JCTION

INTRODUCTION

Let S be a semigroup. For $T\subseteq S$, T is a <u>subsemigroup</u> of S if T forms a semigroup under the same operation on S. For a nonempty subset A of S, let

$$= \{a_1 a_2 ... a_n \mid a_i \in A, n \in \{1,2,3,...\}\},\$$

then <A> is a subsemigroup of S and it is called the subsemigroup of S generated by A. For a & S, let <a> denote <{a}> and it is called the cyclic subsemigroup of S generated by a.

Let S be a semigroup. An element a of S is called an <u>idempotent</u> of S if $a^2 = a$. For a semigroup S, let E(S) denote the set of all idempotents of S, that is,

$$E(S) = \{a \in S \mid a^2 = a\}.$$

A semigroup S is a <u>band</u> if each element of S is an idempotent of S. Hence, a semigroup S is a band if and only if S = E(S). A commutative band is a <u>semilattice</u>.

An element z of a semigroup S is called a <u>left</u> [right] <u>zero</u> of S if zx = z [xz = z] for every $x \in S$. An element z of S is called a <u>zero</u> of S if it is both a left zero and a right zero of S. An element e of a semigroup S is called a <u>left</u> [right] <u>identity</u> of S if ex = x [xe = x] for all x in S. An element e of S is called an <u>identity</u> of S if it is both a left identity and a right identity of S.

A zero and an identity of a semigroup are unique if exist and they are usually denoted by 0 and 1, respectively.

A nonempty subset G of a semigroup S is a <u>subgroup</u> of S if it is a group under the same operation of S.

Let S be a semigroup with identity 1. An element a of S is called a <u>unit</u> of S if there exists $a' \in S$ such that aa' = a' a = 1. Let G be the set of all units of S, that is,

 $G = \{a \in S \mid aa' = a'a = 1 \text{ for some } a' \in S \}.$

Then G is the greatest subgroup of S having 1 as its identity, and it is called the group of units or the unit group of the semigroup S.

Let S be a semigroup. The <u>order</u> of S is the number of elements in S if S is finite, otherwise S is of <u>infinite order</u>. For a ϵ S, the <u>order</u> of a is the order of <a>.

A semigroup all of whose elements are of finite order is <u>periodic</u>. Hence, a semigroup S is periodic if and only if for all a ϵ S, $a^m = a^n$ for some m, n ϵ {1,2,3...} such that m \neq n. Then a group G is a periodic group if and only if for each element a in G, there exists k ϵ {1,2,3...} such that $a^k = 1$ where 1 is the identity of G.

An element a of a semigroup S is $\underline{regular}$ if a = axa for some $x \in S$. A semigroup S is $\underline{regular}$ if every element of S is $\underline{regular}$.

Let a be an element of a semigroup S. An element x of S is an $\underline{inverse}$ of a if a = axa and x = xax. A semigroup S is an $\underline{inverse}$ semigroup if every element of S has a unique inverse, and the unique inverse of the

element a in S is denoted by a⁻¹. A semigroup S is an inverse semigroup if and only if S is regular and any two idempotents of S commute [2, Theorem 1.17]. Hence, if S is an inverse semigroup, then E(S) is a semilattice.

Let S be a semigroup, A a nonempty subset of S. Then A is called a <u>left</u> [right] <u>ideal</u> of S if $SA \subseteq A$ [AS $\subseteq A$]. We call A an <u>ideal</u> of S if A is both a left ideal and a right ideal of S.

A semigroup S is <u>left simple</u> [right simple, simple] if S is the only left ideal [right ideal, ideal] of S. Hence, a semigroup S is left simple [right simple, simple] if and only if Sa = S [aS = S, SaS = S] for all $a \in S$.

A semigroup S is <u>left cancellative</u> if for a, b, $x \in S$, xa = xb implies a = b. A <u>right cancellative semigroup</u> is defined dually. A cancellative semigroup is a semigroup which is both left cancellative and right cancellative.

Let S and T be semigroups and ψ a map from S into T. The map ψ is $\underline{homomorphism}$ from S into T if

$$(ab)\psi = (a\psi)(b\psi)$$

for all a, b ε S. A semigroup T is a homomorphic image of a semigroup S if there exists a homomorphism from S onto T. A homomorphism ψ from S into T is an isomorphism if ψ is one-to-one. If there is an isomorphism from S onto T, we say that the semigroup S and T are isomorphic, and we write $S \cong T$.

Let S be a semigroup. A relation ρ on S is called <u>left compatible</u> if for a, b, c ϵ S, a ρ b implies ca ρ cb. A <u>right compatibility</u> is defined dually. An equivalence relation ρ on S is called a <u>congruence</u> on S if it is both left compatible and right compatible. Then an equivalence relation ρ on S is a congruence on S if and only if for a, b, c ϵ S, a ρ b imply ca ρ cb and ac ρ bc, or equivalently, for a, b, c, d ϵ S, a ρ b and c ρ d implies ac ρ bd. If ρ is a congruence on a semigroup S, then the set

$$S/\rho = \{a\rho \mid a \in S\}$$

with the operation defined by

$$(ap)(bp) = (ab)p$$
 (a, b ϵ S)

is a semigroup, and it is called the quotient semigroup relative to the congruence ρ .

Let P be a nonempty set and < a relation on P. If the relation < is reflexive, antisymmetric and transitive, then < is called a <u>partial</u> order on P, and (P, <) or P is called a <u>partially ordered set</u>.

A partially ordered set (P, \checkmark) is called a <u>chain</u> if a \lt b or b \lt a for all a, b ϵ P.

Let S be a semigroup, and let 0 be a symbol not representing any element of S. The notation SUO denotes the semigroup obtained by extending the binary operation on S to 0 by 0.0 = 0 and 0.a = a.0 = 0 for all a ϵ S, and the notation S^O denotes the following semigroup:

$$S^{\circ} = \begin{cases} S & \text{if S has a zero,} \\ SUO & \text{if S has no zero.} \end{cases}$$

Similarly, let S be a semigroup and 1 a symbol not representing any element of S. The notation SUL denotes the semigroup obtained by extending the binary operation on S to 1 by defining 1.1 = 1 and 1.a = a. a.1 = a for all $a \in S$, and the notation S^1 denotes the following semigroup:

$$S^1 = \begin{cases} S & \text{if S has an identity,} \\ SU1 & \text{if S has no identity.} \end{cases}$$

By a group with zero we mean GUO for some group G.

Let S be a semigroup. Define the relations $\mathcal L$, $\mathcal R$ and $\mathcal H$ on S as follow:

$$a \mathcal{L}b \longleftrightarrow s^{1}a = s^{1}b$$
,
 $a \mathcal{R}b \longleftrightarrow as^{1} = bs^{1}$

and

The relations \mathcal{L} , \mathcal{R} and \mathcal{H} are called <u>Green's relations</u> on S and they are equivalence relations on S. Moreover, \mathcal{L} is right compatible, \mathcal{R} is left compatible, $\mathcal{H} \subseteq \mathcal{L}$ and $\mathcal{H} \subseteq \mathcal{R}$. Equivalent definitions of the Green's relations \mathcal{L} and \mathcal{R} on S are given as follow:

$$a \mathcal{L} b \longleftrightarrow a = xb$$
, $b = ya$ for some $x, y \in S^1$, $a \mathcal{R} b \longleftrightarrow a = bx$, $b = ay$ for some $x, y \in S^1$.

If S is a regular semigroup and a, b ϵ S, then

 $a \mathcal{L} b \iff a = xb, b = ya \text{ for some } x,y \in S,$ $a \mathcal{R} b \iff a = bx, b = ay \text{ for some } x,y \in S.$

For a semigroup S and for a ϵ S, let L_a , R_a and H_a denote the \mathcal{L} -class of S containing a, the \mathcal{R} -class of S containing a and the \mathcal{R} -class of S containing a, respectively.

In any semigroup S, any \mathcal{H} - class of S contains at most one idempotent [2, Lemma 2.15], an \mathcal{H} - class of S containing an idempotent e of S is a subgroup of S [2, Theorem 2.16], and it is the greatest subgroup of S having e as its identity.

If S is an inverse semigroup, then each $\mathcal{Z}-$ class and each $\mathcal{R}-$ class of S contains exactly one idempotent [2, Theorem 1.17].

For any set A, let |A| denote the cardinality of A.

Let X be a set. A partial transformation of X is a map which its domain and its range are subsets of X. If α is a partial transformation of X, let $\Delta\alpha$ and $\nabla\alpha$ denote the domain and the range of α , respectively. The empty transformation of X is referred as a map with empty domain, and it is denoted by 0. Let T_X denote the set of all partial transformations of X including the empty transformation 0. For $\alpha, \beta \in T_X$, define the product $\alpha\beta$ as follows: If $\nabla\alpha \cap \Delta\beta = \emptyset$, let $\alpha\beta = 0$. If $\nabla\alpha \cap \Delta\beta \neq \emptyset$, let $\alpha\beta$ be the composition of $\alpha \mid (\nabla\alpha \cap \Delta\beta)\alpha^{-1}$ (α restricted to $(\nabla\alpha \cap \Delta\beta)\alpha^{-1}$) and $\beta \mid (\nabla\alpha \cap \Delta\beta)$. Then for $\alpha, \beta \in T_X$, $\Delta\alpha\beta = (\nabla\alpha \cap \Delta\beta)\alpha^{-1} \subseteq \Delta\alpha$ and $\nabla\alpha\beta = (\nabla\alpha \cap \Delta\beta)\beta \subseteq \nabla\beta$. Thus T_X is a semigroup under the operation defined above and it is called the partial transformation semigroup on the set X. Hence the empty transformation of X is the zero of T_X and the identity map on X

which is denoted by 1_X is the identity of the semigroup T_X . For $\alpha \in T_X$, α is an idempotent of T_X if and only if $\nabla \alpha \subseteq \Delta \alpha$ and $x\alpha = x$ for all $x \in \nabla \alpha$. Hence

$$\begin{split} \mathbb{E}(\mathbb{T}_{\widetilde{X}}) &= \{\alpha \in \mathbb{T}_{\widetilde{X}} \mid \forall \alpha \subseteq \Delta \alpha \text{ and } x\alpha = x \text{ for all } x \in \forall \alpha \}. \end{split}$$
 Let $\mathbb{I}_{\widetilde{X}}$ denote the set of all 1-1 partial transformations of X, that is, $\mathbb{I}_{\widetilde{X}} &= \{\alpha \in \mathbb{T}_{\widetilde{X}} \mid \alpha \text{ is one-to-one} \}. \end{split}$

Then I_X is an inverse subsemigroup of T_X with identity I_X and zero 0, and it is called the <u>1-1</u> partial transformation semigroup or the symmetric inverse semigroup on the set X. For $\alpha \in I_X$, the inverse map α^{-1} is the inverse of α in I_X , so $\Delta \alpha^{-1} = \nabla \alpha$, $\nabla \alpha^{-1} = \Delta \alpha$. By a transformation of a set X we mean a mapping of X into itself. Then an element $\alpha \in T_X$ is a transformation of X if and only if $\Delta \alpha = X$. Let T_X denote the set of all transformations of X, that is,

$$\mathcal{I}_{X} = \{ \alpha \in \mathcal{I}_{X} \mid \Delta \alpha = X \}.$$

Then \mathcal{I}_X is a subsemigroup of T_X with identity 1_X and it is called the full transformation semigroup on the set X. The permutation group on X is denoted by G_X . Then

 $G_{X} = \{ \alpha \in T_{X} \mid \Delta \alpha = \nabla \alpha = X \text{ and } \alpha \text{ is one-to-one} \}.$

Observe that $G_X \subseteq I_X \subseteq T_X$ and $G_X \subseteq \mathcal{I}_X \subseteq T_X$. The semigroup of all one-to-one transformations of X and the semigroup of all onto transformations of X are denoted by M_X and E_X , respectively. Hence

$$M_{X} = \{\alpha : X \rightarrow X \mid \alpha \text{ is one-to-one}\}$$

and

$$E_{X} = \{\alpha : X \rightarrow X \mid \alpha \text{ is onto}\}.$$

Let $\alpha, \beta \in T_X$ with $|\nabla \alpha| = |\nabla \beta| = 1$. Assume $\nabla \alpha = \{a\}$ and $\nabla \beta = \{b\}$. Then $\alpha\beta = 0$ if a $\not\in \Delta\beta$ and if a $\in \Delta\beta$, then $\alpha\beta = \gamma$ where $\Delta\gamma = \Delta\alpha$ and $\nabla\gamma = \{b\}$. Hence the set of all constant partial transformations of X and the set of all constant transformations of X form subsemigroups of T_X . We denote the semigroup of all constant partial transformations of X and the semigroup of all constant transformations of X by C_X and F_X , respectively. Hence

$$C_{X} = \{\alpha \in T_{X} \mid |\nabla\alpha| = 1\} \cup \{0\}$$

and $F_{\emptyset} = \{0\}$ and if $X \neq \emptyset$, then

$$F_X = \{\alpha \in T_X \mid |\nabla \alpha| = 1\}.$$

The <u>shift</u> of a partial transformation α of X, $S(\alpha)$, is defined to be the set $\{x \in \Delta\alpha \mid x\alpha \neq x\}$. A partial transformation α of X is said to be <u>almost identical</u> if the shift of α is finite, that is, $|S(\alpha)| < \infty$. Let

$$U_{X} = \{\alpha \in T_{X} \mid \alpha \text{ is almost identical}\},$$

$$V_X = \{\alpha \in T_X \mid \alpha \text{ is almost identical}\}$$

and

$$W_X = \{\alpha \in I_X \mid \alpha \text{ is almost identical}\}.$$

If $\alpha, \beta \in T_X$, then $S(\alpha\beta) \subseteq S(\alpha) \cup S(\beta)$. Hence, U_X , V_X and W_X are subsemigroups of T_X , J_X and I_X , respectively.

By a <u>transformation semigroup</u> on a set X, we mean a subsemigroup of the partial transformation semigroup on X.

A semigroup S is said to be <u>factorizable</u> if there exists a subgroup G of S such that S = GE(S). A semigroup in which every subsemigroup is factorizable is called a <u>strongly factorizable semigroup</u>.

In the first chapter of this thesis, we study the algebraic structure of strongly factorizable semigroups and characterize strongly factorizable semigroups. To characterize strongly factorizable transformation semigroups on a set X in term of cardinality of X is the purpose of Chapter II. In the last chapter, we characterize maximal strongly factorizable subsemigroup of the symmetric inverse semigroup on a finite set.