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CHAPTER III

CLASSICAL HARMONIC ANALYSIS

1. Characters on the Torus

By TR we denote the real axis; that is,the set of all real
numbers with the usual topology derived from the metric |lx -~ yi.
This topological space has the-algebraic structure of an
additive abelian group. Moreover, the follod!%g functions are
continuous :

fl ¢ TRA TR ==/ TR

(xy ¥V x4 ¥
and f2 : R—=> TR
X > - X

We say that TR is a topological group.

Definition. If x and y are real numbers, we say that x and y

are equal modulo one, in symbol x = y (mod 1), if x - y is an

=

integer.

This relation is an equivalence relation on TR and we shall
denote the equivalence class containing x by x . Let T be the
set of all equivalence classes x (x € TR).

For any % any § in rT’, define
¢

» [ et ~~
X+y =X+7%
.
'3 VY
and - X = =X o



Then ' with this operation is an additive abelian group.
Algebraically speaking, we say that "I is the quotient group

TR modulo the subgroup Z of integers,

Let A denote the unit circle in the complex plane a.
Then A is a multiplicative abelian group under the usual complex
multiplicatien, Moreover, A inherits a compact Hausdorff
topology from the usual metric topology of d in which the
following mappings are continuous :

fl : ARA s\ A

(xy V) x . ¥y

and fZ:A___-,A.
X b3 X

That is ,é; is a compact Hausdorff topological multiplicative

abelian group.

The assignment

£ T— A
. . 2mix
X b—3 e
defines a group isomorphism. Thus we can endow rr with a
topology so that T  and 2\ are both isomorphic as well as homeo-
morphic. Note that in this topology for T , @ subset 6 of 1“
is open if and only if f£(€) is open. The symbol q: will be used

to denote 1’ together with this topology. Thus qj'is a compact

Hausdorff topological additive ‘abelian group and is called the

(1-dimensional) torus. Observe that the topology on qj is just the

quotient topology of TR by 7Z so that the quotient map
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g :TR-——F
X — X
is continuous. Moreover a function f : q:w—~a (E is econtinuous
if and only if F = f o g is continuous on TR\. We denote
briefly F(x) = f(X) . It must be noticed that f —3 f o g is
a one-to-one correspondence between the set of all (continuous)
functions on the torus and the set of all l-periodic (continuous)
functions on TR . /l
Our next goal is to find all continuous homomorphisms of CF
into A ; that is, we wish fo find all continuous functions.
E : P O/
such that E (x + ¥ ) /= EE). B().
Such functions are called characters QT .
Let E 'F—--‘)A be & character. /Consider the compositiocn
F :JR—> /A defined by
F(x) = E(Z) .

F is continuous and satisfies the following properties :

(1) F(x + 1)

1]

F(x)
and

(2) F(x + y) F(x) F(y)

for all x, y in IR . (Hence for each character E on T , we
obtained a l~periodic continuous homomorphism F :R—A.
Conversely, each l-periodic continuous homomorphism F from JR

into Z& gives rise to a character T on %4 defined by :
5 P— A
L]
X pep F(x) @
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And we clearly get a 1 - 1 correspondencc between the set of all
characters on T and the set of all l-periodic continuous homo-
morphisms of TR into ,[\_.. )
Let E® EF-—-—) & be a character and F : TR———%A the

associated l-periodic continuous homomorphism. For any p,q 5_}52'_,

Q%Oy
r P q P . = P
|72 x)] = F(2x.q) =Fpx) = [F)] .

q

Letting x = 1,
q

[F (2]

q

since F()e AN

H
o
xj
~
=
N
Sac)
3
°

F(l) . eanoc

for some XL & TR so that

[F e )Jq
a

]

eanipoc

Hence
) _ G 2nie o onis
q AUt q

for some k : 0<£k<q, depending on p/q. But for

O:!':teTR,

' 2mit o 27:11%‘ . it
F(P/q) = F(tp/tq) = e 4 e q = @ q -

Hence k = O and

F(x) - eanxoc

for all x & @, the rationals. Since F is continuous and @v
is dense in IR .

F(x) = eanxoL )
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for all xeTR. Moreover,

MY p0+1) =F0) =1

so that K is an integer. Conversely, if n g ;&Z( then the

assignment

TR— A
2ninx
L p— e

defines a l-periodic continuous homomorphism Fn from1T{ into
Kk. which in turn induceés a’character

(3) §|~———;Fn(x) = eaninx

Finally, we have proved

Proposition. Thére exigts a bijection between the set Zof
all integers and the set of all characters on [43. The bijeetion
is given by

n k—~9'ED,

where E is given by Equation (3).

It should be noted that these characters on CP will play =
fundamental part in the following chapters. Moreover, the
additive abelian group structure on Z gives the following

formula :

(%) En+m(y) = En(y) Em(y)

for all myne 7ZZ and all y& P .
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2
2. The Space L (&)

We have already constructed an infinite family of functions

on the torus CP .

Definition. Any finite linear combinations of the functions En

is a continuous function on » Such a function is called a

trigonometric polynomial. Specifically, a trigonometriec polyno-

mial is a function of the form :
. ! 2nint by
£(8) = % e e te?)
n= &N

where c, are complex mumbers, n e.{- N,....O,...,P{}.

Let C(P) denote’the linear space of all complex-valued
continuous functions defined cn CP, with the uniform norm
el & =up lf_(;c) |
Recall that due to the continuity of the homomorphism
K —F
% —x ,
we have a onewto-one correspondence between the set C( qj) and
the set of all l-periodic continuous functions from TR intoq: .
Thus for any f & C (q]) s the associated l-periodic continuous

function from IR into (L will be denoted by F. Ve define the

— o ——— —

o
as follows :'P



Lo

1
f(%) ax = J F(x) -dx.
EP 0]

Now let f, g eC(CF) and let F and G be the respective

associated l-periodic continuous functions. We define the

scalar (or inner) product of f and g, denoted by (f,g), as

follows : LS
— 1 R
(f,g) = £(x) pglx) ax// = F(x) G(x) dx.
qj 0
1 ifn=mn
St n m n,m
O 4if n g m.
X

eaninx e~2nimx e

Proof. (E_ , E)
—_— n' m

Q

eZni(n—m)x 1

= 0 if n * m,
2ni(nen) 0~

i

1 if n = M.

This completes the proof.

Recall that, PPy 1« p €< 00 ) is the set of all complex-
valued, Lebesgue measurable functions f on c?’ such that the
ﬁp- norm of f,

.’ . . /p
el - { o '
‘ o | tPIft dt}

- 2
is finite., Note that “f“2 = (f,f) for any fé& c(Fy.

For convinience of notation, for any (continuous) function
f on EF s the associated l-periodic (continuous) function F on

TR will also be denoted by f, even though f is defined on T .



Proof. Suppose we had trigonometric polynomials Q

b

2¢3 Theorem. (Weierstrass Approximation Theorem). For any f in

C(!:F) and any € > O there is a trigonometric polynomial P such
that ||f - P hm < F or lf(t) - P(t)‘ < & for every real t,

1) Qz!

QB"" s with the following properties :

(a) Qk(t) 2 0 fortelR .

1/2
(») JQk(t) at = 1%

1/2
(¢) If nk(S) = sup{' Qk(’c) =8$lt|£ %—}, then

lim nk(S) = 0 for every 5 > 0.
k—> o0

) . . v (4 o
Another way of stating (e) is to say that Qk( ) —>

uniformly on [- %, -8} U [S ) }] y, for every 5 > O.

2

To each f € C(‘P) we-associate the function P defined

k
by /2
Pk(t)/ = Jf(t -'8s) %((s) dsE(REE 1, 2, 3,... ).
21/2

If we replace s by-s and then by s - t, the periodicity

of f and Qk shows that the value of the integral does not

change.
Hence 1/2
(l) Pk(t) = f(S) Qk(t - S) ds (k = l, 2’ 3"500) .
-1/2
Since each C2k is a trigonometric polynomial, Qk is of the
form
Nk )
(2) g (t) = = g . gEAE
k n .k
n= =N
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and if we replace t by t = s in (2) and substitute the value of

Q ,(t = s) into (1), we see that each P . 15 of the form

1/2
Pk(t) = £(s) Qe (t - s) ds
-1/2
1/2 N
Yk ; B
= f(s) ¢ a eominlt - s) d
‘ n= =N Mk
" <1/2 = "k
k \ 2 -
= T . b nint
n= -N}; n,l{ n
1/2 S
where b = J £(g) -°mins ds = (f, En)é @ . Thus P is
‘ -1/2

also a trigonometric polynomial.
Let € > 0 be givenl Sincé T is uniformly continuous on
CP y there exists a 8 >0 such that | f£(t) - t(s)l < €

wherever | t -~ s| <« 8, By (b), we have
1/2

P (8) - £(t) & {f(t = f(t)} Q,(s) as,

-1/2
and then (a) implies, for all t, that
1/2
Pe(t) = 2(6) | £ 1 et - 8) - 2(8)] Q(s) ds = A, + 4,
-1/2

where A is the integral over [-8, 8] and AZ is the integral
over [—- -, - 8] [8, -]. In Al, the integrand is less than

€. - Qe (8), so A, <€, by (b). In A,, we have Qk(S) £ nk.(S‘),

1
hence -8 1/2
hp =] 1= 8) - 20 que) as + | Jets - e)g(0)] @ (s) as
-1/2 -5 S 1/2
£ nk(S)J | £(t-5) - £(t)]| as + nk<S)J |£(t-5)-£(¢)] as
)

-1/2
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n, (8) ( l£(t - 8) = £(t)] ds

<
h J -1/2 1/2
1/2 -
< nk(S)[J |£(t-s)| das + [ 1£(£) ] das )
PRV P /
S 8) (el + lee)])

<

T 2ty n(8)<E
for sufficiently large k, by (c). Since these estimates are
independent of t, we have proved that

lim "f - P
k—>x

k]lco= Ps

It remains to_construct the Qk. Here is a simple one. Put

k
Qk(t) ) ¢ k L+ cos Zﬁt) ,
. 2
where e, is chosen so<that (b) holds; that is, choose ¢, such
1/2
k
that ( }_I_ESE_EEf}‘ qt = % . Then, for any t &€ R ,
2 k
(l_i_ﬁii_fff) ' > 0 implies ( < 1 + cos 2ntyk
2 7 B ) ‘*"—E““—‘*‘) at > o.
~1/2
i N 1 + cos 2nt
Hence °k 2 0 and Qk = % ('*——:;——--) ) 0, which

proves (a). We proceed to show (c). Since Qk is even. (b)

show that _1/2 [1/2
k k
1 - ch 1 + cos 2nt) &t 7 ae (; + cos 2nt
2 / k sin 2ntdt
0 0 2
1/2
Ck k
= - = (1 + cos 2nt) d cos 2nt
2'm
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A
- B
.____1_(.______ (1 + cos n)k+1 - (1 + cos 0)
2kn(k+l)

k+1
°k2

k+1

2kn (k + 1)

2 ck

n(k+1)

/
Q, is decreasing on [O, %], since Qk(t) £0 for

t € [O, %]. It follows that

n(k +1) [ 1+ cos 2nf§lk
U ()4 (B) & [ f’]

2 2
for 0 < 3 ¢l & % 5

This implies (c), since 1 + cos 2n8 <2 if 0 < 8 £

SR B o
.

The theorem-~is completely proved.

Theorem. The orthogonal family {_En} is total in LZ(WJ),

where { E 1is total in 1°(%) means that if £ e L°(F) with

(f, En) = 0 for all n in¥ , then f = O a.e. o This is equiva-

lent to the statement that the set of all trigonometric polyno=-
mials is dense in Lz(qP).

Proofs Since C(P) is dense in LZ(EF), for any f € LZ(EP),

and any £ » O there is a g€ C(%) such that ” f - g”2< £ .

2
By ®Theorem 2.3, there is a trigonometric P such that

e -Pll, < 3. B‘-‘t“g"P”<HS~P“oo<§,sothat

‘If - P‘lZ < £€. This completes the proof.
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%+ Fourier Series

Definition. For any f E Ll(?), we define the Fourier

coefficients of f by the formula

1/2

(1) £ (n) = J £(£) e qt (n = 0, *1, %2,,..).
-1/2

Since I§ (n)‘f || £ Hl < +Q0 , for all n G,Z, the set of

all integers, we thmus associate with each f & Ll(cF ) a function

?, the Fourier transform of f, on Z . The series

(=] A . o
(2) = £ () e°mint {(fi ZAn \
n= =-o0 \ Ff ?ﬁgw }ﬁ
V"";: ?“";."'.‘.,‘:f"/;‘_ /
is called the Fourier series of f and its partial s areld,
N o U Qg o
given by I
D b 2nint
(3) Sy(t) = = £ (n) e (N = 0314256500
nz =N

Since LP(EP) C Ll(f‘P), for 1 < p € eg, (1) is applieable

to every f g s =

Theorem. Let 1 £ p < 3 + Then ? (n) >0 as In}l—s oo,

for every f € LP(EP).

Proof. We have that C (P) is dense in LP(CP), for 1 £ p < o0,
and that the trigonometric polynomials are dense in C(CP), by
Theorem 2.3. If £ » 0 and f € i (¥ ), then there is a g € c(P)
and a trigonometric polynomial P such that “ f -z ”p < g

and llg -P{| < §. Since
oo 2

| ¢ =p|| ¢ -7
! & ”P\ " g P“oo’
it follows that ||f - P H.p < s and if Inl is large

enough (depending.on p), then
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J {f(t) O i
J

|

i
£ f-—P( °
£ I , < &

Thus £ (n) — 0 as {nl—y 00 .

This completes the proof.

Of course the convergence of the Fourier coefficients of
a function does not, in general, say anything about the conver-
gence of the Fourier series. In fact, the central problem in
the classical study of Fourier series is : "to determine whether,
and in what sense, the Fourier series of a function f represents
the function f". The most obvious way of interpreting this
problem is to ask if the Fourier series of f always converges
to f(x) for all x or for almost all . Xs In this interpretation,
we immediately getlinto difficulties, except in the case where
the functions are from Lz(qz). In this case we have a very

elegant theory (see section 1 of’chapter V)e-

‘o There Are Functions Which Are Not Pointwise Limits of their

Fourier Series.

4.1 Lemma. Let {fnj} be, any sequence in (C (T, ]l.nao ) converging
to a function f on F . Then f is in ¢ (F).
Proof. Let £ ) O be given. Let io be any point in T . By
hypothesis, we choose NeZ( > 0) so that [I£ - fn“co < 2 for

all n 2 N, Since f  is continuous, there is 2 §» O such that
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k7

--. ° . : ) '...lt\,
Ifn(x)) fn(xo), < for all x & T satisfying | x - x | <0

Henee we have

128 = 2G| € 1260 = G0 + [5,(0 = £,(x )]

HEg (e ) = £(x )]
202 =ty oot | 1300 = £y(x )]

< £

for all x in q: satisfyingl X &Ol <& . Hence f is continuous

and the proof is complete,

Theorem. The space/(C (ﬂu), ll+]loe? is a Banach space.

Proof. Let {fn}' be /a Cauchy sequence in C(ﬁ:) for the
uniform norm and let £ 5 0 be given., TFor each x in F,
{fn(;{} is a sequence of complex numbers such that for all

my n %2 N

|£,G = £, G| & Y- £ |l < &.

Since (I: is complete, the limit 1lim f (x) exists. This
~n
° ° n—-—)‘n °
defines a function % +- f(X) = 1lim fn(x). By letting m goes
n -~ 00

to oo in the above inequality, we get for all x.
l2G) - £ G| < g
or We-£1,, < €.

By Lemma 4.1, f is then continuous and the proof is complete.
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4¢3 A convergence problem. A natural question to ask : Is it true

that, for every f @& C(EP), the Fourier series of f converges
to f(x) at every point x ? The answer is negative as given
below.

By Definition 3.1, the nth partial sum of the Fourier seri:s
of £ at the point x is given by

1/2
£(t) Dn(x ~t) dt (n=0,1, 2,... ),

]

(1) 8 (£3x)

where -1/2
n
(2) D(t) = gZ &7
n
k= =n

The problem is to /determine whether

(3) lim 8 (fy x)/ = flx)
n-— oo 2

for every f € C(q’) and for every rmeal x.
We shall see that the Banach-Steinlhsus theorem answers the
question negatively. Put

(W) S*(f; Xx) = sup lSn (f;x)l.
n

To begin with, take x = 0, and define

) T = s (150 (rEc (P, ns1,2,30 ) .

By Theorem 4.2, ¢ (3’) is a Banach space, relative to the
uniform norm llf’Lo « It follows from (1) that each Tn is a

bounded linear functional on C(q:), of norm

(5) | ——-——-—-—lTan < '1;2( )| o I
5 T = su £ t)] at = .
Hall o*?ec(cp) NE 1oy 1/2 st

We claim that
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(6) IITnII—-—-)DO as n-—p OO ,
This will be proved by showing that equality holds in (5) and

that
(7 1l o, “1-—-——900 as n-—>309,

Multiply (2) by e"*% and by e™™% ang subtract one of the

resulting two equations from the other, to obtain
. sin 2n (n + %) t
(8) Dn(t) = .

sin-n t

Since [sin x| & |x} for/all real x, (8) shows that

v/2
o, lly = [D.(8)] at
c1/2
1lzsin D (o s %) .
= 2 it
sin n t
(®)
1/2
g 1 dt
A b= sin 2m (ni+ =) t atv
= ‘ 2 ; t
0
(n+1/2)n ,
= 2 {sin ¢} W& enln + 1/2))
" (t /2n(n + 1/2))
0]
((n-i'-.l/2)n
4
= 2 |sin t'} dt
’ ¢
J 0
r nn
> £ | sin t | dt
" T
/0
n km
- 1% Z { | sin t | §E
k=1 (k=) t
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n
y 2 & 1 [ sin t | at
T k=1 km (k=1l)m
n/2
2 2 5§ (o2 | sint at)
= - b e
Tok=1 “0
1 n
T k=1

which proves (7).

Next, fix n, and put g(t) =1 if Dn(t) 2 0, git) = -1
if D (t) < 0, There exist e ¢(P) such that -1 € 1,41

and £,(t)—p g(t)~ for évery t, as j=>x, By Dominated

Convergence Theoren,

1/2 \
lim T (£.) = lim £.(=t) D_(t) dt oMM ™e
j— oo T 9 J—=20e g " ;
J=1/2 >
/e |
= J’ gl wb) Dn(t) dt -
*1/2 )
= “ Dnul °
T (f£) T (f.)
Hence | Tn{] = lsup ' B }2 ’ SilyY ' for all j, and
HEl &1 | £l £ Mg
j?_(£.)] [ID_ 1l
Un I2.l)= || T, fiz2e 2 30 o TRy
J=3c0 J—co ijU°° 181,
so that || Tnlj = Iantll and we have proved (6).

Since (6) holds, the Banach-Steinkaus theorem now asserts
x
that 8 (f ;3 0) = 00 for every f in some dense GS ~ set in C(qn).
We choose x = O for convenience. It is clear that the same

result holds for every other x.
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To each real number x there corresponds a set EXC C(?)

*
which is dense Gs in C (EP) , such that S (f} x) = OO for
every f & Ex.

In particular, the Fourier series of each f & Ex diverges
at x, and we have a negative answer to our question,.

‘ . P tp‘

We can extend this result to L' ('T') space for 1 § p < 6O .
Since C(EP) is dense in L’(cfx), for 1 £ p < @@ , and for each
real number x there corresponds a set EX which is a dense G&.
in C(CF,). Then E_~is dense in Lp(q'j) and the Fourier series of

each f € EXC P (F) diverges at x.

5. Analoque /of ‘Riesz-Fisher Is False for LI(T)

A
Theorem. Let Co be the space of all complex functions f on Z

such that f (n) => 0 as n—> % Oo,; with the supremum norm

II?HM = sup {{%(n)l: ne/ } o

Then Co is a Banach spaces

B
Proof., Let {fn} be any Cauchy sequence in Co' Let £ 0

be given. There is an n, eZZ (> 0) such that for all my n 3y o,

A A E
Iz - fn|[°°<§ .
For each i in/ZZ , |§m(i) - ?n(i) | < g‘m- fn”c;o< g >

this implies that {fn(i)} is a Cauchy sequence in @, s which

is complete. Then the 1imit 1im f (i) exists and defines a
1l <=3 OO

lim fn(i). Moreover, for all i EZ,

n—s o0

£ - f ] < § < E

function ijp—s £(i)

]
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or ||f - fllo< €.

Tt remains to show that €.Co ; that is, £ (n) — 0 as
n—>% 0@ . For sufficiently large m such that ll?m - ?Ihxf 2
we have ?m(n)-——io as n —»% ®@ . Then there is an n‘e Z(> 0)
such that for all in| > n’ ’

1Fois 1Fm - F e« £ < €.
This completes the proof.

If {an} is a sequence of ecomplex number such that an~—>o
as n—3% eo , does it follow that there is an f € L () such
that f (n) = a  for dll/n e ZZ? In other words is something
like the Riesz-Fisher theorem holds in this situation ?

This will be answered negatively with the aid of the bpen

Mapping Theorem.

Theorem. The mapping—: f0*~)? is a one-to-one bounded
linear transformation of Ll(tp) into! (but not onto) C, e

Proof. Define T by Tf = ?o Then'T is"linear. By Theorem 5.1,
T maps 11 (PGl C_y and since | £ (n)] & I} £ ”1 for all n,
so that [T || € 1, Let us now prove that T is one-to-one, that
is, Tf = 0 implies f = O in Ll(:F).

A
Suppose then f g Ll(EP) and f {n) = O for every ng Z .

Then 1/2
(1) f f(t) g(t) at = ©
-1/2

for any trigonometric polynomial %o By Theorem 2.3, we know
that the polynomials are dense in C(qj), therefore for any

g € C(EF), there is a sequence of trigonometric polynomials
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{?n}such that 1im g (x) = g(x) for every real x. Bince every
- n -~ 00

convergence sequence is bounded; there is an M ¥ O such that
| £(x) gn(x)] £ M |£(x)| for all n, all real x, and M |£(x)|
€ Ll(qu). By Lebesque's Dominated Convergence Theorem, we

1/2 1/2
have 1lim .[ f(x) gn(x) dx = J' f(x) g(x) dx. Hence
P LY wl /8

(1) holds for every g ¢ C(‘P).

If g is the characteristic function of any measurable set
ixqu « By Corollary to Lusdn's theorem, there is a sequence
{gn} in C(q]) such that }gnl $.1 and

g(x) = -"1im gn(x) 2.8\ o
0 —5 G0

Apply Lebesque's Dominated Convergence Theorem once,more, then
(1) holds if g€ is the characteristic function of any measurable
set & in F. sincef-e 1 () —and J £(x) Ks(x) dx =
’[ f{x) dx = 0 for every measurable seg:E in ¥ , then we

havE f =0 a.e. on F,

If the range of T were all of Co' by Corollary 2.3.2, there
exists a @ > O such that

Il f\”w? QNf”l for every f € il(?)- X

But if D, (t) is defined as in 4.3, then D_g L}(P), D o= 1
for n = 1,244.., and ”Dn]!l._..,oo as n—»Q0 . Hence there is

ne 8§ » 0 such that the inequality

~
holds for every n.

This completes the proof.
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Now LP(IF) C Ll(cp) for all 1 < p €oc0. For any
sequence of complex number {an} such that an——> 0 as
n—sy . 00 sy 1t does not follow that there is an f& L'Q(EF'),

for 1 £ p £ e@ , such that ?(n)=an for all n€ Z.

Remark , As we have seen some alternative interpretation of
the meaning of "representation of a function'" is desirable.

This we shall do in the next chapter.
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