CHAPIIER III

THis QUANTUM DEFECT METHOD

3.1 Introduction

Recent attempts to determine theoretically the wave

functions and the energy levels have demonstrated that the amount

of labour involved in such a study is enormous, even if one endeavors
to simplify the problem by wmaking some quite vrestrictive assumptions
concerning thc form of the many-particle wave function. It was ,
therefore, of interest when a procedure called the Quantum Defect
lHHethod ( QDI ) was proposed which made short-cuts in the calculations
possible. ‘the present form of the QDI is = development of =2
procedure originated by Kuhn ard Van Vleck (1950) and has beoen

significantly refined and lextented by Brooks (195%,1958;Brooks and

fiam,1958) and by Ham (1954, 1955)%

5.2 Frondosrmental Features

The essential ide:  of the QDM is as follows. 1In a free
atom of an alkali metal, the valencc electron is loosely bound
to 2 compact spherical core of electrons in closed shells. The closed
shells are not modified when the atons begin to form into solid.
The cowpact core occupies culy a small portion of the volume of an
atomic cell. For this reason, the electrostatic field which acts
on the v=lence electron is nearly o pure coulomb field through out
most of the cell. Hence its wave function must be a coulomb wave
function in the outer region of the cell., The same-is true in the

free atom. It does not imply, however, that the wave function is
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hydrogenic. The solutions of the SchrBdinger equation with a coulomb
potential cre two linearly iﬁdependent confluent hypergeoumetric
functions. TFor a given energy, there is a unique ‘‘coupling constant?
which determines the cowmbination of these two functions which will
vanish exponenticlly at infinity. If it is assumed that the coupling
congtant depends smoothly on energy, so that it wculd be possible
to extrapolate it as & function of energy, and hence to determine it
for any energy. This coupling constant is, in reality, determined
by solving the Schrddinger equition with the actual potential energy
inside the core. It is possible, however, to determine this constant
enpirically without taking explicit account of interaction within
the core.

To forwalize this/ discusgion, we consider the radial wave
equation which can be expressed in, the atomic unit as
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( V& is an integer only in the hydrogenic problen) since we are

concerned with the outer regions of the cell. One of the two

linearly independent solutions, LJ , vanishes at the origin and
A£,0
the other L& o is sinzular there. Consequently, LQ ) could
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not appear in the usual hydrogenic problem. The functions nay be

expressed in terms of Bessel functions (Wan.icr,1943; Kuhn,1951:
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The functions 1.
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: is 2 regular Whittaker function and Wﬂ(2@+1)is a Gamme
et

function. The general solution of eqe(3.2.1) is now expressed as

are combinotions of Bessel functions,

Ukm - o) U m,@w(m%(n,m (3:2.23

Y
where(X(ﬂ)anﬁfﬁ(Yf) are coupling)constants which depend on only Y .,
Both l} and L) are preseunt because the potential inside the

L0 2,1
corc region is not coulorhic,
The problem is now/toidetermine the ratio C{Uq»/KYYW) .

\t an eigenvalue of the frle¢ stom, 'the wave function goes to zero
exponentially at infinity and, consequently, must be represented by
runction W, (U g ot
the function — ) which has this property. This function

N ¢yl
- . Z . . - . i .
is called the Whittaker funetion and is given in relation with the

o 74

quasi-Bessel functions ) vsisll g by Whittaker and Watson (1952)
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Hence at an cigenvalue of the free atom the r:tio thnz/jYﬂ) is

determined to be
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For any energy, the ratio d(m)/i(n) is defined as
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When the two previous cquations are compared we see that
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where M is an arbitrcry integer. The energy at an ceigenvalue is

)
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in which M = Yﬂ/+'€+' is an integer. Consequently, )) differs
from the experimental quantum defect /b( by an integer at most.

The fund=amental procedure of/the JDN is to set V = fk at energies
vorrecpording to the edgenyiiuss(df the free atom. Since )) = /A

7 v
occurs when "M = 0 , the integer Y is then equal to Z+1 which

is the principal quantuu number  ¥i . ‘e can rewrite 80 el 5. 2.10)

as
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/A is krown as the quantus defect,

55 Relation of the Quintum Defect to the Tffective Potential

It wuas shown in the previous section that the ODi. wais
developed in order to calculate the energy levels of an alkali s ica
by eiutr.polation of the quautum defects obtained from the observed

energy spectra of the free atom. It is easy to calculate the

)

energy levels of the free atom if the quantum defect is known.
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The quantum defect, of course, depends upon the (effective) potential
of the core; the relation between these two quantities was recently
shown by Jaffe and Reinhardt (1977). The relation is employed to
obtain the quantum defect and the energy level is then determined
by means of eq.(3.2.11). The constructed potential is finally
examine by comparing the reproduced energy levels against the expe-
rinental data.

The required relation is der;ved by starting with the
Hamilton-Jacobi equation with the Hamiltonian expressed in the

spherical coordinates
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where F 5 f ,'P are the cancnical mouenta for each coordinate
' ¢

in the spherical coordinates =nd M&&) is the potential energy

which depends on J only.

The Hamilton-Jacobi equation with total energy E can be written as
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where § is the same as the characteristic function W given by
Goldstein(1959) in eq.(9-61).

We set the trial solution as
S(r,6,4) - SO +S®) +S(¢) . (5.3.3)

It has been found that the only dependence on ¢ occurs in the
last term vhen S is substituted into eq.(3.3.2).

Since the equation is to be true for all ¢ , We set
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as one of the constant of integration.

The HemiltonQJacobi equation now reduces to
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Again, the term in the curly brackets involves @ only and must

therefore be equal to znother constant
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q9.(3.3.6) can be rewrlt en as
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Similarly, it is found
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By defining the actioniintegral
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];i depends on the potential \Qk) and is not usually analytically

integrable. The integral in eq.(3.3.11) for Iy

iz performed by a
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procedure suggested by Van Vleck (1$26) :
It will be recalled from eq.(2-:1) of Goldstein{1:9)
that when the defining equations for the generalized coordinates do

not involve time explicitly then
2T = 249, . 13.3.13)

where | stands for the kinetic energy and the dot denotes the
derivative.
sxzpressing the kinetic enersy in both spherical coordinates and
plane polar coordinates, we find that
. * . ® 3
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where V' is the plane azimuth langle and f’ is the corresponding

canonical momentum. Hence ’249 in eq.(3.3.11) can be replaced

by ‘fiyf“f%d¢ and the’/sction intepgral bhecories

Z . 2%[ -§-fd¢-—<§f¢dcf) . (3.3.15)

s B goes through  complete cycle of libration x¢ and ¢/ vary

by 2T and the integration  reduces to

Ig i f"f)cf _ {39-—(3?5 . (3.3.16)

It is noted that f’ is equal to FQ because bhoth quantities are
the whole angular dependences in the plane polar coordin:tes ~nd

the sphericil coordinates respectively.

We define a radial “action defecti:, JTI(E) s by writing
Coul
1€y - I (B) + 51(5) , (2.5. )
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Z in eq.(3.5.10) is equal to unit; for a hydrogen-like atom and C,
P

is the cl:ussiczl tr..jectory appropriate to the pure coulomb field.
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This equation can be verified by starting with the inte: sration

Integrating E’.) and u,1v1ng €q.(3.3.13) for [E sy wWe Tind

formula given by Sommerfeld(1923)
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From eqs.(3.5.10) .nd (3.3.%1) we have
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The integral in eq.(3.3.18) can be performed by setting
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Since y} (E) QTL , the above equation can be solved
directly for E and it is found that
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if the Bohr-Sommerfeld quantization condition
,L}L(EM—.LG( E)+I¢E): nh R B (5.3.25)

is applied to eq.(3%.3.24).

Bg.(3.%.24) can be rewritten as
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The quantum defect,// (E) ;- can then be obtained directly from the
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where C' is the classical trajectory appropriate to the potential
field. It is noted that Fg has been set equal to (€+L)ﬁ since
bt

the 'quantization of :Li and ]%9 gives
I(P-{—Ie % F&‘ = (YB"‘Y?Q‘\“}':).ﬁ {3329

and :I¢4f19 corresponds to the total angular momentunm 'ﬁ
(Goldstein,1959).

Bg.(3.3.20) is the required relation between the quantum defect and
the potential V%k) and it can bé transformed to the atomic unit

by introducing :
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where EVC is the positive energy of any state in rydberg unit
1
( 1 rydberg equals 13.6 electron~-volts),
2 2
G~=’h/%n61 is the ground-state radius of hydrogen atom ,
and (Q(e) is an arbitrary functioén expressed in parabolic form of.f
which describes the radial potential ;, for hydrogen atom
GK?) = § overall regions.

The transformed relation is
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where F F ?and f F are the cf1531ca1 tu¢n1pr points of the
two integrals respectively.

The energy levels of an alkali atom can then be found frow the

equation

£, = : : (3.3.32)
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