CHAPTER TV

APPLIC.TIONS OF THI BCHP-SOMMERFELD QUANTIZATION RULE

4,1 Solution of the Radial Wave LEgquation

For a particle of mass Y1 moving in a central field V«)L)
which is a function of the radial coordinate only, the Schrddinger

equation is
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where W and !E are the wave function and the erergy eigenvalue
respectively.

By inserting the wave function W  in the form
uir, 858y = R Y, (6,9) (h.1.2)
)]

into eq.(%.1.1), we obtain the radial wave cquation

%L%FR M*\E \/m)ﬁ!it_f_%i_}}l{ e B e T
»e YY) iz

ind by letting L}(ﬂ) - )Lﬁl(kj , €g.(4.1.3) becoues
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which has the same form as eq.(2.1.17), but the boundary conditions
now are specified at the values O and 4+0@ of the independent
variable A&  instead of at — and 40@ o5 in the one-dimensional

case. To bring the conditions in line with those of the one-



dimensicnal problem, the transformation which first suggested by

Langer (1937) is introduced herec :
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A = o g U()c) = 324)(5) . (4a1.5)

This transformation maps the points o = 0,409 to S - —oo y +00

respectively. It is a straightforward matter to verify that
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hence eq.(4.1.4) becomes
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The boundary coditions for ?&5) can be considered from the trans-

formation given in eq.(4.71.5), it is found that
i€
/ . S
gy /e Ree)

which tends to zero 28 S —> £00 | (4,1.8)

Egs.(4.1.7) and (4.1.3) correspond excctly to the one-dimensional
case, and therefore the Bohr-Soumerfeld quontization rule can be

applied to this systew. The radial quontization condition frow
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czn be modified to

eq.(2.3.4)
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since we know from eq.(2.%.6) that the princinal quantum number



-5

Vs Wit 30 1 5
gt qg+ (4.1.11)
and from page 305 of Goldstein(1959) the angular momentum ( or

orbital ) quantum number ﬁ can be related to WB and ﬂ¢ as
£ e WA (5.1.12)
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and N, is then inserted into eqg.(%4.1.9).
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From eqs.(4.1.7) and (4.1.10) we have
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where S' and 'Sl are the limits of the region in which the

quantity in the brackets is positive.
Since S = log 2 , we'can reexpress the above condition in term

of 4 as

by
2 : g s
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By employing a transformation given in €q.(3.3.30), we can write
eq.(4.1.14) in the atomic unit as
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where ?\ and ?L are two clissical turning points.

We may recall that

QUe) = Sp+pe+Y (4.1.16)
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ho2 Asymptotic Survey

Our aim now is to construct the effective potential of an
alkali atom. Since the alkali atom has a single valence electron
and a nucleus with compact core electrons, the methods outlined in
the previous sections can be used directly. We start by considering
its characteristic asymptotic regions, near the nucleus ond far away

frow the core, and then considering the region between then.
4.2.1 Potential near the Nucleus

At the region near the nucleus, the potential energy should

be o pure coulomb field due oanly to the nuclear charges %e S
/ " ,
Vi) - _ Ze or Qe - Zg . - BB
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The potentialfield should hold unto 'some r.dial distance rZ at
which the contributidns to the potential’due to the core electrons

4

begin to be dominant.

4.,2.2 Potential outside the Inn Core

At the region far away from the core, the valence
electron “sees’ only the net charge € since all of the core
electrons with total negative charges, —(Z-1)€, reduce the positive

nuclear chargzges }2e., Therefore the pocential energy
2
Wiy = il or Q@) = S’ (%.2.2)
L

should hold down to some radizl distance ro,
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We shall ulso assume that theré exists additional
contribution due to the polarization of the core ( Eittel 1071,
refers as the polarizability ). This polarization potential
is proportional to —1/r4 80 that the corresponding additional
term of Q(Y) is proportional to '/?2 . 'The Q(?) with polarization

can be expressed as

Qp = o+ 5/ (4.2.3)
where o is a parameter to be determined.
b.2.3 Potential bztween the Two Regions

The potential enérgy heiween those two asyumptotic regions

can be determined by zssuming Gﬂf) to be 2 parabolic function of

F
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where o > @ s and K. are. parameters to) be determined.

4.3 The Procedure

4.3.1 Outside the Ton Core

At the region outside the core, the integral

J §/\/A+AB+C +_€3 +g4 o(f (4.3.1)

must be encountered in both cases ag mentioned in the previous

section. A B C D and Din eq.(4.3.1) are all constants.
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The integral in eq.(4.3.1) was integrated in the complex plane by

Sommerfeld (1923). The result of integration for Ao . CK:O

and‘D‘ =0 can be expressed as (see aippendix 1)
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From eqs.(4.145) and (4.3.1) we have
a
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2 A / RN

in general,
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For our integral, we have OL: { = 'Q ., @ = 1 and D = é
which is zero if we exclude the polarization.

The experimental energy, éﬂt g of £ states - the outer
states -~ and the corresponding quantum numbers, M and ,ﬁ , are
inserted in eq.(4.3.3). The parameter ) con be determined by
adjusting it until the right hand side of eq.(4.3.3) equals to the
left hand side. 41l parameters which have to be determined - A |
E% . Ci , and :D ~ are now known. The lower turning point can
then be found by setting the quantity in the integrand equal to
zero. Thus the lower turning point, f;ﬁn , 1s determined by the
equation

Z ;
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For the simpler case wvhen ¥ =0 f%“n/is given by "the formula

SRR N . (B.3.8)
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Now we have
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Fig.%4.1 Disgram for constructing CM?)

For the inside region, two continuity conditions are
introduced in order to mutch the new C%(?) of the inside region
with the created one,.CllQ)o At any matching point ﬂo the values

> ¥ 4

of these two functions and their derivatives must be equal,i.e.,

&) = QB (e3.0)
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and Qlpy) = Qlgy (4.3.9)

where primes denote the derivatives.
Prokofjew (1929) employed eq.(4.3.3) with ‘D =0, eqs.(4.3.3)
and (4.3.9) to determine the unknown parameters (X; ,@‘ s and 6'
for 635?) . The same procedure was recently repeated by Dumrongsak
(1976), and the same result was obtained.

Neither eq.(4.1.15) nor eq.(4.3.2) are £eliable in our
works because the functicn Qo(?) £y S—‘ <?<OO has been deter-
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mined. In constructing the effective potential in the inner

interval, we have used the quantization condition
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for the inner states, d states,. instead of
Cnax
lf2
n-¢-) _ 2 {Qc(?)‘%e(?ﬂ] d? (4.3.100)
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Pmin
used by Prokofjew.

In general, the quantiz.tion condition
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is expressed in summation of three integrals. CQ(?) is the inner
Z

unknown function matching with the known one, Clgg) g at QZ‘ 4
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#e cannot use the integration formula given in eq.(4.3.2) to perform

our integrals in eq.(4.5.10a). Instead we must use the integration
formula for finite liwmits ( one of them is neither f nor b
MAX ™in

L% _ B cin[2A¢rB) _ T o o4 2C 5
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given by Gradshteyn and Ryzhik (1965).

The function -%é(?) and A in eq.(4.3.12) are defined as

z Uz
%(f) = Ap+Bp+C AL (B24A0)" . (4.3.13)

The two turning points are now

zﬁ;in = ;:léig;éi (Ge3a1l)
maxX 2A

and B’ for the C%ﬂ?} should he 17+ instead ofii1/2ii,
1t 18 found that
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After substituling the limits of integration into eq.(4.3.10a)arn’

1

o a (4:3.17)
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using all of the facts given above, eg.(4.3.10a) becomes
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where GO & L BO_ e \/"Cb] s (1) (4.%.19)
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which is independent of ? 5

Hey - 2o siﬁ‘(.w) + ﬁ%sxﬁ‘-(ﬁzﬁgiﬁ),wc;azw
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and the subscript 0" denotes the corresponding C%;?) used.

The two matching conditions in eqgsi(4.3.8) and (4.3%.9) for D = 0
can be reexpressed in general forms at any point ﬁ; a8
2 i
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which lead to
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?m+| and m+] can then be obtained from any assumed Ohn+:
since CQW\ g PW\ and E;\ here are known parameters.
The processes to solve eqs.(4.3.18) and (4.3.21) simultaneously =are:
1) P’ and B] can be obtained by assuming a value for dﬂ and
substituting it into eq.(4.3.21)
2) Substitute the parameters - éne , N and R B eq.(4.%.18)
3) If the right hand side of eq.(4.3.18) is not equal to the left
hand side, the value of QL1 appearing on the right hand side

of eq.(%#.3.21) must be a new assumed value.
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When the parameters - dﬂ . ?i and-vl - have been deter-
mined, the corresponding ? . fer éa(g) can be obtained from
™min

eq.(4.3.14). We now have

Z. “
Q‘(g) = o9+ i%,g“rlﬁl y §21<§ L%is (4.3.22)
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where ?m may be chosen from any g;“ms of d states in the same
manner as ﬁO . We found that there exists three integrals
appearing in the quantization condition for Li which must be

integrated while there exists only tvo integrals required for Na,

since <Q£?) still exists o Liy ZFer Li we have
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It is noted that the wmatching conditions (4.3.21) hold only when

I} =’§ = O . Whenever I $ O ,/the two matching conditions are
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The same process to find dj must be carried out except

the integral

Svrx /s Pmax Ve
{Qo(f %’eﬁ : %;ﬁtu«“f";m‘z“g} "‘5 (h.3.25)

Sio S
must be integrated numerically by Simpson’s integration formula
(see Appendix B) since no explicit analytic:.l formula foz finite-

limit integration as above is available.
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L.3.3 Region near the HNucleus
2z
The potential at the region near the nucleus is 'ﬂze
A
or Q(g) = Z? o, <p<§ of 13 state. (4.3.26)
b ‘ ) Miia,

The maximum point for this potential should be the gmin
of the 15 state since its associated wave function is the one
nearest to the nucleus. The ?W“W may be determined from eq.(4.3.14)
after obtaining cis A %5 and Kg. for éé(g) of the 1s state from
eqs.(4.3.18) and (4.3.29——Thk eg-tH.3.21) is still available for
the reverse matching because of the commutation of the indices
M+l and m ,

We =also have
g ¥
G5(§) = s+ Begr ¥y R LS (4.3.27)
W:M

where of the 1s;:state is replaced bs »

g)nﬂi_v\, = * y ?65
For the Na atom the same procedure, as that was euployed by Prokofjew,
is used to create CA(?) for"p  states

He let 624(?) of the 2p state join swmoothly with C%(?)
of the 1s state and then found out g%ﬁk/ of Q%(g) of the 2p state.
ehﬂw of the 2p state was chosen to be the maximum possible point
for Q%(Q) « Bach G&(Q) of the other np states was also allowed
to match with that of (n-1)s statee, and then the averaged (Q4(€)
for the p states was determined.

The potential @(g) is given by

P ,
Gh8) = oy €+ Buor ¥, v Pt CHys (4.3.28)
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: iz {H.3.27) ‘was redl r Al §
where ﬁmmm in eq.(4.3.27) was replaced by f%q and f;ma& of 6&#?)
was written as ? 2
4%
It is noted that the matching of CQKQ) of the p states
with Gz§g)of the s states is not possible in the case of Li but

i

the C%f?) of the p states can match with the G%(?) of the d states.

b.3.4 Constructed Parts without Data

All experimental dito Wave  aow been used. However, we
still have for the region ' in the case of Na
or i.e. the region between ? .. of the p states and 9 of the

miw ' mary

s states in the case of Ii to bhe determined.

In the case of Nay  two functions

@ (9 dz?z'*'@a?*’bf; ) S84 T (4.3.29)

2 %
and Q] = Lo reoxry, T <¢< §,, (4.3.30)

are created to join G&f@\ with G%(Q) continuously, and thcese two
)

equations must satisfy the wmitching conditions in eq.{%,3.21).

g;z_ in both e@uations is an grbitrgry point which is chosen to

make the potential able to reproduce energy levels in agreement

with the experimental data.
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