CHAPTER IT

THE BOHR-SOMMLRIELD QUANTIZATICN RULSE

2.1 01ld Quantum Theory .\pproach

Bohr(1913) was able to explain the monochromatic
spectral line emitted from atoms, at least in hydrogen, by
assuming that the atom was capable of existing only in certzin
definite stationary states, each of a definite energy. He purposed
that radiation was not emitted continuously as the electromagnetic
field from a rotating or vibrating pérticle would do and that the
atom would stay in one energy level until it made a suddenly Jjump
to a second lower level with emission of a photon. He assumed
that clectrons and other atoinic particles obayed classical mechanics
but that there were addition conditions, imnosed on them, which
limited the allowed clussical motion to a discrete set called
stationary states. The simplest method of Tormulating these quantum
conditions was suggested by Sommerfeld(1923), and the quantum
conditions are often known by Somme}feld's name .

The Sommerfeld gucntum conditions c.n be stated most simply
by examining o motion in one dimension. The system he first
considered wes the ‘harmonic oscillator',a point mass w bounding
elastically to its rest sosition and moving to either side. of the
central position only in a direction » = q or its reverse. It
then experiences a restoring force but no dauping resistance.
Letting Y be the frequency of the oscillator, the vibrating pheno-

mena is expressed by
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x = ¢ = asin eTJE (2. %13

where d is a constant and 't stands for time.

o
In this case the momentum F becomes equal to’nn%»,i,eo,
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By eliminating T from eq. (2.1.1) and eq.(2.1.2), an ellipse in

the p-~q planc has the equation
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in which the minor axis is defined by
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Fig.2.1 Phase plane of the harmonic oscillator

The area of the ellipse

abll _ 2T )ma (2.1.5)
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is defined as ‘‘phase .rex" vhich is an area drawn on g-p rectangular
coordinates. This quantity is equal to Y! , where W denotes the
energy of the system,which remains constant during the vibration,

i.e.,

abl = W/ (2.1.6)
5q.(2.1.6) con be verified by calculating W at time t=0 ,

the potential is zero and the kinetic energy is
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and hence eq.(2.1.6) can be found,
By changing Vd we/get the phase orbit as a family of
similar ellipse since the ratio ,b has the constant value 2T¥Ym,

7,9
“\ selection is made in order that each ellipse zone has the sane

area &,, the Planck's constant.’ ' Then LL is the area of the
first ellipse; the second ellipse has thus the area Zh, , the
th

n the area nh, a0 EE W

"3 is the energy of the oscillator describing

the n'h ellipse, then according to eq.(2.1.6)

W .y ’Y}h\j (2 100)
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111l points lying on one of our ellipse,therefore,represent

the stationary states of the oscillator. 159.{2.1.8) shows that

in these orbits the energy is an integer multiple of the elementary

quantumof energy ¢ ,i.e.,

& = hv

y W, =n€ | (2.1.9)
When the energy of the oscillator changes and when its graph point passes
over to a smaller ellipse it emits energy, but when its graph

point passes over to a lorgerellipse it absorbs encrgy. The
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emission and absorption occur in multiple of the energy quantum
It can be concluded ( for the oscillator and for every
mechanical system of one degree of freedom ) that + The graph
point of the system in the phase plane is restricted to certain
iiquantized’ phase orbits ( which characterize certain quanta ).

Between each orbit and its successor there is an elementary region

th s s s ;
of area h, « The n’" orbit (if closed) has an area'nh'° xpressed

as a formuls. this is the phase integral

% :S?d% -mnh (2.1.10)

The integral is to be taken along the nth orbit.

For the rotator; a/point! mass w rotating about a fixed
center uniformly in a circle of radius A , the natural coordinate
of position is the angle (]§ o By setting %:Sb the kinetic energy

beccues

2,2
E,. = mmg . (2. 7:143
In =5
Since ¢ 1is constant during the motion, the potential is constant,

1s84;

EPO-[; = constant .
The momentum coordinate in this cuse, the cagular wmomentum, can

be written by employing the relation ﬁ;:: 0Lk as

2a ;J?k
f - 'ma,% (2112}

which is also constant.
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The phase orbit of the rotation is a sraight line parallel

to the q axis ( Fig.2.2 ). In the direction of the phas= plane

Fig.2.2 Fhase plane oi the rotator

has only the lengfh 21 and so we may cut it along the linesl%_szﬂt
and join the edges so as to form a cylinder. The surface area
between the nth and the (n—1)th phtse orbit being a rectangular
on the base 2L is equal to 2"1-[(?%;- ?'Qn“) ’

By setting the surface cqual to %,, the phase integral
(for this case, the surface between the ath and the zeroth phase

orbit representing by the q axis) is given again by

3 . J?d% :,ﬂﬁmzfnh, . (8.1.1%]

Thus it has been from eq.(2.1.13) that  The rotator is
to be quantized not only in energy but also in angular momentum .
Ih this case the angular momentum p must be an integer multiple
of f = h/&ﬂf « Un the other hand, the kinetic gnergy caun be

obtained from egs..2.1.11) and 12.1.12) and can be written as
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Ehn»

= nhJ/2 (2.1.14)
by setting the rotation freguency equal to %JZWQ Yie see that
the energy is not an integer multiple but < half integer wmultiple
of hv °

.For the case of f degrees of freedom, the phase integral
for one dimensional case, e€d.(2.1.10), was postulated by Sommerfeld
to be an integer multiple of h si.e., the phaseintegral for the

th
Ik degree of freedom can be expressed as

S’]’hﬂt‘k& = ’nkl’b (2.1.15)

where Y%. = 52D 5 aagle fle/f -

Eq.(2.1.15) is always written as a closed path integral

&ﬁed%k; Whﬂ/ . (2.1.16)

2.2 The VKB Approach

There exists a method for the approximate treatment of
the Schrodinger equation which shows the connection between the
Bohr~Sommerfeld quantization rule and the Schrodinger equation.
The method is made on an expansion of the wave function in powers
of %ﬁ » It is called the Wentéel—Kramers~Brillouin {(WKB )
approximation ( Wentzel, Kromers, Brillouin, 1925 ).

A solution u(ﬁ) of the one-dimensional time independent
Schrodinger equation which describes a motion of a particle of

mass M in a potential'\kx) wnd having an eigenvaluc E_,i.e.,
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"L + Zm[E \/(JO} o (2.2.1)

can be written in the form

LS00/
wx) = Ae’ {2.2.2)

where SO() is to be determined.

Eq.(2.2.1) may be one of the forms :

i %y

i L R ko (2.2.3)
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dx* (2.2.4) -
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where lq(x)

Va \
| 9 = -‘ whe (X N
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Substituting U(X) inte eq.(2.2.3) gives
A e
kS —S'+H k- o (2.2.7)
where primes denote differentiation with respect: to % &
We expand & in powers. of 'ﬁ

= ='SO+*\5‘+ ------- (2:2.8)
when inserting S  into eq.(2.2.7) by equating equal powers of ’H

we have

~Sg + 2m(E-V) = O (2.2.9)

S L
and LSOT—AZDOS‘ = O etc. k2o TO)
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Integration of these equations we get

i

X
S0 ih_g k(xyolx' (B.2a91)

S,(%) {VL‘QOQ (2,2.72)
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where X is a dummy voriable.

We thus obtain from €95.(2.2.2),(2.2.11),and (2.2.12)

s
sl
uo = Ak xp(xi(Rdn) VKE  (2.2.13)
Similarly, the approximate solution of gd.{2.2.4) is

<l B
Ut = Bicexp(x(rdy) JVSE  L(2unaah)

sfter determining the wsymptotic nature of the solutions
and considering the two solutions .4t a linear turning point, we
get two asymptotic connection formulas ( as shown in Schiff,1955

.3

or lathews and Venkatesan, 1976 )

2 -k ~i/2
»%K-e R e < & i ,’.g) ; (2,2.15)
' -J&E; kl
WU ™ == b WlE - I+7) (2.2.16)
X
where \g' = Sko[,’x 5 SKJ% for a typical linear turning
%

point shown in Fig.2.> and 7_ is the phase difference which can
be appreciably different from zero or an integer wultiple of 7[
The arrow in eq.(2.2.19) implies that the asymptotic solution in

region 2 appearing on the left goes into the asyuptotic solution
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Region |
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FPig.2.3 A typical linear turning point, wherec \kx):;E

=WV

at =% ; in region 1, E>\/(K) s and in region 2 , E V(X)) .

in region 1 appearing on the right but that the converse is not
necessarily true. Siailarly, the arrow ia eq.(2.2.16) shouS the
asymptotic solution in regicn 2 for the reverse connection.

The Bohr-Sommerfeld qu.ntization rule can be derived from

the two WK3 connection forwulas as follows :

Vix)

Region 2 Relgion |

Fig.2.% Cne dimensional potential well
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we consider the problem of finding the.energy
levels of a particle moving in the one-dimensional potential well
shown in ¥Fig.2.4 . ror any assumed energy levels E , there are
supposed to be just two turning points of the classical motion
such that \/(x|):VCX2_) s o . The region AX<X, and ')(>)Zz
are type 2 regions in which we know that L, decreases away fron
the turning points ( this be required in the boundary conditions
at X=t£00 ). We therefore need only the decreasing e:ponential
WKB soltions in these regions:
'"he connection formula , eq.i2.2.15), ¢ be applied at
the turning point X, . The region 1 is in the range X‘<7C<XZ s
so that the solution to the right of the turning point is
~lf2 %
k  ws(\ kdx—"T/4) (2.2.17)
apart from an arbitrary multiplyéﬁé constant.

The same connection formula can also be applied at %1
by reversing the direction of the x axis; the arrow in eq.(2.2.15)
still means that we go from a region 2 solution to a region 1
solution, but now the latter is to the left of the turning point
and the 76:former is to the right. YWe now redefine ‘g} zsxféd% 5
Eé‘;' .;( d¥ . In such a case, €g.(2.2.15) can be used without
any modific%tion. The solution to the left of the turning point

is then

m Xe
k cost¢ g kdy-T/4) (2.2.18)
%

which c.n be written as
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k cos( ‘vzdx—TL_-vd, Y = dew _\_gg (2.2.19)
Xy % %

The two sclutions, eq.(2.2.17) and eq.(2.2.19), have to join
together smoothly somewhere in the interior of region 1. This

evidently requires that 1 be zero or a positive integer multiple

e

of T , since (ghdx is necessarily positive. Thus we have
: ¥
an equation

*2
gkdlx (.'VH Jz_)ﬁ y ey 0,1,2, 6004 {2.2420)
%) '

to determine the eigenvalues: }q.(2.2.20) is to be used for values
of w»v upto the point at ' which ' E beconmes so- large that one or
both of the turning points disappears.

Uy substituting K from 80.{P.2.5) into eq.(2.2.20) we
get .n equation for the Bohr-Souumerfeld quantization rule of the

old quantum theory

004694
6%; 7 V¢
2 zm}E vcxi{ = (n+1)Yh (2.2.21)
x, i

The left hand side of eq.(2.2.21) is the integral arouad a conplete
¢ircle of the motion ( from XW to Z and back to X, ) of the
momentun [TTH(F \/{llr The right hand side is the quantum v~lue

of the phase integral, with half-integer rather than integer quantun
numbers. The qu.ntization condition is similar to that derived

in the old quantum theory, the difference is ohly in the quantity

Px/z - These two quantization expressions are nearly the same

| 175587 b1
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for W —s o which corresponds to the ¢l ssical limit. In practice,
the results obtained from the WKB approximation, however, are

found to be quite good even for low gquantum numbers.

2.3 The Generalized Bohr-Sommerfeld Quantization Rule

The problem we encounter now is the question when does
one usc an integral or a half-integral multiple of Ll in the
Bohr-Sommerfeld quantization rule. Resolution of this problen
has been attempted since the WKB approximation was suggested o
Kramers (1926) showed that the quantization conditions for separable
systems are consequences of quantunm mechanices in the limit of
Planck's constant tends to zero. lor a more general case, Brillouin
(1926) applied the Schrodinger equation toc both separable and non-

separable systems in order to derive the quantum conditions,

however, the results were incorrect because they yielded only
integer quantum numbers. Keller 1958) deﬁeloped this idea and
get the qu:ntization conditions which could be applied correctly

to both types of systems. His quantization conditions are expressed

as
1
&Zﬂzd% . hhwjj_j | (2.3.1)
k R 4
where k is the running nuwmber from 1 to N,
N is the number of independent coordinates,
and M is a number determined from the amplitude of the

wave function u(Xx) = Ae/lS(X)/ﬁ,a
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liaslov(1972) then senceralizcd the ile 5 of Keller. Ilis work “as been
reviewed recently by Fercival (..to be published in advanced

Chemical thysies ). Ilaslov gave the following quantiz:-tion rule

for the separable case

o
L]
W
o
v
N

éfh&%k = (ﬂ+gi,n)k e O, Pl
where dh, is the topological ~“khaslov index which has the value
w2t for librations and YO for rotations. 'te refer to tais as
the generalized Bohr-Sommerfeld quantization rule.

e see that the-#ignt (hafid-side of eq.(2.3.2) is C£K/4
greater than that of eq.(2.1.16), the Sommerfeld's postulate for
a system of f degrees of freedom. The difference does not,however,
imply that the Bohr-Sommerfeld gquantizuation, éﬁd%;ﬂ?k ,1s useless
since it can still be applied to a whole syétem or a separable
coordinatc which has = periodicity of time.

To see this e now consider a system described by the
spherical coordinates

Since /4 and @ are libration variables and <¢ is a

rotation variable, we have

C};} = é@d@
J, = G

Jp= St

i
!

: s N, =2 03025000 (2.3.3
M+, it

I

OV s2sanan (Bebalt)

(ntHh .y =

H

W?gfm : Y;?S: B, Velsnwss L[8.3,.9)
giving

J = je+:gu+ JCP = ('Y)9-+ Y)}L+T)¢»H>l/b )
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namely that the total phase integral sj is quantized in integral
multiple of [’L y ‘beginning at 1% ., Thus the Bohr-Sommerfeld
quantization rule is still true and can always be applied to any

systenm.
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