CHAPTER II ## TRANSFORMATION SEMIGROUPS The purpose of this chapter is to characterize strongly factorizable transformation semigroups. Throughout this chapter, the following notation are adopted : For a set X, let T_{X} = the partial transformation semigroup on X, \mathcal{I}_{X} = the full transformation semigroup on X, I_{X} = the symmetric inverse semigroup on X or the 1-1 partial transformation semigroup on X, U_{X} = the semigroup of all almost identical partial transformations of X, $V_{\widetilde{X}}$ = the semigroup of all almost identical transformations of X, W_{X} = the semigroup of all almost identical 1-1 partial transformations of X, E_{X} = the semigroup of all onto transformations of X, M_{X} = the semigroup of all one-to-one transformations of X, G_{χ} = the permutation group on X, c_{χ} = the semigroup of all constant partial transformations of X, F_{χ} = the semigroup of all constant transformations of X. Let X be a set. For a nonempty subset A of X and for x ϵ X, let A denote the partial transformation of X with $\Delta A_X = A$ and $\nabla A_X = \{x\}$. Then $$C_{X} = \{A_{x} \mid \emptyset \neq A \subseteq X, \times \varepsilon X\} \cup \{0\},$$ $$F_{X} = \{X_{x} \mid x \in X\} \text{ if } X \neq \emptyset$$ and $$F_{X} = \{0\} \text{ if } X = \emptyset.$$ Let X be a set. Then for a,b ϵ X, $X_a X_b = X_b$. Then the semigroup of all constant transformations of X is a right zero semigroup. Hence the semigroup F_X is strongly factorizable [Chapter I, page 12]. Therefore we have 2.1 Theorem. For any set X, the semigroup of all constant transformations of X is strongly factorizable. The next theorem gives necessary and sufficient conditions for the permutation group on a set to be a strongly factorizable semigroup. The following lemma is required: 2.2 Lemma. For any set X, the permutation group on X, G_{X} , is periodic if and only if X is finite. <u>Proof</u>: Assume that X is an infinite set. Then X contains a denumerable subset, say A. Then |Z| = |A| where Z is the set of all integers. Then there exists a one-to-one map ψ from Z onto A. Thus $A = \{ n\psi \mid n \in Z \}$ and $m\psi \neq n\psi$ if $m \neq n$ in Z. Define the map $\alpha: X \to X$ by $$x\alpha = \begin{cases} (n+1)\psi & \text{if } x = n\psi & \text{for } n \in \mathbb{Z} \end{cases}$$, Clearly, α is a permutation on X. By the definition of α , we have that for any positive integer k, $$x\alpha^k = \begin{cases} (n+k)\psi & \text{if } x = n\psi & \text{for } n \in \mathbb{Z}, \\ x & \text{if } x \notin A. \end{cases}$$ Then $\alpha^k \neq \alpha^\ell$ for k, $\ell \in \{1,2,3,...\}$ such that $k \neq \ell$. Hence G_X is not periodic. Conversely, if X is a finite set, then G_{X} is a finite group, so it is periodic. \square 2.3 Theorem. For any set X, the permutation group on X, G_X , is a strongly factorizable semigroup if and only if X is a finite set. $\underline{\text{Proof}}$: If the permutation group \textbf{G}_{X} is a strongly factorizable semigroup, then \textbf{G}_{X} is periodic [Theorem 1.7] , so by Lemma 2.2, X is finite. Conversely, if X is a finite set, then G_X is a finite group, so it is a strongly factorizable semigroup [Chapter I, page 11]. For a set X, for α \in T_X , α is an idempotent of T_X if and only if $\nabla \alpha \subseteq \Delta \alpha$ and $x^{\alpha} = x$ for all $x \in \nabla \alpha$. Let S be a transformation semigroup on a set X, that is, S is a subsemigroup of $\mathbf{T}_{\mathbf{X}}$. Then $E(S) = \{\alpha \in S \mid \nabla \alpha \subseteq \Delta \alpha \text{ and } x\alpha = x \text{ for all } x \in \nabla \alpha\}.$ Let α , $\beta \in S$ such that $\alpha \mathcal{H} \beta$ in S. Then $\alpha \mathcal{L} \beta$ and $\alpha \mathcal{R} \beta$, so $\alpha = \gamma \beta$, $\beta = \gamma'\alpha$, $\alpha = \beta \lambda$ and $\beta = \alpha \lambda'$ for some $\gamma, \gamma', \lambda, \lambda' \in S$. Hence $\nabla \alpha = \nabla \gamma \beta \subseteq \nabla \beta, \quad \nabla \beta = \nabla \gamma' \alpha \subseteq \nabla \alpha, \quad \Delta \alpha = \Delta \beta \lambda \subseteq \Delta \beta \text{ and } \Delta \beta = \Delta \alpha \lambda' \subseteq \Delta \alpha.$ It follows that $\Delta \alpha = \Delta \beta$ and $\nabla \alpha = \nabla \beta$. If α , $\beta \in S$ such that $\alpha \mathcal{H} \beta$ and $\beta \in E(S)$, then $\nabla \alpha = \nabla \beta \subseteq \Delta \beta = \Delta \alpha$ and thus $\nabla \alpha \subseteq \Delta \alpha$. Therefore, for $\alpha \in S$, if α belongs to a subgroup of S, then $\nabla \alpha \subseteq \Delta \alpha$. Hence, if S is a union of groups, then $\nabla \alpha \subseteq \Delta \alpha$ for all $\alpha \in S$. 2.4 Theorem. Let X be a set and let S be T_X , I_X , U_X , W_X or C_X . Then the semigroup S is strongly factorizable if and only if $|X| \le 1$. <u>Proof</u>: Suppose that $|X| \ge 2$. Let a and b be two distinct elements of X. Then $\{a\}_b \in S$. Since $\Delta\{a\}_b = \{a\} \neq \{b\} = \nabla\{a\}_b$, it follows that S is not a union of subgroups of S. By Theorem 1.7, S is not strongly factorizable. Conversely, if $|X| \le 1$, then $S = \{0\}$ or $S = \{0,1_X^2\}$, so it is clear that S is strongly factorizable. Let X be a set. The following theorem characterizes the semigroups \mathcal{I}_X and V_X which are strongly factorizable in term of cardinality of X. 2.5 Theorem. Let X be a set and let S be \mathcal{T}_X or V_X . Then the semigroup S is strongly factorizable if and only if $|X| \le 2$. <u>Proof</u>: Suppose $|X| \ge 3$. Let a,b and c be three distinct elements in X. Define the maps α , $\beta: X \to X$ by $$x\alpha = \begin{cases} c & \text{if } x \in \{a,b\}, \\ x & \text{otherwise,} \end{cases}$$ $$x\beta = \begin{cases} c & \text{if } x = a, \\ c & \text{if } x = b, \\ x & \text{otherwise.} \end{cases}$$ Then α , $\beta \in S$, $\alpha \in E(S)$, $\alpha\beta = \alpha = \beta\alpha$ and $\beta\beta = \alpha$. Hence $A = \{\alpha,\beta\}$ is a subsemigroup of S with $E(A) = \{\alpha\}$ and $\{\alpha\}$ is the only subgroup of A. But $\{\alpha\}E(A) = \{\alpha\} \neq A$, hence A is not factorizable. Thus S is not strongly factorizable. This proves that if the semigroup S is strongly factorizable, then $|X| \leqslant 2$. Conversely, assume that $|X| \le 2$. If |X| = 1, then |S| = 1, so S is strongly factorizable. Assume that |X|=2, let $X=\{a,b\}$. Then $V_X=\mathcal{T}_X$, so $S=\mathcal{T}_X=V_X$. Let 1 be the identity map on X. Then $S=\{1,\,X_a,\,X_b,\,(a,b)\}$ where (a,b) is the permutation on $X=\{a,b\}$ with a(a,b)=b and b(a,b)=a. Thus $E(S)=\{1,\,X_a,\,X_b\}$ and the multiplication on S is given by the following table: | o | 1 | Xa | Хъ | (a,b) | |-------|-------|----------------|----------------|-------| | 1 | 1 | X _a | Хъ | (a,b) | | Xa | Xa | Xa | x _b | ХЪ | | Хъ | Хъ | Xa | X _b | Xa | | (a,b) | (a,b) | Xa | Хъ | 1 | | | | | | | Since $\{1,(a,b)\}$, $\{X_a\}$ and $\{X_b\}$ are maximal subgroups of S, we have that S is a union of subgroups of S, $H_1 = \{1, (a,b)\}$, $H_{X_a} = \{X_a\}$ and $H_{X_b} = \{X_b\}$. From the table of multiplication on S, E(S) is a subsemigroup of S. It is easy to see that every nonempty subset of E(S) is a subsemigroup of E(S) having a left idenlity. Moreover, $1X_a = X_a 1 = X_a$, $1X_b = X_b 1 = X_b$, $X_a X_b = X_b$, $X_b X_a = X_a$, $H_1 X_a = H_{X_a}$, $H_1 X_b = H_{X_b}$, $H_1 X_b = H_{X_b}$, $H_1 X_b = H_1 X_b$, $H_1 X_b = H_1 X_b$, $H_1 X_b = H_1 X_b$. Since S is finite, S is periodic. Hence by Theorem 1.11, S is strongly factorizable. It is known that for any set X, $E_X = G_X$ if and only if X is finite, and $M_X = G_X$ if and only if X is finite. For any set X, if $S = E_X$ or M_X , then S is regular if and only if X is finite. To prove this, first suppose $S = E_X$ is regular. To show X is finite, suppose not. Let a ϵ X. Then $|X - \{a\}| = |X|$, so there exists a one-to-one and onto map $\alpha : X - \{a\} \longrightarrow X$. Let b ϵ X \sim $\{a\}$ such that b $\alpha = a$. Define the map $\beta : X \longrightarrow X$ by $$x\beta = \begin{cases} a & \text{if } x = a, \\ x\alpha & \text{if } x \in X \setminus \{a\}. \end{cases}$$ Then $\beta \in E_X$ and $a\beta = a = b\alpha = b\beta$. Since E_X is regular, there exists $\gamma \in E_X$ such that $\beta = \beta\gamma\beta$ and $\gamma = \gamma\beta\gamma$. Because γ is onto X, there exist $x,y \in X$ such that $x\gamma = a$ and $y\gamma = b$. But $a = x\gamma = x\gamma\beta\gamma = a\beta\gamma = a\gamma$ and $b = y\gamma = y\gamma\beta\gamma = b\beta\gamma = a\gamma$, hence $a = a\gamma = b$. It is a contradiction since $a \neq b$. Then X is finite. Now, suppose $S = M_X$ is regular. To show X is finite, suppose X is infinite. Let a ϵ X. Then $|X \setminus \{a\}| = |X|$, so there exists a one-to-one map α from X onto $X \setminus \{a\}$. Then $\alpha \in M_X$. Since M_X is regular, there exists $\beta \in M_X$ such that $\alpha = \alpha \beta \alpha$ and $\beta = \beta \alpha \beta$. Thus $\alpha \beta = \alpha \beta \alpha \beta$ which implies $\alpha = (\alpha \beta)\alpha$ since β is one-to-one. Hence $\alpha \in \nabla \alpha$, which is a contradiction. This proves that if S is regular, then X is finite. Conversely, assume that X is finite. Then $S = G_X$ which is a group, so S is regular. From the above fact, the following theorem is obtained. 2.6 Theorem. Let X be a set and let S be E_X or M_X . Then the semigroup S is strongly factorizable if and only if X is finite. \underline{Proof} : Assume that the semigroup S is strongly factorizable. Hence S is factorizable, so S is regular [4, Proposition 2.2]. Therefore X is finite. Conversely, assume that X is finite. Then $S = G_X$ which is a finite group. Hence S is strongly factorizable since every finite group is a strongly factorizable semigroup.