CHAPTER I

STRONGLY FACTORIZABLE SEMIGROUPS

The purpose of this chapter is to study the algebraic structure of strongly factorizable semigroups and to characterize strongly factorizable semigroups.

Recall that a semigroup S is said to be <u>factorizable</u> if there exists a subgroup G of S such that S = GE(S) where E(S) is the set of all idempotents of S, and a semigroup in which each subsemigroup is factorizable is called a strongly <u>factorizable</u> semigroup.

Every factorizable inverse semigroup S has an identity and if S is factorizable as S = GE(S), then G is the unit group of S [1, Lemma 2.1].

Let a factorizable semigroup S be factorizable as S = GE(S). Then the identity of G is a left identity of S [4, Lemma 2.1] and G is a maximal subgroup of S (that is, an \mathcal{H} - class of S) [4, Theorem 2.4].

Every factorizable semigroup is regular [4, Proposition 2.2].

Observe from the definition of a strongly factorizable semigroup that every subsemigroup of a strongly factorizable semigroup is strongly factorizable, and every strongly factorizable semigroup is factorizable. But a factorizable semigroup need not be strongly factorizable. The group of all integers under usual addition, $(\mathbb{Z},+)$, is a counterexample since $\mathbb{N}=\{1,2,3,\ldots\}$ is a subsemigroup of $(\mathbb{Z},+)$ which is not factorizable.

Every group is a factorizable semigroup. It is known that every subsemigroup of a finite group is a subgroup. Then every finite group is a strongly factorizable semigroup. A question arises. Is there an infinite group which is a strongly factorizable semigroup?

The following example is the answer:

Example. Let \mathbb{Z} be the set of all integers and \mathbb{N} the set of all positive integers. Let p be a fixed prime and $G = \{\frac{m}{p^n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \cup \{0\}\}$. Then G is an infinite commutative group under usual addition and \mathbb{Z} is a subgroup of G. Let $\mathbb{Z}(p^\infty) = G/\mathbb{Z}$. Because $\frac{1}{p^m} + \mathbb{Z} \neq \frac{1}{p^n} + \mathbb{Z}$ for $m, n \in \mathbb{N}$ such that $m \neq n$, it follows that $\mathbb{Z}(p^\infty)$ is an infinite group having \mathbb{Z} as its identity. Claim that the group $\mathbb{Z}(p^\infty)$ is a strongly factorizable semigroup. To prove this, let \mathbb{T} be a subsemigroup of $\mathbb{Z}(p^\infty)$. Let $\frac{m}{p^n} + \mathbb{Z} \in \mathbb{T}$. If n = 0, then $\frac{m}{p^n} + \mathbb{Z} = \mathbb{Z} \in \mathbb{T}$. If n > 0, then $\frac{m}{p^n} + \mathbb{Z} = \mathbb{Z} \in \mathbb{T}$. If n > 0, then $\frac{m}{p^n} + \mathbb{Z} = \mathbb{Z} \in \mathbb{T}$. This shows that \mathbb{T} is a subgroup of the group $\mathbb{Z}(p^\infty)$.

Hence, the group $\mathbb{Z}(p^\infty)$ is an infinite group which is a strongly factorizable semigroup. \square

Observe that the group in the above example is periodic. In fact, every subsemigroup of a periodic group G is a subgroup of G. To prove this, let T be a subsemigroup of G. Let a ϵ T. Since G is periodic, there exists a positive integer k such that $a^k = \epsilon$ where ϵ is the identity of G. Then $a^{2k} = \epsilon$. Because 2k - 1 is a positive

integer, $a^{2k-1}\epsilon$ T. Also, $aa^{2k-1}=a^{2k}=e$ ϵ T. It then follows that T is a subgroup of G. This proves that every periodic group is a strongly factorizable semigroup.

An example of a strongly factorizable semigroup which is not a group is the semigroup $\mathbb N$ of all positive integers under the operation * defined by

$m*n = maximum \{m,n\}$

for all m,n \in N. Observe that every element of N is an idempotent of the semigroup (N, *). To prove the semigroup (N, *) is strongly factorizable, let T be a subsemigroup of (N, *). Let n $_{0}$ \in T be such that n $_{0}$ is the smallest positive integer belonging to T. Then T = $\{n_{0}\}*E(T)$. This shows that T is factorizable. Therefore, the semigroup (N, *) is a strongly factorizable semigroup.

A semigroup S is called a <u>right</u> [left] <u>zero semigroup</u> if ab = b [ab = a] for all a,b ϵ S. Then every right [left] zero semigroup is a band. Observe that every nonempty subset of a right [left] zero semigroup is a subsemigroup.

If T is a subsemigroup of a right zero semigroup S, then for a ϵ T, T = {a}E(T). Thus every right zero semigroup is strongly factorizable.

If S is a left zero semigroup, then for a ε S, {a}E(S) = {a}. Hence, a left zero semigroup S is strongly factorizable if and only if |S| = 1.

The first theorem shows that $\$ if S is a strongly factorizable semigroup, then the semigroup $\$ S O is strongly factorizable.

1.1 Theorem. A semigroup S is a strongly factorizable semigroup if and only if the semigroup S^{O} is strongly factorizable.

<u>Proof</u>: If S has a zero, then $S^O = S$, so we are done. Suppose that S has no zero. Let T be a subsemigroup of S^O . Then $T = \{0\}$ or $T \setminus \{0\}$ is a subsemigroup of S. If $T = \{0\}$, T is clearly factorizable. If $T \setminus \{0\}$ is a subsemigroup of S, then $T \setminus \{0\} = GE(T \setminus \{0\})$ for some subgroup G of $T \setminus \{0\}$, so T = GE(T) and G is a subgroup of T. This proves that the semigroup S^O is strongly factorizable.

Because S is a subsemigroup of So, the converse follows.

In general, if a semigroup S is a strongly factorizable semigroup, the semigroup S^1 need not be a strongly factorizable semigroup.

Example. Let $G = \{e,a\}$ and $H = \{\overline{e},\overline{a}\}$ be two disjoint groups of order 2 with identities e and \overline{e} , respectively. Let $S = G \cup H$, and define the operation * on S by

x*y = xy

 $\bar{x}*\bar{y} = \bar{x}\bar{y}$

 $x*\bar{y} = \bar{x}\bar{y}$

 $\bar{x}*y = xy$

for all x,y ϵ {e,a}. Then (S, *) is a semigroup and E(S) = {e, \bar{e} }. All subsemigroups of the semigroup (S, *) are S, G, H, T_1 = {e}, T_2 = { \bar{e} } and T_3 = {e, \bar{e} }. Since S = G*E(S) and T_3 = {e}*E(T_3), the semigroup

(S, *) is strongly factorizable. Let $A = \{1, e, a\}$. Then A is a subsemigroup of the semigroup S^1 and $E(A) = \{1, e\}$. All maximal subgroups of A are $\{1\}$ and $\{e, a\}$. Because $\{1\}*E(A) = \{1, e\} \neq A$ and $\{e, a\}*E(A) = \{e, a\} \neq A$, A is not factorizable. Hence the semigroup S^1 is not strongly factorizable.

Let $\psi:G\to S$ be a homomorphism from a group G into a semigroup S. It is clear that $G\psi$ is a subgroup of S. Using this fact, the following theorem is obtained :

1.2 <u>Theorem</u>. A homomorphic image of a strongly factorizable semigroup is strongly factorizable.

Proof: Let $\psi: S \to T$ be a homomorphism from a strongly factorizable semigroup S onto a semigroup T. Let A be a subsemigroup of T. Then $A\psi^{-1}$ is a subsemigroup of S. Since S is strongly factorizable, $A\psi^{-1}$ is a factorizable subsemigroup of S, hence there exists a subgroup G of $A\psi^{-1}$ such that $A\psi^{-1} = GE(A\psi^{-1})$. Then $G\psi$ is a subgroup of A. To show $A = (G\psi)E(A)$, let a E(A). Then $A\psi^{-1} = A\psi^{-1}$. Let $A\psi^{-1} = A\psi^{-1}$. Since $A\psi^{-1} = GE(A\psi^{-1})$, $A\psi^{-1} = GE(A\psi^{-1})$, $A\psi^{-1} = GE(A\psi^{-1})$, $A\psi^{-1} = GE(A\psi^{-1})$, where $A\psi^{-1} = GE(A\psi^{-1})$. Then $A\psi^{-1} = GE(A\psi^{-1})$, hence $A\psi^{-1} = GE(A\psi^{-1})$. Then $A\psi^{-1} = GE(A\psi^{-1})$, hence $A\psi^{-1} = GE(A\psi^{-1})$, as required.

If ρ is a congruence on a semigroup S, then the map ρ' : S \rightarrow S/ ρ defined by $a\rho''$ = $a\rho$ is an onto homomorphism. Therefore by Theorem 1.2, the following corollary is directly obtained:

1.3 Corollary. If ρ is a congruence of a strongly factorizable semigroup S, then the semigroup S/ ρ is strongly factorizable. 003762

Let $\{S_{\alpha}^{}\}_{\alpha \in A}^{}$ be a nonempty family of semigroups. The semigroup S defined on the Cartesian product of the sets $S_{\alpha}^{}$ with coordinatewise multiplication, that is, $(x_{\alpha}^{})(y_{\alpha}^{})=(x_{\alpha}^{}y_{\alpha}^{})$, is the <u>direct product</u> of the semigroups $S_{\alpha}^{}$, $\alpha \in A$. If S is the direct product of the semigroups $S_{\alpha}^{}$, $\alpha \in A$, then for $\beta \in A$, the map $\Pi_{\beta}^{}: S \rightarrow S_{\beta}^{}$ defined by $(x_{\alpha}^{})\Pi_{\beta}^{}=x_{\beta}^{}$ is an onto homomorphism. By Theorem 1.2, we then have

1.4 Corollary. Let $\{S_{\alpha}\}_{\alpha \in A}$ be a nonempty family of semigroups. If the direct product of the semigroups S_{α} , $\alpha \in A$, is a strongly factorizable semigroup, then each semigroup S_{α} is strongly factorizable.

The converse of Corollary 1.4 is not true even the index set A is finite. An example is given as follows:

Example. Let $\mathbb N$ be the set of all positive integers. Then under the operation * defined by m*n = maximum $\{m,n\}$, $(\mathbb N,*)$ is a strongly factorizable semigroup. Let $G = \{e, a, a^2, a^3\}$ be a cyclic group generated by a of order 4. Hence G is a strongly factorizable semigroup. Let $\mathbb N \times G$ be the direct product of the semigroup $(\mathbb N,*)$ and G and let $A = \{(1,e),(2,e),(3,e),(3,a^2)\}$. Then A is a subsemigroup of the semigroup $\mathbb N \times G$. All maximal subgroups of A are $\{(1,e)\}$, $\{(2,e)\}$, $\{(3,e),(3,a^2)\}$ and $E(A) = \{(1,e),(2,e),(3,e)\}$. But $\{(1,e)\}E(A) = \{(1,e),(2,e),(3,e)\} \neq A$ and $\{(3,e),(3,a^2)\}E(A) = \{(3,e),(3,a^2)\} \neq A$. Hence A is not factorizable. This shows that the semigroup $\mathbb N \times G$ is not strongly factorizable. $\mathbb D$

Let S be a semigroup and I an ideal of S. Then the relation $\rho_{\, {\hbox{\scriptsize I}}}$ defined by

a $\rho_{\rm I}$ b if and only if a, b ϵ I or a = b (a, b ϵ S) is a congruence on S which is called the Rees congruence induced by I, and the semigroup S/ $\rho_{\rm I}$ is denoted by S/I and it is called the Rees quotient semigroup relative to I.

1.5 Theorem. Let I be an ideal of a semigroup S. If S is strongly factorizable, then I and S/I are strongly factorizable.

<u>Proof</u>: Since I is a subsemigroup of S, I is strongly factorizable. The semigroup S/I is strongly factorizable by Corollary 1.3.

A semigroup S with zero O is called a Kronecker semigroup if

$$ab = \begin{cases} a & \text{if } a = b, \\ 0 & \text{if } a \neq b \end{cases}$$

for all elements a, b in S. Observe that a Kronecker semigroup is a band with zero. A Kronecker semigroup of order < 2 is clearly strongly factorizable. If S is a Kronecker semigroup with zero 0, then for a \in S, $\{a\}E(S) = \{0, a\}$. This shows that a Kronecker semigroup S is strongly factorizable if and only if |S| < 2.

The converse of Theorem 1.5 is not true. Let $S = \{0, a, b\}$ be a Kronecker semigroup of order 3 with zero 0. Then S is not strongly factorizable. Let $I = \{0, a\}$. Then I is an ideal of S. The semigroups I and S/I are Kronecker semigroups of order 2, therefore they are both strongly factorizable.

Let S be a semigroup and a an element of S. Then the cyclic subsemigroup of S generated by a is

$$\langle a \rangle = \{a^n \mid n = 1, 2, 3, \ldots\}.$$

Suppose there are distinct positive integers p, q, say p < q, such that $\mathbf{a}^p = \mathbf{a}^q$, then

$$\langle a \rangle = \{a, a^2, ..., a^q\}.$$

Thus a has finite order. Let s be the smallest positive integer such that $a^S = a^T$ for some positive integer r < s. Let

$$K_a = \{a^r, a^{r+1}, ..., a^{s-1}\}.$$

Then K_a is a subgroup of S [2, Theorem 1.9]. The identity element of the group K_a is the only one idempotent of the semigroup A:

A regular semigroup containing exactly one idempotent is a group 2, Exercise for $\{1.9(4)\}$.

The next theorem shows that a strongly factorizable semigroup is periodic and a union of groups. The following lemma is required:

1.6 Lemma. If S is a semigroup in which every subsemigroup is regular, then S is periodic and it is a union of groups.

<u>Proof</u>: Let a ϵ S. Then the cyclic subsemigroup of S generated by a, $\langle a \rangle$, is regular. Because $\langle a \rangle = \{a^n \mid n=1, 2, 3, \ldots\}$, there exists a positive integer k such that $a=aa^ka$, so $a=a^{k+2}$. Then the

element a has a finite order and <a> contains exactly one idempotent.

It follows that <a> is a group.

This shows that for each element a ϵ S, a has a finite order and <a> is a subgroup of S. Hence S is periodic and S = U <a> is a union of groups. \Box

1.7. Theorem. A strongly factorizable semigroup is a union of periodic groups.

<u>Proof</u>: It has been proved in [4] that every factorizable semigroup is regular. Then every subsemigroup of a strongly factorizable semigroup is regular. Hence, by Lemma 1.6, a strongly factorizable semigroup is periodic and a union of groups.

A periodic semigroup which is a union of groups need not be strongly factorizable. A left zero semigroup S with |S| > 1 is a counterexample.

Suppose a semigroup S is a union of subgroups of S. Then there exist an index set I and some subgroups, G_i , i ϵ I, such that $S = \bigcup_{i \in I} G_i$. For each i, let e_i be the identity of the group G_i . Then for each i, $G_i \subseteq H_e$ [Introduction, page 6], and hence

$$S = U G_i \subseteq U H_e \subseteq U H_e \subseteq S.$$
 $i \in I i e \in E(S)$

Thus S = U H which is a disjoint union of groups. $e \in E(S)^e$

It then follows by Theorem 1.7 that if S is a strongly

factorizable semigroup, then S = U $_{\rm e}^{\rm H}$. $_{\rm e}^{\rm EE}(\rm S)$

Let Y be a semilattice and let a semigroup $S = U G_{\alpha \in Y}^{\alpha}$ be a disjoint union of subgroups G_{α} of S. The semigroup S is said to be a semilattice Y of groups G_{α} if $G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta}$ for all α,β in Y.

A semilattice of groups is an inverse semigroup [3, Corollary 7.53].

Let S be an inverse semigroup and $S = U H_e$. Then E(S) is $e \in E(S)$ a semilattice. Since S is an inverse semigroup, every \mathcal{L} - class and every \mathcal{R} - class contains exactly one idempotent [2, Theorem 1.17]. But each \mathcal{L} - class and each \mathcal{R} - class of S is a union of \mathcal{R} - classes of S. Then $\mathcal{L} = \mathcal{R} = \mathcal{R}$. But \mathcal{L} is right compatible and \mathcal{R} is left compatible which implies \mathcal{H} is a congruence. Let e, $f \in E(S)$. If a $e \in \mathbb{R}$ and b $e \in \mathbb{R}$, then a $e \in \mathbb{R}$ and thus ab $e \in \mathbb{R}$ is a congruence on S, which implies ab $e \in \mathbb{R}$. This proves that $e \in \mathbb{R}$ is a congruence, S is a semilattice $e \in \mathbb{R}$ of groups $e \in \mathbb{R}$.

Hence, the following corollary is directly obtained from Theorem 1.7.

1.8 Corollary. A strongly factorizable inverse semigroup is a semilattice of periodic groups.

A semilattice of periodic groups need not be strongly factorizable, as shown by the following example: Define the operation o on the set $\mathbb N$ of positive integers by mon = minimum $\{m, n\}$. Then $(\mathbb N, o)$ is a

semilattice, so it is a semilattice of periodic groups. Because the semigroup (\mathbb{N} , o) is an inverse semigroup without identity, we have that it is not factorizable, and hence it is not strongly factorizable.

Let S be a strongly factorizable semigroup. Let A be a nonempty set of idempotents of S. Then the subsemigroup of S generated by A, $\langle A \rangle$, is factorizable. Thus $\langle A \rangle$ has a left identity, say e. We then have ea = a for all a ϵ A. Since e $\epsilon \langle A \rangle$, there are e_1 , e_2 , ..., e_n ϵ A such that $e = e_1 e_2 \dots e_n$. Hence $e = e_n = e_n \epsilon$ A.

Therefore, we have

1.9 Theorem. Let S be a strongly factorizable semigroup. If A is a non-empty set of E(S), then there is an element e ϵ A such that ea = a for all a ϵ A. Hence, for any idempotents e, f of S, ef = f or fe = e.

A semigroup S is called an <u>orthodox semigroup</u> if S is regular and the set of all idempotents of S forms a subsemigroup of S. Hence, a regular semigroup is orthodox if and only if for e, $f \in E(S)$, ef E(S).

Let S be a strongly factorizable semigroup and e, f ϵ E(S). Then ef = f or fe = e by Theorem 1.9. If ef = f, then ef ϵ E(S). If ef \neq f, then fe = e and thus (ef)² = e(fe)f = eef = ef ϵ E(S). This shows that every strongly factorizable semigroup S is an orthodox semigroup.

If S is a strongly factorizable semigroup, then for e, f ϵ E(S), ef = f or fe = e, but they need not occur in the same time. A finite group with zero is a counterexample.

A question arises. Are the necessary conditions of a strongly factorizable semigroup in Theorem 1.7 and Theorem 1.9 sufficient for a semigroup to be strongly factorizable? The following example is the answer: Let G be a nontrivial periodic group. Let S = GUI [Introduction, page 5]. Then the semigroup S is the union of periodic groups G and {1}. and $E(S) = \{e, 1\}$ where e is the identity of the group G. The semigroup S satisfies the necessary condition in Theorem 1.9. But S is not factorizable because $\{1\}E(S) = \{1, e\} \neq S$ and $GE(S) = G \neq S$.

The next theorem shows properties of Green's relations on any strongly factorizable semigroup.

1.10 Theorem. Let S be a strongly factorizable semigroup. Then the following hold:

- (a) $\mathcal{H} = \mathcal{L}$.
- (b) For idempotents e, f of S, ef = f implies (i) $H_{\rm e}f$ = $H_{\rm f}$ and (ii) fe = e if $|H_{\rm f}|$ > 1.

 $\frac{\text{Proof}}{\text{e}}: \text{ (a) Since S} = \text{UH}_{\text{e}} \quad \text{and } \mathcal{H} \subseteq \mathcal{L} \text{ , it follows}$ $\text{e}\epsilon E(S)$ that $\mathcal{H} = \mathcal{L}$ if and only if for e, f ϵ E(S), e \mathcal{L} f implies e = f.

Let e, f ϵ E(S) such that e \mathcal{L} f. Then e = xf and f = ye for some x,y ϵ S. By Theorem 1.9, ef = f or fe = e. If ef = f, then e = xf implies f = ef = xff = xf = e. If fe = e, then f = ye implies e = fe = yee = ye = f.

(b) Assume a, b ϵ E(S) such that ab = b. Let x ϵ H_a. Then x \mathcal{H} a. Hence x \mathcal{L} a. Because \mathcal{L} is right compatible, xb \mathcal{L} ab,

and hence $xb \mathcal{X} b$ since $\mathcal{H} = \mathcal{L}$ and ab = b. Thus $xb \in H_b$. This proves that if a, $b \in E(S)$ such that ab = b, then $H_ab \subseteq H_b$.

Next, let e, f ϵ E(S) such that ef = f. Then H f \subseteq H f. If e = f, (i) and (ii) follow clearly. Assume e \neq f.

Case $|H_f| = 1$. Then $H_e f \subseteq H_f = \{f\}$ which implies $H_e f = H_f$.

Case $|H_f| > 1$. Let $T = \{e\} \cup H_f \cup H_{fe}$. Since ef = f, we have that $eH_f = H_f$, $eH_{fe} = efeH_{fe} = feH_{fe} = H_{fe}$ and $H_{fe} = H_{fe}$ fee = H_{fe} fee = H_{fe} Because f(fe) = fe, we have that $H_f = H_f = H$

The following theorem gives a characterization of a strongly factorizable semigroup.

- 1.11 Theorem. Let S be a semigroup. Then S is strongly factorizable if and only if it satisfies the following three conditions:
 - (1) S is a union of periodic groups.

- (2) For any nonempty set A of idempotents of S, there exists an element e ϵ A such that ea = a for all a ϵ A.
- (3) For any e, f ϵ E(S), ef = f implies (i) $H_ef = H_f$ and (ii) fe = e if $|H_f| > 1$.

<u>Proof</u>: If S is strongly factorizable, then (1), (2) and (3) follow from Theorem 1.7, Theorem 1.9 and Theorem 1.10, respectively.

Conversely, assume that S satisfies the conditions (1), (2) and (3). To show S is strongly factorizable, let T be a subsemigroup of S. By (1), E(T) $\neq \emptyset$. Then, by (2), there is an element e ϵ E(T) such that ea = a for all a ϵ E(T). Because T \cap H_e is a subsemigroup of the periodic group H_e, it follows that T \cap H_e is a subgroup of H_e. Thus T \cap H_e is a subgroup of T. Claim that T = (T \cap H_e)E(T). Let x ϵ T. Then x ϵ H_f for some f ϵ E(S) since S is a union of groups. Since H_f is a periodic group, there exists a positive integer k such that x^k= f. Then f ϵ E(T). If $|H_f| = 1$, then x = f which implies x = ex ϵ (T \cap H_e)E(T). If $|H_f| > 1$, then fe = e by (3)(ii), and it then follows from (3)(i) that H_fe = H_e. Hence xe ϵ H_e. Thus x = xf = x(ef) = (xe)f ϵ (T \cap H_e)E(T). This proves that T = (T \cap H_e)E(T), as required.

Let S be a semilattice. The relation \leq defined on S by a \leq b if and only if a = ab (=ba) is a partial order on S which is called the <u>natural partial order</u> on S.

Let S be an inverse semigroup. Then E(S) is a semilattice. If 1 is the identity of S, 1 is clearly the maximum element of E(S) under

the natural partial order on E(S). Assume e is the maximum element of E(S). Then ef = fe = f for all f ϵ E(S). Then for a ϵ S, ea = $(eaa^{-1})a$ = $aa^{-1}a = a = aa^{-1}a = a(a^{-1}ae) = ae$, so e is the identity of S.

Let S be an inverse semigroup. Suppose S is strongly factorizable. Then S has an identity, say 1. Then for each e ϵ E(S) such that $e \neq 1$, le = e but el $\neq 1$. By Theorem 1.10(b), $|H_e| = 1$, so $|H_e| = 1$. Let S be an inverse semigroup. Then S is strongly factorizable if and only if it satisfies the following conditions:

- (1) Every nonempty set of idempotents of S has a maximum element.

Proof : If the semigroup S is strongly factorizable, then (1)
and (2) follow from Theorem 1.11 and the above proof.

To prove the converse, by Theorem 1.11, it suffices to show that $H_1e = H_e$ for all $e \in E(S)$. Because S is an inverse semigroup which is a union of groups, it follows that S is a semilattice E(S) of groups H_e . Hence, for each $e \in E(S)$ such that $e \neq 1$, $H_1e = H_1e = H_2e = H_1e = H_1e = H_2e = H_1e$.

- 1.13 Corollary. A finite inverse semigroup is strongly factorizable if and only if it satisfies the following two conditions:
 - (1) E(S) is a chain.
 - (2) $S = U H_e$ such that $H_e = \{e\}$ if $e \in E(S)$ such that $e \in E(S)$ $e \ne 1$ where 1 is the identity of S.

Proof: It follows directly from Corollary 1.12.

A semigroup is called a <u>right group</u> if it is right simple and left cancellative. A <u>left group</u> is defined dually. A semigroup S is a right group if and only if $S = U H_e$ and ef = f for all e, f ϵ E(S) $\epsilon \epsilon$ E(S)

[2, Exercise for § 1.11(2)]. Dually, a semigroup S is a left group if and only if S = U H_e and ef = e for all e, f ϵ E(S).

Observe that if S is a left group, then E(S) has a left identity if and only if $\left|E(S)\right|=1$. Hence, by Theorem 1.11, a left group S is strongly factorizable if and only if S is a periodic group.

Let S be a right group. Let e, f ϵ E(S). Then ef = f. Claim that $H_e f = H_f$. Let a ϵ H_e . Then a \mathcal{X} e, so a \mathcal{X} e. Since \mathcal{X} is right compatible, af \mathcal{X} ef, so af \mathcal{X} f. Since S is right simple, af $S^1 = S = fS^1$. Thus af \mathcal{R} f. Hence af \mathcal{X} f, so af ϵ H_f . This shows that $H_e f \subseteq H_f$ for all e, f ϵ E(S). Then for e, f ϵ E(S), $H_f = H_f ef = (H_f e)f \subseteq H_f$ which implies $H_f f = H_f$. It thus follows from Theorem 1.11 that a right group is strongly factorizable if and only if S is periodic.

- 1.14 Corollary. (a) A left group is strongly factorizable if and only if it is a periodic group.
- (b) A right group is strongly factorizable if and only if it is periodic.