## CHAPTER II



## TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to characterize strongly factorizable transformation semigroups.

Throughout this chapter, the following notation are adopted : For a set X, let

 $T_{X}$  = the partial transformation semigroup on X,

 $\mathcal{I}_{X}$  = the full transformation semigroup on X,

 $I_{X}$  = the symmetric inverse semigroup on X or the 1-1 partial transformation semigroup on X,

 $U_{X}$  = the semigroup of all almost identical partial transformations of X,

 $V_{\widetilde{X}}$  = the semigroup of all almost identical transformations of X,

 $W_{\mathrm{X}}$  = the semigroup of all almost identical 1-1 partial transformations of X,

 $E_{X}$  = the semigroup of all onto transformations of X,

 $M_{X}$  = the semigroup of all one-to-one transformations of X,

 $G_{\chi}$  = the permutation group on X,

 $c_{\chi}$  = the semigroup of all constant partial transformations of X,

 $F_{\chi}$  = the semigroup of all constant transformations of X.

Let X be a set. For a nonempty subset A of X and for x  $\epsilon$  X, let A denote the partial transformation of X with  $\Delta A_X = A$  and  $\nabla A_X = \{x\}$ . Then

$$C_{X} = \{A_{x} \mid \emptyset \neq A \subseteq X, \times \varepsilon X\} \cup \{0\},$$
 
$$F_{X} = \{X_{x} \mid x \in X\} \text{ if } X \neq \emptyset$$
 and 
$$F_{X} = \{0\} \text{ if } X = \emptyset.$$

Let X be a set. Then for a,b  $\epsilon$  X,  $X_a X_b = X_b$ . Then the semigroup of all constant transformations of X is a right zero semigroup. Hence the semigroup  $F_X$  is strongly factorizable [Chapter I, page 12].

Therefore we have

2.1 Theorem. For any set X, the semigroup of all constant transformations of X is strongly factorizable.

The next theorem gives necessary and sufficient conditions for the permutation group on a set to be a strongly factorizable semigroup. The following lemma is required:

2.2 Lemma. For any set X, the permutation group on X,  $G_{X}$ , is periodic if and only if X is finite.

<u>Proof</u>: Assume that X is an infinite set. Then X contains a denumerable subset, say A. Then |Z| = |A| where Z is the set of all integers. Then there exists a one-to-one map  $\psi$  from Z onto A. Thus  $A = \{ n\psi \mid n \in Z \}$  and  $m\psi \neq n\psi$  if  $m \neq n$  in Z. Define the map  $\alpha: X \to X$  by

$$x\alpha = \begin{cases} (n+1)\psi & \text{if } x = n\psi & \text{for } n \in \mathbb{Z} \end{cases}$$
,

Clearly,  $\alpha$  is a permutation on X. By the definition of  $\alpha$ , we have that for any positive integer k,

$$x\alpha^k = \begin{cases} (n+k)\psi & \text{if } x = n\psi & \text{for } n \in \mathbb{Z}, \\ x & \text{if } x \notin A. \end{cases}$$

Then  $\alpha^k \neq \alpha^\ell$  for k,  $\ell \in \{1,2,3,...\}$  such that  $k \neq \ell$ . Hence  $G_X$  is not periodic.

Conversely, if X is a finite set, then  $G_{X}$  is a finite group, so it is periodic.  $\square$ 

2.3 Theorem. For any set X, the permutation group on X,  $G_X$ , is a strongly factorizable semigroup if and only if X is a finite set.

 $\underline{\text{Proof}}$  : If the permutation group  $\textbf{G}_{X}$  is a strongly factorizable semigroup, then  $\textbf{G}_{X}$  is periodic [Theorem 1.7] , so by Lemma 2.2, X is finite.

Conversely, if X is a finite set, then  $G_X$  is a finite group, so it is a strongly factorizable semigroup [Chapter I, page 11].

For a set X, for  $\alpha$   $\in$   $T_X$ ,  $\alpha$  is an idempotent of  $T_X$  if and only if  $\nabla \alpha \subseteq \Delta \alpha$  and  $x^{\alpha} = x$  for all  $x \in \nabla \alpha$ .

Let S be a transformation semigroup on a set X, that is, S is a subsemigroup of  $\mathbf{T}_{\mathbf{X}}$ . Then

 $E(S) = \{\alpha \in S \mid \nabla \alpha \subseteq \Delta \alpha \text{ and } x\alpha = x \text{ for all } x \in \nabla \alpha\}.$  Let  $\alpha$ ,  $\beta \in S$  such that  $\alpha \mathcal{H} \beta$  in S. Then  $\alpha \mathcal{L} \beta$  and  $\alpha \mathcal{R} \beta$ , so  $\alpha = \gamma \beta$ ,  $\beta = \gamma'\alpha$ ,  $\alpha = \beta \lambda$  and  $\beta = \alpha \lambda'$  for some  $\gamma, \gamma', \lambda, \lambda' \in S$ . Hence  $\nabla \alpha = \nabla \gamma \beta \subseteq \nabla \beta, \quad \nabla \beta = \nabla \gamma' \alpha \subseteq \nabla \alpha, \quad \Delta \alpha = \Delta \beta \lambda \subseteq \Delta \beta \text{ and } \Delta \beta = \Delta \alpha \lambda' \subseteq \Delta \alpha.$  It follows that  $\Delta \alpha = \Delta \beta$  and  $\nabla \alpha = \nabla \beta$ . If  $\alpha$ ,  $\beta \in S$  such that  $\alpha \mathcal{H} \beta$  and  $\beta \in E(S)$ , then  $\nabla \alpha = \nabla \beta \subseteq \Delta \beta = \Delta \alpha$  and thus  $\nabla \alpha \subseteq \Delta \alpha$ . Therefore, for  $\alpha \in S$ , if  $\alpha$  belongs to a subgroup of S, then  $\nabla \alpha \subseteq \Delta \alpha$ . Hence, if S is a union of groups, then  $\nabla \alpha \subseteq \Delta \alpha$  for all  $\alpha \in S$ .

2.4 Theorem. Let X be a set and let S be  $T_X$ ,  $I_X$ ,  $U_X$ ,  $W_X$  or  $C_X$ . Then the semigroup S is strongly factorizable if and only if  $|X| \le 1$ .

<u>Proof</u>: Suppose that  $|X| \ge 2$ . Let a and b be two distinct elements of X. Then  $\{a\}_b \in S$ . Since  $\Delta\{a\}_b = \{a\} \neq \{b\} = \nabla\{a\}_b$ , it follows that S is not a union of subgroups of S. By Theorem 1.7, S is not strongly factorizable.

Conversely, if  $|X| \le 1$ , then  $S = \{0\}$  or  $S = \{0,1_X^2\}$ , so it is clear that S is strongly factorizable.

Let X be a set. The following theorem characterizes the semigroups  $\mathcal{I}_X$  and  $V_X$  which are strongly factorizable in term of cardinality of X.

2.5 Theorem. Let X be a set and let S be  $\mathcal{T}_X$  or  $V_X$ . Then the semigroup S is strongly factorizable if and only if  $|X| \le 2$ .

<u>Proof</u>: Suppose  $|X| \ge 3$ . Let a,b and c be three distinct elements in X. Define the maps  $\alpha$ ,  $\beta: X \to X$  by

$$x\alpha = \begin{cases} c & \text{if } x \in \{a,b\}, \\ x & \text{otherwise,} \end{cases}$$

$$x\beta = \begin{cases} c & \text{if } x = a, \\ c & \text{if } x = b, \\ x & \text{otherwise.} \end{cases}$$

Then  $\alpha$ ,  $\beta \in S$ ,  $\alpha \in E(S)$ ,  $\alpha\beta = \alpha = \beta\alpha$  and  $\beta\beta = \alpha$ . Hence  $A = \{\alpha,\beta\}$  is a subsemigroup of S with  $E(A) = \{\alpha\}$  and  $\{\alpha\}$  is the only subgroup of A. But  $\{\alpha\}E(A) = \{\alpha\} \neq A$ , hence A is not factorizable. Thus S is not strongly factorizable. This proves that if the semigroup S is strongly factorizable, then  $|X| \leqslant 2$ .

Conversely, assume that  $|X| \le 2$ . If |X| = 1, then |S| = 1, so S is strongly factorizable.

Assume that |X|=2, let  $X=\{a,b\}$ . Then  $V_X=\mathcal{T}_X$ , so  $S=\mathcal{T}_X=V_X$ . Let 1 be the identity map on X. Then  $S=\{1,\,X_a,\,X_b,\,(a,b)\}$  where (a,b) is the permutation on  $X=\{a,b\}$  with a(a,b)=b and b(a,b)=a. Thus  $E(S)=\{1,\,X_a,\,X_b\}$  and the multiplication on S is given by the following table:

| o     | 1     | Xa             | Хъ             | (a,b) |
|-------|-------|----------------|----------------|-------|
| 1     | 1     | X <sub>a</sub> | Хъ             | (a,b) |
| Xa    | Xa    | Xa             | x <sub>b</sub> | ХЪ    |
| Хъ    | Хъ    | Xa             | X <sub>b</sub> | Xa    |
| (a,b) | (a,b) | Xa             | Хъ             | 1     |
|       |       |                |                |       |



Since  $\{1,(a,b)\}$ ,  $\{X_a\}$  and  $\{X_b\}$  are maximal subgroups of S, we have that S is a union of subgroups of S,  $H_1 = \{1, (a,b)\}$ ,  $H_{X_a} = \{X_a\}$  and  $H_{X_b} = \{X_b\}$ . From the table of multiplication on S, E(S) is a subsemigroup of S. It is easy to see that every nonempty subset of E(S) is a subsemigroup of E(S) having a left idenlity. Moreover,  $1X_a = X_a 1 = X_a$ ,  $1X_b = X_b 1 = X_b$ ,  $X_a X_b = X_b$ ,  $X_b X_a = X_a$ ,  $H_1 X_a = H_{X_a}$ ,  $H_1 X_b = H_{X_b}$ ,  $H_1 X_b = H_{X_b}$ ,  $H_1 X_b = H_1 X_b$ ,  $H_1 X_b = H_1 X_b$ ,  $H_1 X_b = H_1 X_b$ . Since S is finite, S is periodic. Hence by Theorem 1.11, S is strongly factorizable.

It is known that for any set X,  $E_X = G_X$  if and only if X is finite, and  $M_X = G_X$  if and only if X is finite. For any set X, if  $S = E_X$  or  $M_X$ , then S is regular if and only if X is finite. To prove this, first suppose  $S = E_X$  is regular. To show X is finite, suppose not. Let a  $\epsilon$  X. Then  $|X - \{a\}| = |X|$ , so there exists a one-to-one and onto map  $\alpha : X - \{a\} \longrightarrow X$ . Let b  $\epsilon$  X  $\sim$   $\{a\}$  such that b $\alpha = a$ . Define the map  $\beta : X \longrightarrow X$  by

$$x\beta = \begin{cases} a & \text{if } x = a, \\ x\alpha & \text{if } x \in X \setminus \{a\}. \end{cases}$$

Then  $\beta \in E_X$  and  $a\beta = a = b\alpha = b\beta$ . Since  $E_X$  is regular, there exists  $\gamma \in E_X$  such that  $\beta = \beta\gamma\beta$  and  $\gamma = \gamma\beta\gamma$ . Because  $\gamma$  is onto X, there exist  $x,y \in X$  such that  $x\gamma = a$  and  $y\gamma = b$ . But  $a = x\gamma = x\gamma\beta\gamma = a\beta\gamma = a\gamma$  and  $b = y\gamma = y\gamma\beta\gamma = b\beta\gamma = a\gamma$ , hence  $a = a\gamma = b$ . It is a contradiction since  $a \neq b$ . Then X is finite.

Now, suppose  $S = M_X$  is regular. To show X is finite, suppose X is infinite. Let a  $\epsilon$  X. Then  $|X \setminus \{a\}| = |X|$ , so there exists a one-to-one map  $\alpha$  from X onto  $X \setminus \{a\}$ . Then  $\alpha \in M_X$ . Since  $M_X$  is regular, there exists  $\beta \in M_X$  such that  $\alpha = \alpha \beta \alpha$  and  $\beta = \beta \alpha \beta$ . Thus  $\alpha \beta = \alpha \beta \alpha \beta$  which implies  $\alpha = (\alpha \beta)\alpha$  since  $\beta$  is one-to-one. Hence  $\alpha \in \nabla \alpha$ , which is a contradiction.

This proves that if S is regular, then X is finite.

Conversely, assume that X is finite. Then  $S = G_X$  which is a group, so S is regular.

From the above fact, the following theorem is obtained.

2.6 Theorem. Let X be a set and let S be  $E_X$  or  $M_X$ . Then the semigroup S is strongly factorizable if and only if X is finite.

 $\underline{Proof}$ : Assume that the semigroup S is strongly factorizable. Hence S is factorizable, so S is regular [4, Proposition 2.2]. Therefore X is finite.

Conversely, assume that X is finite. Then  $S = G_X$  which is a finite group. Hence S is strongly factorizable since every finite group is a strongly factorizable semigroup.