$ for all $i \in \{0, 1, \ldots, n-1\}$ and either $Z_n = Y = X$ or $|Y - Z_n| > 1$. Then for each $i \in \{0, 1, \ldots, n\}, |Z_i| = i$. Let $$T(Z_0,Z_1,\ldots,Z_n;Y) = \{1_{Z_i} \big| \ i=0,\,1,\,\ldots,\,n\} \ \cup \ \{\alpha \in G_Y \ \big| \ a\alpha = a \}$$ for all a $\in Z_n\}$. 3.8 <u>Theorem</u>. $T(Z_0, Z_1, ..., Z_n; Y)$ is a maximal strongly factorizable subsemigroup of the symmetric inverse semigroup on X. $\underline{\text{Proof}}$: It is easy to see that $\mathtt{T}(\mathbf{Z_0},\ \mathbf{Z_1},\ \ldots,\ \mathbf{Z_n};\mathtt{Y})$ is a subsemigroup of $\mathbf{I_X}$ with identity $\mathbf{1_Y}$ and $$E(T(Z_0, Z_1, ..., Z_n; Y)) = \{1_{Z_0}, 1_{Z_1}, ..., 1_{Z_n}, 1_{Y}\}.$$ Since $Z_0 \subseteq Z_1 \subseteq ... \subseteq Z_n \subseteq Y$, $E(T(Z_0, Z_1, ..., Z_n; Y))$ is a chain. If $\alpha \in G_Y$ such that $a\alpha = a$ for all $a \in Z_n$, so $\alpha^{-1} \in G_Y$ and $a\alpha^{-1} = (a\alpha)\alpha^{-1} = a$ for all $a \in Z_n$. Hence $T(Z_0, Z_1, ..., Z_n; Y) = \{1_{Z_0}\} \cup ... \cup \{1_{Z_n}\} \cup \{\alpha \in G_Y \mid a\alpha = a \text{ for all } a \in Z_n\}.$ which is a union of subgroups of $T(Z_0, Z_1, ...Z_n; Y)$. Then $T(Z_0, Z_1, ..., Z_n; Y)$ is a finite inverse semigroup. By Corollary 1.13, $T(Z_0, Z_1, ..., Z_n; Y)$ is strongly factorizable. Now, to show that $T(Z_0, Z_1, \ldots, Z_n; Y)$ is a maximal strongly factorizable subsemigroup of I_X , let K be a strongly factorizable subsemigroup of I_X containing $T(Z_0, Z_1, \ldots, Z_n; Y)$. Claim that $K = I_X$ or $K = T(Z_0, Z_1, \ldots, Z_n; Y)$. Since |X| > 1, by Theorem 2.4, I_X is not strongly factorizable, it follows that $K \neq I_X$. Assume that for each k ϵ { 1, 2, ..., n}, $Z_k = \{a_1, a_2, ..., a_k\}$, $a_i \neq a_j$ if $i \neq j$. Case $1: Z_n = Y = X$. Then $T(Z_0, Z_1, \ldots, Z_n; Y) = \{1_{Z_1} | i = 0, 1, \ldots, n\}$. Let $\alpha \in K \setminus \{0\}$. Thus $1_{\Delta \alpha} = 1_{\nabla \alpha} \in K$, so $\{1_{Z_1} | i = 0, 1, \ldots, n\}$ U $\{1_{\Delta \alpha}\}$ is a subsemigroup of K. Then $\{1_{Z_1} | i = 0, 1, \ldots, n\}$ U $\{1_{\Delta \alpha}\}$ is strongly factorizable. Hence by Lemma 3.7, $\Delta \alpha = Z_k$ for some $k \in \{1, 2, \ldots, n\}$. Thus by Lemma 3.3, $\Delta \alpha = \nabla \alpha = Z_k$. To show that $\alpha = 1_{Z_k}$, suppose not. Then there exists $i \in \{1, 2, \ldots, k\}$ such that $a_i \alpha \neq a_i$. Let i_0 be the smallest positive integer such that $a_i \alpha \neq a_i$. Let $a_i \alpha \neq a_i$ and $\alpha = 1_{Z_i}$, so $\alpha \in T(Z_o, Z_1, ..., Z_n; Y)$. Hence $K - \{0\} \subseteq T(Z_o, Z_1, ..., Z_n; Y)$, so $K \subseteq T(Z_0, Z_1, ..., Z_n; Y)$; and thus $K = T(Z_0, Z_1, ..., Z_n; Y)$. Case 2: $| Y \sim Z_n | > 1$ and $Z_n = \emptyset$. Then $T(Z_0, Z_1, ..., Z_n; Y) = G_Y \cup \{0\}$ and |Y| > 1. Since K is a factorizable inverse semigroup, K has an identity. Let $A \subseteq X$ be such that 1_A is the identity of K. Since $K \neq \{0\}$, $A \neq \emptyset$. Let K be factorizable as K = GE(K). Then l_A is the identity of G and G is the unit group of K. Hence $G = K \cap G_A$ and thus $K \subseteq G_A E(K)$. Since $1_{Y} \in T(Z_{0}, Z_{1}, ..., Z_{n}; Y) \subseteq K$, $1_{Y}1_{A} = 1_{Y}$ and thus $Y \subseteq A$. Hence $G_{Y} \cup \{1_{A}\}$ is a subsemigroup of K, so it is strongly factorizable. By Lemma 3.6, $|Y| \le 1$ or Y = A. But |Y| > 1, then Y = A. Thus $G_Y \cup \{0\} \subseteq K \subseteq G_Y E(K)$. Let $\alpha \in K \setminus \{0\}$. Then $\alpha = \beta \gamma$ for some $\beta \in G_{\mathbf{v}}$ and $\gamma \in E(K)$. Therefore $\beta^{-1}\alpha = 1_{Y}\gamma = \gamma = 1_{\Delta \gamma}$, so $\Delta \gamma = \Delta \beta^{-1}\alpha \subseteq \Delta \beta^{-1} = Y$. Since $\langle G_{Y} \cup \{1_{\Delta \gamma}\} \rangle$ is a subsemigroup of K, so it is strongly factorizable. By Lemma 3.5, $\Delta \gamma = \emptyset$ or $\Delta \gamma$ = Y. But $\alpha \neq 0$, so $\gamma \neq 0$ and thus $\Delta \gamma \neq \emptyset$. Hence $\Delta \gamma$ = Y. Thus $\alpha = \beta \gamma = \beta 1_{\Lambda \gamma} = \beta 1_{Y} = \beta \epsilon G_{Y}$. This shows that $K = G_{Y} \cup \{0\}$. a_{n+1} , ..., a_m . Then $m-n \ge 2$. Let $\alpha \in K \setminus \{0\}$. Then $\emptyset \ne \Delta \alpha = \nabla \alpha$ and $1_{\Delta\alpha} \in K$. Subcase 1: $|\Delta\alpha| \le n$. Let $|\Delta\alpha| = k$. Since $\{1_{\Delta\alpha}, 1_{Z_k}, 1_{\Delta\alpha} \cap Z_k\}$ is a subsemigroup of K, it is strongly factorizable. By Lemma 3.2, $\{\Delta\alpha, Z_k, \Delta\alpha \cap Z_k\}$ has a maximum element under the partial order of set inclusion. Then $\Delta\alpha \subseteq Z_k$ or $Z_k \subseteq \Delta\alpha$. But since $|\Delta\alpha| = |Z_k| = k$, it follows that $\Delta\alpha = Z_k$. Suppose $\alpha \notin E(I_X)$. Because $<\alpha> \cup \{1_Y\}$ is a subsemigroup of K, $<\alpha> \cup \{1_Y\}$ is factorizable. By Lemma 3.4, $Y = \Delta\alpha$. Hence $Y = Z_k$, a contradiction. This shows that $\alpha \in E(I_X)$, so $\alpha = 1_{Z_k} \in T(Z_0, Z_1, \ldots, Z_n; Y)$. Subcase $2:n<|\Delta\alpha|< m$. Since $\{1_{\Delta\alpha}, 1_{Z_n}, 1_{\Delta\alpha} \cap Z_n^{-1}\}$ and $\{1_{\Delta\alpha}, 1_Y, 1_{\Delta\alpha} \cap Y\}$ are subsemigroups of K. By Lemma 3.2, $(\Delta\alpha \subseteq Z_n \text{ or } Z_n \subseteq \Delta\alpha)$ and $(\Delta\alpha \subseteq Y \text{ or } Y \subseteq \Delta\alpha)$. But since $|Z_n| = n < |\Delta\alpha| < m = |Y|$, it follows that $Z_n \subseteq \Delta\alpha \subseteq Y$. Because $Z_n = \{a_1, a_2, \ldots, a_n\}$ and $Y = \{a_1, \ldots, a_n, a_{n+1}, \ldots, a_m\}$, without loss of generality, we may assume that $$\Delta \alpha = \{a_1, ..., a_n, a_{n+1}, ..., a_{n+\ell}\}$$ for some positive integer $\ell < m - n$. Define the map $\beta : Y \to Y$ by $$x\beta = \begin{cases} a_{n+l} & \text{if } x = a_{m}, \\ a_{m} & \text{if } x = a_{n+l}, \\ x & \text{otherwise.} \end{cases}$$ Then $\beta \in T(Z_0, Z_1, \ldots, Z_n; Y)$. Let $\gamma = 1_{\Delta\alpha}\beta$. Then $\gamma \in K$, so by Lemma 3.4, $\Delta \gamma = \nabla \gamma$. But $\Delta \gamma = \Delta 1_{\Delta\alpha}\beta = (\Delta\alpha \cap Y)1_{\Delta\alpha}^{-1} = \Delta\alpha$ and $\nabla \gamma = \nabla 1_{\Delta\alpha}\beta = (\Delta\alpha \cap Y)\beta = \{a_1, \ldots, a_n, a_{n+1}, \ldots, a_{n+\ell-1}, a_m\}$, hence $\Delta \gamma \neq \nabla \gamma$ which is a contradiction. Thus this subcase cannot occur. Subcase 3: n < $|\Delta\alpha| > m$. Since $\{1_{\Delta\alpha}, 1_Y, 1_{\Delta\alpha \cap Y}\}$ is a subsemigroup of K, it is strongly factorizable. By Lemma 3.2, $\Delta\alpha \subseteq Y$ or $Y \subseteq \Delta\alpha$. Since $|\Delta\alpha| > |Y|$, $Y \subseteq \Delta\alpha$. Let $\beta: Y \to Y$ be defined by $$x\beta = \begin{cases} a_{m} & \text{if } x = a_{m-1}, \\ a_{m-1} & \text{if } x = a_{m}, \\ x & \text{otherwise.} \end{cases}$$ OF ATTOR MEDIC Then $\beta \in T(Z_0, Z_1, \ldots, Z_n; Y)$ and $\beta \beta = 1_Y$. Let $T = \{\beta, 1_Y, 1_{\Delta\alpha}\}$. Then T is a subsemigroup of K, so T is factorizable. All maximal subgroups of T are $\{\beta, 1_Y\}$ and $\{1_{\Delta\alpha}\}$, and $E(T) = \{1_Y, 1_{\Delta\alpha}\}$. But $\{\beta, 1_Y\}E(T) = \{\beta, 1_Y\} \neq T$ and $\{1_{\Delta\alpha}\}E(T) = \{1_Y, 1_{\Delta\alpha}\} \neq T$. Hence T is not factorizable which is a contradiction. Then this subcase cannot occur. Subcase $4: n < |\Delta\alpha| = m$. Since $\{1_{\Delta\alpha}, 1_Y, 1_{\Delta\alpha \cap Y}\}$ is a subsemigroup of K, it is strongly factorizable. By Lemma 3.2, $\Delta\alpha \subseteq Y$ or $Y \subseteq \Delta\alpha$. But $|\Delta\alpha| = |Y| = m$, then $\Delta\alpha = Y$, so $\Delta\alpha = \nabla\alpha = Y$. Claim that $a\alpha = a$ for all $a \in Z_n$. Suppose there exists $i \in \{1, 2, ..., n\}$ such that $a_i\alpha \neq a_i$. Let i_o be the smallest positive integer such that $a_i\alpha \neq a_i$. Let $\beta = 1_{Z\alpha}$. Then $\beta \in K$, so by Lemma 3.3, $\Delta\beta = \nabla\beta$. But $\Delta\beta = \Delta 1_{Z\alpha} = (Z_i \cap Y)1_{Z_i}^{-1} = Z_i$ and $\nabla\beta = \nabla 1_{Z\alpha} = (Z_i \cap Y)\alpha = (a_1, a_2, ..., a_{i_o-1}, a_{i_o})$, then $\Delta\beta \neq \nabla\beta$ which is a contradiction. This shows that $a\alpha = a$ for all $a \in Z_n$. Hence $\alpha \in T(Z_o, Z_1, ..., Z_n; Y)$. Hence, the theorem is completely proved. Let X be a finite set. If $X=\emptyset$, then $I_{\widetilde{X}}=\{0\}$, hence there are no maximal strongly factorizable subsemigroups of $I_{\widetilde{Y}}$. If |X|=1, then $I_X=\{0,1_X^2\}$, hence all of the maximal strongly factorizable subsemigroups of I_X are $\{0\}$ and $\{1_X^2\}$. 3.9 Theorem. Let X be a finite set with |X| > 1 and T a maximal strongly factorizable subsemigroup of I_X . Then there are a nonnegative integer n and some sets Z_0 , Z_1 , ..., Z_n , $Y \subseteq X$ such that $\emptyset = Z_0 \subseteq Z_1 \subseteq ... \subseteq Z_n \subseteq Y$, $|Z_{i+1} - Z_i| = 1$ for all $i \in \{0, 1, ..., n-1\}$, either $Z_n = Y = X$ or $|Y - Z_n| > 1$ and $T = T(Z_0, Z_1, ..., Z_n; Y)$. <u>Proof</u>: Since T is a strongly factorizable semigroup, by Theorem 1.1, T^0 is also strongly factorizable. Then $T \subseteq T^0 \subseteq I_X$. Since |X| > 1, by Theorem 2.4, I_X is not strongly factorizable. But since T is a maximal strongly factorizable subsemigroup of I_X , then $T = T^0$, it follows that $0 \in T$. Because $\{0, 1_X\}$ is a strongly factorizable subsemigroup of I_X and $\{0, 1_X\} \neq I_X$, it follows that $T \neq \{0\}$. Because T is a factorizable inverse semigroup, T has an identity. Let $Y \subseteq X$ be such that 1_Y is the identity of T. Since $T \neq \{0\}$, $Y \neq \emptyset$. Let T be factorizable as T = GE(T). Then G is the unit group of T with identity 1_Y . Thus $G = G_Y \cap T$, and so $T \subseteq G_Y E(T)$. Because 0, $1_Y \in T$, we have $\{0, 1_Y\} \subseteq E(T) \subseteq T$. Case 1: $\{0, 1_Y\} = E(T) = T$. Let a ϵ Y and K = $\{0, 1_{\{a\}}, 1_Y, 1_X\}$. Then K is a finite chain, so K is a strongly factorizable subsemigroup of I_X . Since |X| > 1 and $Y \subseteq X$, $\{0, 1_Y\} = T \subseteq K \subseteq I_X$, this contradicts the maximality of T. Hence Case 1 cannot occur. Case $2:\{0, 1_Y\} = E(T) \subsetneq T$. Let $\alpha \in T \setminus \{0\}$. Since $T \subseteq G_Y E(T)$, $\alpha = \beta \gamma$ for some $\beta \in G_Y$ and $\gamma \in E(T)$. But $\alpha \neq 0$ and $E(T) = \{0, 1_Y\}$, it follows that $\gamma = 1_Y$. Then $\alpha = \beta \gamma = \beta 1_Y = \beta \in G_Y$. This shows that $T \setminus \{0\} \subseteq G_Y$, so $T \subseteq G_Y \cup \{0\}$. Since from Lemma 3.1, $G_Y \cup \{0\}$ is a strongly factorizable subsemigroup of I_X and $G_Y \cup \{0\} \neq I_X$, it follows that $T = G_Y \cup \{0\}$. If |Y| = 1, then $G_Y \cup \{0\} = \{0, 1_Y\}$. Hence $\{0, 1_Y\} = E(T) \subsetneq T = G_Y \cup \{0\} = \{0, 1_Y\}$, which is a contradiction. Therefore |Y| > 1 since $Y \neq \emptyset$. Then $T = G_Y \cup \{0\} = T(\emptyset; Y)$. Case 3: $\{0, 1_{Y}\} \subseteq E(T) = T$. Then there are distinct subsets $\emptyset = \mathbb{Z}_{0}, \mathbb{Z}_{1}$, ..., Z_n of X such that $T = \{1_{Z_i} \mid i = 0, 1, ..., n\}$. Because T is strongly factorizable, T is a chain, so $\{Z_i\}_{i=0,1,\ldots,n}$ is a chain under the partial order of set inclusion. Then we may assume $\emptyset = \mathbb{Z}_0 \subsetneq \mathbb{Z}_1 \subsetneq \cdots \subsetneq \mathbb{Z}_n$. Then 1_{Z_n} is the identity of T which implies $1_{Z_n} = 1_{Y}$, so $Z_n = Y$. To show that Y = X, suppose not. Then Y \subseteq X. Thus we have $\emptyset = Z \subseteq Z_1 \subseteq$ $... \subsetneq Z_n = Y \subsetneq X$. Therefore $TU\{1_X\}$ is a finite chain and thus $TU\{1_X\}$ is a strongly factorizable subsemigroup of I_X . Since |X| > 1, $TU\{1_X\} \neq I_X$. But $T \subseteq TU\{1_X\}$, this contradicts the maximality of T. This shows that Y = X, so $Z_n = Y = X$. Claim that for all $k \in \{0, 1, ..., n\}$ n-1}, $|Z_{k+1} - Z_k| = 1$. Suppose that there exists $k \in \{0, 1, ..., n-1\}$ such that $|Z_{k+1} - Z_k| > 1$. Let A be a nonempty proper subset of $Z_{k+1} - Z_k$. Then we have $\emptyset = \mathbb{Z}_0 \subsetneq \dots \subsetneq \mathbb{Z}_k \subsetneq \mathbb{Z}_k \cup A \subsetneq \mathbb{Z}_{k+1} \subsetneq \dots \subsetneq \mathbb{Z}_n$, so $\mathbb{T} \cup \{1_{\mathbb{Z}, \cup A}\}$ is a finite chain, so it is a strongly factorizable subsemigroup of $\mathbf{I}_{\mathbf{Y}}$. Since |X| > 1, $TU\{1_{Z,U,A}\} \neq I_X$. But $T \subseteq TU\{1_{Z,U,A}\}$, this contradicts the maximality of T. This shows that for each $k \in \{0, 1, ..., n-1\}$, $|Z_{k+1} - Z_k| = 1$. Hence $T = T(Z_0, Z_1, \ldots, Z_n; Y)$. Case 4: $\{0, 1_X\} \subseteq E(T) \subseteq T$. In this case claim that |X| > 2. Suppose not, then |X| = 2. Assume $X = \{a, b\}$. Then $I_X = \{0, 1_X, \{a\}_a, \{b\}_b, \{a\}_b, \{b\}_a, (a,b)\},$ $E(I_X) = \{0, 1_X, \{a\}_a, \{b\}_b\}$ and the multiplication of I_X is given as follows: | 0 | 1 _X | {a} _a | {b} _b | {a} _b | {b} _a | (a, b) | |---|------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 _X | {a} _a | {b} _b | {a} _b | {b} _a | (a, b) | | 0 | {a} _a | {a} _a | 0 | {a} _b | 0 | {a} _b | | 0 | {b} _b | 0 | {b} _b | 0 | {b}a | {b}a | | 0 | {a} _b | 0 | {a} _b | 0 | {a} _a | {a} _a | | 0 | {b}a | {b}a | 0 | {b} _b | 0 | {b} _b | | 0 | (a,b) | {b} _a | {a} _b | {b} _b | {a} _a | 1 _X | | | 0 0 0 0 0 | 0 0 0 0 0 1 X 0 {a} a 0 {b} b 0 {a} b 0 {b} a | 0 0 0 0 1 _X {a} _a 0 {a} _a {a} _a 0 {b} _b 0 0 {a} _b 0 0 {b} _a {b} _a | 0 0 0 0 0 0 1 _X {a} _a {b} _b 0 {a} _a {a} _a 0 0 {b} _b 0 {b} _b 0 {a} _b 0 {a} _b 0 {b} _a 0 | 0 0 0 0 0 0 0 1 _X {a} _a {b} _b {a} _b 0 {a} _a a 0 {a} _b 0 {b} _b 0 {b} _b 0 0 {a} _b 0 {a} _b 0 {b} _a 0 {b} _b | 0 0 0 0 0 0 0 0 0 1 _X {a} _a {b} _b {a} _b {b} _a 0 {a} _a {a} _a 0 {a} _b 0 0 {b} _b 0 {b} _b 0 {b} _a 0 {a} _a 0 {a} _b 0 {a} _b 0 {a} _a 0 {b} _a 0 {b} _b 0 | Since T is a strongly factorizable subsemigroup of I_X , by Lemma 3.3, for all $\alpha \in T$, $\Delta \alpha = \nabla \alpha$, it follows that $\{a\}_b$ and $\{b\}_a$ are not elements of T. Because $E(T) \subsetneq T$, there exists an α in $T \sim E(T)$, then $\alpha = (a,b)$. But $(a,b)(a,b) = 1_X$ which implies $1_X \in T$. It follows that $1_Y = 1_X$ since 1_Y is the identity of T. Because $\{0, 1_Y\} \subsetneq E(T)$, there is a β in $E(T) \sim \{0, 1_Y\}$, then $\beta = \{a\}_a$ or $\{b\}_b$. If $\beta = \{a\}_a$, then $\beta(a,b) = \{a\}_b \in T$, it is a contradiction. If $\beta = \{b\}_b$, then $\beta(a,b) = \{b\}_a \in T$, it is a contradiction. This shows that |X| > 2. Let $\emptyset = \mathbb{Z}_0$, \mathbb{Z}_1 , ..., \mathbb{Z}_n be distinct subsets of X such that $\mathbb{Z}_i \neq \mathbb{Y}$ for all $i \in \{0, 1, ..., n\}$ and $\mathbb{E}(\mathbb{T}) = \{\mathbb{I}_{\mathbb{Z}_i} \mid i = 0, 1, ..., n\}$ $\mathbb{U} \{\mathbb{I}_{\mathbb{Y}}\}$. Since $\mathbb{I}_{\mathbb{Y}}$ is the identity of T, for all $i \in \{0, 1, ..., n\}$ $\mathbb{I}_{\mathbb{Y}^1\mathbb{Z}_i} = \mathbb{I}_{\mathbb{Z}_i}$, so $\mathbb{Z}_i \subsetneq \mathbb{Y}$ for all $i \in \{0, 1, ..., n\}$. Because T is strongly factorizable, E(T) is a subsemigroup of T, hence E(T) is also strongly factorizable, so E(T) is a finite chain and thus $\{Z_i\}_{i=0,1,...,n}$ is a chain under set inclusion. We may assume $\emptyset = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \subsetneq Y$. Then $|Y \setminus Z_n| > 1$. Let α \in T \sim E(T). Since $1_Y\alpha$ = α , $\Delta\alpha$ \subseteq Y. By Lemma 3.3, $\Delta\alpha$ = $\nabla\alpha$ \subseteq Y. Since $<\alpha>$ \cup $\{1_Y\}$ is a subsemigroup of T, $<\alpha>$ \cup $\{1_Y\}$ is factorizable. Then by Lemma 3.4, $\Delta\alpha$ = $\nabla\alpha$ = Y. Claim that $a\alpha$ = a for all a \in Z_n . Let β = $1_{Z_n}\alpha$. Then β \in T and $\Delta\beta$ = $\Delta 1_{Z_n}\alpha$ = $(Z_n \cap Y)1_{Z_n}^{-1}$ = Z_n , so by Lemma 3.3, $\Delta\beta$ = $\nabla\beta$ = Z_n . If $\beta \neq 1_{Z_n}$, then $\beta \notin E(I_X)$. Since $<\beta>$ \cup $\{1_Y\}$ is a subsemigroup of T, $<\beta>$ \cup $\{1_Y\}$ is factorizable, thus by Lemma 3.4, $\Delta\beta$ = $\nabla\beta$ = Y which is a contradiction since $\Delta\beta$ = Z_n \subseteq Y. This shows that β = 1_{Z_n} . Because β = $1_{Z_n}\alpha$, $\alpha\alpha$ = α for all α \in Z_n . Hence for all α \in T \sim E(T), $\Delta\alpha$ = $\nabla\alpha$ = Y and $\alpha\alpha$ = α for all α \in Z_n . This shows that α = α = α α = α for all α α = α = α for all α α = α = α for all α for α for α in α = α for all α α for α for α in α in α in α for α for α for α in α in α in α in α for α for α for α in i = $\{1_{Z_i} \mid i=0,1,...,n\} \cup \{\alpha \in T \mid \Delta\alpha = \nabla\alpha = Y \text{ and } a\alpha = a \text{ for all } a \in Z_n\}.$ Claim that for each k \in {0,1,..., n-1}, $|Z_{k+1} - Z_k| = 1$. Suppose that there exists k \in {0,1,...,n-1} such that $|Z_{k+1} - Z_k| > 1$. Let A be a nonempty proper subset of $Z_{k+1} - Z_k$. Then we have $\emptyset = Z_0 \subseteq \ldots \subseteq Z_k \subseteq Z_k$ and $Z_{k+1} \subseteq \ldots \subseteq Z_n \subseteq Y$. Let $Y = 1_{Z_k \cup A}$. Then it follows that $T \subseteq T \cup \{\gamma\}$. It is clear that $T \cup \{\gamma\}$ is a finite inverse semigroup and $E(T \cup \{\gamma\})$ is a chain. Since T is a finite strongly factorizable inverse semigroup, by Corollary 1.13, $T = \bigcup_{k=1}^n Y_k = \{k\}$ if $Y_k \in E(T) \setminus \{1_{Y_k}\}$. Since $Y_k \in E(T) \cap \{1_{Y_k}\}$ is a maximal subgroup of $Y_k \in E(T) \cap \{1_{Y_k}\}$. Hence by Corollary 1.13, $Y_k \in E(T) \cap \{1_{Y_k}\}$ is a strongly $Y_k \in E(T) \cup \{1_{Y_k}\}$. factorizable subsemigroup of I_{χ} . But $T \subsetneq T \cup \{\gamma\}$, this contradicts the maximality of T. This shows that for all $k \in \{0,1,\dots,n-1\}$, $|Z_{k+1} - Z_k| = 1$. Claim that $|Y - Z_n| > 1$. Suppose that $|Y - Z_n| = 1$. Let $\alpha \in T - E(T)$. Then $\Delta \alpha = \nabla \alpha = Y$ and $\alpha = \alpha$ for all $\alpha \in Z_n$ which implies $\alpha = 1_Y$ since $|Y - Z_n| = 1$, so $\alpha \in E(T)$, a contradiction. This shows that $|Y - Z_n| > 1$. Then $T = \{1_{Z_i} | i = 0,1,...,n\} \cup \{\alpha \in T \mid \Delta\alpha = \forall \alpha = Y \text{ and } \alpha\alpha = a \text{ for all } \alpha \in Z_n\}$ $\subseteq \{1_{Z_i} \mid i = 0,1,...,n\} \cup \{\alpha \in G_Y \mid \alpha\alpha = a \text{ for all } \alpha \in Z_n\}$ $= T(Z_0,Z_1,...,Z_n;Y).$ By Theorem 3.8, $T(Z_0, Z_1, ..., Z_n; Y)$ is a strongly factorizable subsemigroup of I_X , hence $T = T(Z_0, Z_1, ..., Z_n; Y)$. Hence, the theorem is completely proved.