CHAPTER III

CLASSICAL HARMONIC ANALYSIS

1. Characters on the Torus

By TR we denote the real axis; that is, the set of all real numbers with the usual topology derived from the metric |x - y|. This topological space has the algebraic structure of an additive abelian group. Moreover, the following functions are continuous:

$$f_1 : TR \times TR \longrightarrow TR$$

$$(x, y) \longmapsto x + y$$
and
$$f_2 : TR \longrightarrow TR$$

$$x \longmapsto -x.$$

We say that TR is a topological group.

1.1 Definition. If x and y are real numbers, we say that x and y are equal modulo one, in symbol $x \equiv y \pmod{1}$, if x - y is an integer.

This relation is an equivalence relation on \mathbb{R} and we shall denote the equivalence class containing x by \hat{x} . Let \mathbb{T} be the set of all equivalence classes \hat{x} ($x \in \mathbb{R}$).

For any
$$x$$
 any y in y , define
$$x + y = x + y$$
 and
$$-x = -x$$
.

Then T with this operation is an additive abelian group.

Algebraically speaking, we say that T is the quotient group

R modulo the subgroup Z of integers.

Let Δ denote the unit circle in the complex plane $\mathbb C$. Then Δ is a multiplicative abelian group under the usual complex multiplication. Moreover, Δ inherits a compact Hausdorff topology from the usual metric topology of $\mathbb C$ in which the following mappings are continuous:

$$f_{1} : \triangle \times \triangle \longrightarrow \triangle$$

$$(x, y) \longmapsto x \cdot y$$

$$f_{2} : \triangle \longrightarrow \triangle$$

$$x \longmapsto x^{-1}$$

That is , Δ is a compact Hausdorff topological multiplicative abelian group.

The assignment

and

$$f: T \longrightarrow \triangle$$

$$\mathring{x} \longmapsto e^{2\pi i x}$$

defines a group isomorphism. Thus we can endow T with a topology so that T and Δ are both isomorphic as well as homeomorphic. Note that in this topology for T, a subset 0 of T is open if and only if $f(\theta)$ is open. The symbol T will be used to denote T together with this topology. Thus T is a compact Hausdorff topological additive abelian group and is called the (1-dimensional) torus. Observe that the topology on T is just the quotient topology of TR by T so that the quotient map

$$g: TR \longrightarrow T$$

$$x \longmapsto \mathring{x}$$

is continuous. Moreover a function $f: \mathcal{T} \longrightarrow \mathbb{C}$ is continuous if and only if $F = f \circ g$ is continuous on \mathbb{R} . We denote briefly F(x) = f(x). It must be noticed that $f \longrightarrow f \circ g$ is a one-to-one correspondence between the set of all (continuous) functions on the torus and the set of all 1-periodic (continuous) functions on \mathbb{R} .

Our next goal is to find all continuous homomorphisms of T into Δ ; that is, we wish to find all continuous functions.

$$E : \Psi \longrightarrow \Delta$$

such that $E(x + y) = E(x) \cdot E(y)$.

Such functions are called characters on T.

Let $E: \mathbb{T} \longrightarrow \Delta$ be a character. Consider the composition $F: \mathbb{R} \longrightarrow \Delta$ defined by

$$F(x) = E(x).$$

F is continuous and satisfies the following properties:

$$(1) F(x+1) = F(x)$$

and

(2)
$$F(x + y) = F(x) F(y)$$

for all x, y in \mathbb{R} . (Hence for each character \mathbb{E} on \mathbb{T} , we obtained a 1-periodic continuous homomorphism $\mathbb{F}:\mathbb{R}\longrightarrow\Delta$.)
Conversely, each 1-periodic continuous homomorphism \mathbb{F} from \mathbb{R} into Δ gives rise to a character \mathbb{E} on \mathbb{T} defined by:

$$E : \mathbb{T} \longrightarrow \Lambda$$

$$\dot{x} \longmapsto F(x) .$$

And we clearly get a 1-1 correspondence between the set of all characters on $\mathbb T$ and the set of all 1-periodic continuous homomorphisms of $\mathbb R$ into Δ .

Let $E: \mathbb{T} \longrightarrow \Delta$ be a character and $F: \mathbb{R} \longrightarrow \Delta$ the associated 1-periodic continuous homomorphism. For any $p, q \in \mathbb{Z}$, $q \neq 0$,

$$\left[F\left(\begin{array}{c} \frac{p}{q} x\right)\right]^{q} = F\left(\begin{array}{c} \frac{p}{q} x.q\right) = F(px) = \left[F(x)\right]^{p}.$$

Letting x = 1,

$$\left[F\left(\frac{p}{q}\right)\right]^{q} = \left[F(1)\right]^{p}.$$

Since $F(1) \in \Delta$,

$$F(1) = e^{2\pi i \alpha}$$

for some $\infty \in \mathbb{R}$ so that

$$\left[F\left(\frac{p}{q}\right)\right]^{q} = e^{2\pi i p cc}.$$

Hence

$$F(\frac{p}{q}) = e^{2\pi i \frac{p}{q}} \propto e^{2\pi i \frac{k}{q}}$$

for some k : $0 \le k < q$, depending on p/q. But for

$$0 \neq t \in TR,$$

$$2\pi i \frac{p}{q} \propto 2\pi i \frac{k}{tq} = 2\pi i \frac{p}{q} \propto$$

$$F(p/q) = F(tp/tq) = e \qquad e \qquad e \qquad e \qquad e$$

Hence k = 0 and

$$F(x) = e^{2\pi i x \alpha}$$

for all $x \in \mathbb{Q}$, the rationals. Since F is continuous and \mathbb{Q} is dense in \mathbb{R} ,

$$F(x) = e^{2\pi i x \alpha}$$

for all x ∈ TR. Moreover,

$$e^{2\pi i\alpha} = F(0+1) = F(0) = 1$$

so that ∞ is an integer. Conversely, if $n \in \mathbb{Z}$, then the assignment

$$TR \longrightarrow \Delta$$
 $x \longmapsto e^{2\pi i n x}$

defines a 1-periodic continuous homomorphism F_n from TR into \triangle which in turn induces a character

$$\begin{array}{ccc}
E_n & & & & & \\
\uparrow & & & & \\
\hline
(3) & x & & & \\
& & & & \\
\end{array}$$

$$F_n(x) = e^{2\pi i n x}$$

Finally, we have proved

1.2 Proposition. There exists a bijection between the set Zof all integers and the set of all characters on T. The bijection is given by

$$n \mapsto E_n$$

where E_n is given by Equation (3).

It should be noted that these characters on \bigcap will play a fundamental part in the following chapters. Moreover, the additive abelian group structure on \mathbb{Z} gives the following formula:

$$(4)$$
 $\mathbb{E}_{n+m}(\mathring{y}) = \mathbb{E}_{n}(\mathring{y}) \mathbb{E}_{m}(\mathring{y})$

for all m,n $\in \mathbb{Z}$ and all $\dot{y} \in \mathbb{T}$.

2. The Space L²(F)

We have already constructed an infinite family of functions on the torus Φ .

2.1 <u>Definition</u>. Any finite linear combinations of the functions E_n is a continuous function on T. Such a function is called a <u>trigonometric polynomial</u>. Specifically, a trigonometric polynomial is a function of the form:

$$f(t) = \sum_{n=-N}^{N} c_n e^{2\pi i n t} \quad (t \in T),$$

where c_n are complex numbers, $n \in \{-N, \dots, 0, \dots, N\}$.

Let $C(\P)$ denote the linear space of all complex-valued continuous functions defined on \P , with the uniform norm

$$||f||_{\infty} = \sup_{\hat{x} \in T} |f(\hat{x})|$$

Recall that due to the continuity of the homomorphism

$$\mathbb{R} \to \mathbb{P}$$
 $x \mapsto \dot{x}$,

we have a one-to-one correspondence between the set $C(\P)$ and the set of all 1-periodic continuous functions from \P into \P . Thus for any $f \in C(\P)$, the associated 1-periodic continuous function from \P into \P will be denoted by \P . We define the integral of \P over \P , writing

$$\int_{\mathbf{P}}^{\mathbf{f}(\mathbf{x})} d\mathbf{x} = \int_{0}^{1} F(\mathbf{x}) d\mathbf{x}.$$

Now let $f, g \in C(T)$ and let F and G be the respective associated 1-periodic continuous functions. We define the scalar (or inner) product of f and g, denoted by (f,g), as follows:

$$(f,g) = \begin{cases} f(x) \ \overline{g(x)} \ dx \end{cases} = \begin{cases} 1 \\ F(x) \ \overline{G(x)} \ dx. \end{cases}$$

$$2.2 \ \underline{\text{Theorem.}} \quad (E_n, E_m) = \begin{cases} 0 \\ n,m \end{cases} = \begin{cases} 1 \\ 0 \ \text{if } n = m \end{cases}$$

$$0 \ \text{if } n \neq m.$$

$$\frac{1}{2\pi i(n-m)} = \begin{cases} 0 \\ 0 \end{cases} = 0 \ \text{if } n \neq m.$$

$$\frac{1}{2\pi i(n-m)} = 0 \ \text{if } n \neq m.$$

$$1 \ \text{if } n = m.$$

This completes the proof.

Recall that, $L^p(T)$ (1 \leq p < ∞) is the set of all complex-valued, Lebesgue measurable functions f on T such that the L^p -norm of f,

$$\|f\|_{p} = \left\{ \int_{p} |f(t)|^{p} dt \right\}^{1/p}$$
is finite. Note that $\|f\|_{2} = (f,f)$ for any $f \in C(\P)$.

For convinience of notation, for any (continuous) function f on T, the associated 1-periodic (continuous) function F on \mathbb{R} will also be denoted by f, even though f is defined on T.

2.3 Theorem. (Weierstrass Approximation Theorem). For any f in C(T) and any E > 0 there is a trigonometric polynomial P such that $\|f - P\|_{\infty} < E$ or $\|f(t) - P(t)\| < E$ for every real t. Proof. Suppose we had trigonometric polynomials Q_1 , Q_2 , with the following properties:

(a)
$$Q_k(t) > 0$$
 for $t \in \mathbb{R}$.

(b)
$$\int_{0}^{1/2} Q_{k}(t) dt = 1.$$

(c) If
$$n_k(\delta) = \sup \left\{ Q_k(t) : \delta \in |t| \leq \frac{1}{2} \right\}$$
, then
$$\lim_{k \to \infty} n_k(\delta) = 0 \text{ for every } \delta > 0.$$

Another way of stating (c) is to say that $Q_k(t) \longrightarrow 0$ uniformly on $\left[-\frac{1}{2}, -\delta\right]$ U $\left[\delta, \frac{1}{2}\right]$, for every $\delta > 0$.

To each $f \in C(\mathbb{T})$ we associate the function P_k defined

$$P_{k}(t) = \begin{cases} 1/2 \\ f(t-s) & Q(s) \text{ ds } (k=1, 2, 3, ...). \end{cases}$$

If we replace's by-s and then by s - t, the periodicity of f and ${\bf Q}_{\bf k}$ shows that the value of the integral does not change.

Hence $(1) P_k(t) = \begin{cases} 1/2 \\ f(s) Q_k(t-s) ds & (k=1, 2, 3, ...) \end{cases}$ Since each Q_k is a trigonometric polynomial, Q_k is of the form

(2)
$$Q_{k}(t) = \sum_{n=-N_{k}}^{N} a_{n,k} e^{2\pi i n t},$$

and if we replace t by t - s in (2) and substitute the value of $Q_k(t-s)$ into (1), we see that each P_k is of the form

$$P_{k}(t) = \begin{cases} 1/2 & K \\ f(s) & Q_{k}(t-s) ds \end{cases}$$

$$= \begin{cases} 1/2 & N_{k} \\ f(s) & \Sigma \\ n = -N_{k} \end{cases} a_{n,k} e^{2\pi i n(t-s)} ds$$

$$= \sum_{n=-N_{k}} a_{n,k} b_{n} e^{2\pi i nt}$$

$$= \sum_{n=-N_{k}} a_{n,k} b_{n} e^{2\pi i nt}$$

where $b_n = \int_{-1/2}^{1/2} f(s) e^{-2\pi i n s} ds = (f, E_n) \in \mathbb{C}$. Thus P_k is also a trigonometric polynomial.

Let E > 0 be given. Since f is uniformly continuous on T, there exists a S > 0 such that |f(t) - f(s)| < E wherever |t-s| < S. By (b), we have

$$P_k(t) - f(t) = \begin{cases} 1/2 \\ \{f(t-s) - f(t)\} \end{cases} Q_k(s) ds,$$

and then (a) implies, for all t, that

 $\left| \begin{array}{c} P_k(t) - f(t) \right| \leq \left| f(t-s) - f(t) \right| \, Q_k(s) \, \, \mathrm{d} s = A_1 + A_2, \\ \text{where } A_1 \text{ is the integral over } \left[-\delta , \delta \right] \, \mathrm{and} \, A_2 \, \, \mathrm{is the integral} \\ \text{over } \left[-\frac{1}{2}, -\delta \right] \, U \left[\delta, \, \frac{1}{2} \right]. \quad \text{In } A_1, \, \, \mathrm{the integrand is less than} \\ \mathbb{E}. \, Q_k \, (s), \, \mathrm{so} \, A_1 < \mathcal{E} \, , \, \mathrm{by} \, (b). \quad \text{In } A_2, \, \, \mathrm{we have} \, \, Q_k(s) \leq n_k(\delta), \\ \end{array}$

hence
$$A_{2} = \begin{cases} -\delta \\ |f(t-s) - f(t)| Q_{k}(s) ds + \begin{cases} 1/2 \\ |f(t-s) - f(t)| Q_{k}(s) ds \end{cases}$$

$$= \begin{cases} -1/2 \\ n_{k}(\delta) \\ -1/2 \end{cases} \begin{cases} -\delta \\ |f(t-s) - f(t)| ds + n_{k}(\delta) \\ |f(t-s) - f(t)| ds \end{cases}$$

$$\leq n_{k}(\delta) \begin{cases} |f(t-s) - f(t)| & ds \\ -1/2 & |f(t-s)| & ds \end{cases}$$

$$\leq n_{k}(\delta) \begin{cases} |f(t-s)| & ds + |f(t)| & ds \\ -1/2 & |f(t)| & ds \end{cases}$$

$$\leq n_{k}(\delta) \left(||f||_{\infty} + |f(t)| \right)$$

$$\leq 2 ||f||_{\infty} n_{k}(\delta) < \mathcal{E}$$

for sufficiently large k, by (c). Since these estimates are independent of t, we have proved that

$$\lim_{k \to \infty} ||f - P_k||_{\infty} = 0.$$

It remains to construct the Q_k . Here is a simple one. Put

$$Q_k(t) = c_k \left(\frac{1 + \cos 2\pi t}{2}\right)^k$$

where c_k is chosen so that (b) holds; that is, choose c_k such

$$\left(\frac{1+\cos 2\pi t}{2}\right)^k \geqslant 0$$
 implies $\int_{-1/2}^{1/2} \left(\frac{1+\cos 2\pi t}{2}\right)^k dt \geqslant 0$.

Hence
$$c_k > 0$$
 and $Q_k = c_k \left(\frac{1 + \cos 2\pi t}{2}\right)^k > 0$, which

proves (a). We proceed to show (c). Since Q_k is even. (b)

show that
$$1 = 2c_k \int_{0}^{1/2} \frac{1 + \cos 2\pi t}{2}^k dt \ge 2c_k \int_{0}^{1/2} \frac{1 + \cos 2\pi t}{2}^k \sin 2\pi t dt$$

$$= -\frac{c_k}{2^k \pi} \int_{0}^{1/2} (1 + \cos 2\pi t)^k d \cos 2\pi t$$

$$= \frac{-c_{k}}{2^{k}\pi(k+1)} \left[(1 + \cos \pi)^{k+1} - (1 + \cos 0)^{k+1} \right]$$

$$= \frac{c_{k}}{2^{k}\pi(k+1)}$$

$$= \frac{2c_{k}}{\pi(k+1)}$$

 Q_k is decreasing on $\left[0, \frac{1}{2}\right]$, since $Q_k(t) \leq 0$ for $t \in \left[0, \frac{1}{2}\right]$. It follows that $Q_k(t) \leq Q_k(t) \leq \frac{\pi (k+1)}{2} \left[\frac{1 + \cos 2\pi \delta}{2}\right]^k$

for $0 < 3 \le |t| \le \frac{1}{2}$.

This implies (c), since 1 + cos $2\pi \delta$ < 2 if 0 < $\delta \leq \frac{1}{2}$. The theorem is completely proved.

2.4 Theorem. The orthogonal family $\{E_n\}$ is total in $L^2(\P)$, where $\{E_n\}$ is total in $L^2(\P)$ means that if $f \in L^2(\P)$ with $(f, E_n) = 0$ for all n in \mathbb{Z} , then f = 0 a.e. This is equivalent to the statement that the set of all trigonometric polynomials is dense in $L^2(\P)$.

Proof. Since $C(\P)$ is dense in $L^2(\P)$, for any $f \in L^2(\P)$, and any E > 0 there is a $g \in C(\P)$ such that $\|f - g\|_2 < \frac{E}{2}$. By Theorem 2.3, there is a trigonometric P such that $\|g - P\|_{\infty} < \frac{E}{2}$. But $\|g - P\|_2 < \|g - P\|_{\infty} < \frac{E}{2}$, so that $\|f - P\|_2 < E$. This completes the proof.

3. Fourier Series

3.1 Definition. For any $f \in L^1(T)$, we define the Fourier coefficients of f by the formula

(1)
$$\hat{f}(n) = \int_{-1/2}^{1/2} f(t) e^{-2\pi i n t} dt (n = 0, \pm 1, \pm 2,...).$$

Since $|\hat{f}(n)| \le ||f||_1 < +\infty$, for all $n \in \mathbb{Z}$, the set of all integers, we thus associate with each $f \in L^1(\mathbb{T})$ a function \hat{f} , the Fourier transform of f, on \mathbb{Z} . The series

(2)
$$\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2\pi i n t}$$

is called the Fourier series of f and its partial sums are given by

(3)
$$S_N(t) = \sum_{n=-N}^{N} \hat{f}(n) e^{2\pi i n t} (N = 0, 1, 2, ...)$$

Since $L^p(\P) \subset L^1(\P)$, for $1 , (1) is applicable to every <math>f \in L^p(\P)$.

3.2 Theorem. Let $1 \le p < \infty$. Then $\hat{f}(n) \to 0$ as $|n| \to \infty$, for every $f \in L^p(\P)$.

Proof. We have that $C(\P)$ is dense in $L^p(\P)$, for $1 \le p < \infty$, and that the trigonometric polynomials are dense in $C(\P)$, by Theorem 2.3. If $\varepsilon > 0$ and $f \in L^p(\P)$, then there is a $g \in C(\P)$ and a trigonometric polynomial P such that $\|f - g\|_p < \frac{\varepsilon}{2}$ and $\|g - P\|_{\infty} < \frac{\varepsilon}{2}$. Since

it follows that $\| f - P \|_p < \mathcal{E}$, and if |n| is large enough (depending on P), then

$$|\hat{f}(n)| = \left| \int_{-1/2}^{1/2} \{f(t) - P(t)\} e^{-2\pi i n t} dt \right|$$
 $\leq \left| |f - P||_{p} < \epsilon.$

Thus $\hat{f}(n) \rightarrow 0$ as $1n \mapsto \infty$.

This completes the proof.

Of course the convergence of the Fourier coefficients of a function does not, in general, say anything about the convergence of the Fourier series. In fact, the central problem in the classical study of Fourier series is: "to determine whether, and in what sense, the Fourier series of a function f represents the function f". The most obvious way of interpreting this problem is to ask if the Fourier series of f always converges to f(x) for all x or for almost all x. In this interpretation, we immediately get into difficulties, except in the case where the functions are from $L^2(T)$. In this case we have a very elegant theory (see section 1 of chapter V).

- 4. There Are Functions Which Are Not Pointwise Limits of their Fourier Series.
- 4.1 Lemma. Let $\{f_n\}$ be any sequence in (C (\P), $\|\cdot\|_{\infty}$) converging to a function f on \P . Then f is in C (\P).

Proof. Let ξ > 0 be given. Let \dot{x}_0 be any point in \dot{T} . By hypothesis, we choose N \in \mathbb{Z} (> 0) so that $||f - f_n||_{\infty} < \frac{\xi}{3}$ for all $n \ge N$. Since f_n is continuous, there is a δ > 0 such that

 $\left|f_n(x)\right| - f_n(x_0)$ $< \frac{\varepsilon}{3}$ for all $x \in \mathbb{T}$ satisfying $|x - x_0| < \delta$. Hence we have

$$|f(\hat{x}) - f(\hat{x}_{0})| \le |f(\hat{x}) - f_{N}(\hat{x})| + |f_{N}(\hat{x}) - f_{N}(\hat{x}_{0})| + |f_{N}(\hat{x}_{0}) - f(\hat{x}_{0})|$$

$$\le 2 ||f - f_{N}||_{\infty} + |f_{N}(\hat{x}) - f_{N}(\hat{x}_{0})|$$

$$< 8$$

for all \mathring{x} in T satisfying $|\mathring{x}-\mathring{x}_{0}|<\delta$. Hence f is continuous and the proof is complete.

4.2 Theorem. The space (C (\P), $\|\cdot\|_{\infty}$) is a Banach space.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $C(\P)$ for the uniform norm and let \mathcal{E} > 0 be given. For each x in \P , $\{f_n(x)\}$ is a sequence of complex numbers such that for all $m, n \geqslant N$

$$|f_{m}(\mathbf{x}) - f_{n}(\mathbf{x})| \leq ||f_{m} - f_{n}||_{\infty} < \varepsilon$$
.

Since C is complete, the limit $\lim_{n \to \infty} f_n(x)$ exists. This defines a function $x \mapsto f(x) = \lim_{n \to \infty} f_n(x)$. By letting m goes $\lim_{n \to \infty} f_n(x)$ to ∞ in the above inequality, we get for all x.

$$|f(x) - f_n(x)| < \varepsilon$$
or
$$||f - f_n||_{\infty} < \varepsilon.$$

By Lemma 4.1, f is then continuous and the proof is complete.

4.3 A convergence problem. A natural question to ask: Is it true that, for every $f \in C(\P)$, the Fourier series of f converges to f(x) at every point x? The answer is negative as given below.

By Definition 3.1, the nth partial sum of the Fourier series of f at the point x is given by

of f at the point x is given by
(1)
$$S_n(f;x) = \begin{cases} 1/2 \\ f(t) D_n(x-t) dt & (n=0, 1, 2,...), \end{cases}$$
 where

(2)
$$D_n(t) = \sum_{k=-n}^{n} e^{2\pi i k t}$$
.

The problem is to determine whether

(3)
$$\lim_{n \to \infty} S_n(f; x) = f(x)$$

for every $f \in C(T)$ and for every real x.

We shall see that the Banach-Steinhaus theorem answers the question negatively. Put

(4)
$$S^*(f; x) = \sup_{n} |S_n(f; x)|$$
.

To begin with, take x = 0, and define

(5)
$$T_n f = S_n(f; 0) (f \in C(T), n = 1,2,3,...)$$
.

By Theorem 4.2, C(T) is a Banach space, relative to the uniform norm $\|f\|_{\infty}$. It follows from (1) that each T_n is a bounded linear functional on C(T), of norm

(5)
$$\|T_n\| = \sup_{0 \neq f \in C(\mathbb{T})} \frac{|T_n f|}{\|f\|_{\infty}} \le \int_{-1/2}^{1/2} |D_n(t)| dt = \|D_n\|_1.$$

We claim that

(6) $||T_n|| \rightarrow \infty \text{ as } n \rightarrow \infty$.

This will be proved by showing that equality holds in (5) and that

(7) $\|D_n\|_1 \longrightarrow \infty$ as $n \longrightarrow \infty$.

Multiply (2) by $e^{\pi i t}$ and by $e^{-\pi i t}$ and subtract one of the resulting two equations from the other, to obtain

(8)
$$D_n(t) = \frac{\sin 2\pi (n + \frac{1}{2}) t}{\sin \pi t}$$

 $|\sin x| \le |x|$ for all real x, (8) shows that $\|D_n\|_1 = \int_{-1/2}^{|D_n(t)|} dt$ $= 2 \left| \frac{1/2 \sin 2\pi \left(n + \frac{1}{2}\right) t}{\sin \pi t} \right| dt$ $\geq \frac{2}{\pi} \left[|\sin 2\pi \left(n + \frac{1}{2} \right) t \right] \frac{dt}{t}$ $= \frac{2}{\pi} \begin{cases} (n+1/2)\pi \\ |\sin t'| \frac{d(t'/2\pi(n+1/2))}{(t'/2\pi(n+1/2))} \end{cases}$ $= \frac{2}{\pi} \begin{cases} (n+1/2)\pi \\ 0 \end{cases}$ |sin t'| $\frac{dt'}{t'}$ $\geq \frac{2}{\pi} \left\{ \begin{array}{c} n\pi \\ |\sin t| \frac{dt}{t} \end{array} \right.$ $= \frac{2}{\pi} \sum_{k=1}^{n} \begin{cases} k\pi \\ (k-1)\pi \end{cases} | \sin t | \frac{dt}{t}$

$$\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k\pi} \begin{cases} k\pi \\ |\sin t| dt \end{cases}$$

$$= \frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k\pi} (2 \begin{cases} \pi/2 \\ \sin t dt \end{cases})$$

$$= \frac{4}{\pi^2} \sum_{k=1}^{n} \frac{1}{k} \to \infty,$$

which proves (7).

Next, fix n, and put g(t) = 1 if $D_n(t) \ge 0$, g(t) = -1if $D_n(t) < 0$. There exist $f_j \in C(T)$ such that $-1 \le f_j \le 1$ and $f_j(t) \rightarrow g(t)$ for every t, as $j \rightarrow \infty$. By Dominated Convergence Theorem,

$$\lim_{j \to \infty} T_n(f_j) = \lim_{j \to \infty} \int_{-1/2}^{f_j(-t)} D_n(t) dt$$

$$= \int_{-1/2}^{1/2} g(-t) D_n(t) dt$$

$$= ||D_n||_1$$

Hence $||T_n|| = \sup_{\|f\|_{\infty}} \frac{|T_n(f)|}{\|f\|_{\infty}} \ge \frac{|T_n(f_j)|}{\|f\|_{\infty}}$ for all j, and

$$\lim_{j\to\infty} ||T_n|| = ||T_n|| \geqslant \lim_{j\to\infty} \frac{|T_n(f_j)|}{||f_j||_{\infty}} = \frac{||D_n||_1}{||g||_{\infty}} = ||D_n||_1$$

so that $\|T_n\| = \|D_n\|_1$ and we have proved (6).

Since (6) holds, the Banach-Steinhaus theorem now asserts that $S'(f; 0) = \infty$ for every f in some dense $G_{S'}$ set in C(T).

We choose x = 0 for convenience. It is clear that the same result holds for every other x.

To each real number x there corresponds a set $E_x \in C(\P)$ which is dense G_x in $C(\P)$, such that $S^*(f;x) = \infty$ for every $f \in E_x$.

In particular, the Fourier series of each f \mathcal{E} E diverges at x, and we have a negative answer to our question.

We can extend this result to $L^p(\P)$ space for $l \not \in p < \infty$. Since $C(\P)$ is dense in $L^p(\P)$, for $l \not \in p < \infty$, and for each real number x there corresponds a set E_x which is a dense G_x in $C(\P)$. Then E_x is dense in $L^p(\P)$ and the Fourier series of each $f \in E_x \subset L^p(\P)$ diverges at x.

5. Analogue of Riesz-Fisher Is False for L¹(T)

5.1 Theorem. Let C_o be the space of all complex functions \hat{f} on \mathbb{Z} such that \hat{f} (n) \longrightarrow 0 as n \longrightarrow $\stackrel{+}{\smile}$ ∞ , with the supremum norm

$$\|\hat{\mathbf{f}}\|_{\infty} = \sup \left\{ \|\hat{\mathbf{f}}(\mathbf{n})\| : \mathbf{n} \in \mathbb{Z} \right\}.$$

Then C is a Banach space.

Proof. Let $\{\hat{f}_n\}$ be any Cauchy sequence in C_0 . Let E>0 be given. There is an $n \in \mathbb{Z}(>0)$ such that for all $m, n>n_0$, $\|\hat{f}_m-\hat{f}_n\|_{\infty}<\frac{E}{2}$.

For each i in \mathbb{Z} , $|\hat{f}_m(i) - \hat{f}_n(i)| \le ||\hat{f}_m - \hat{f}_n||_{\infty} < \frac{\epsilon}{2}$, this implies that $\{\hat{f}_n(i)\}$ is a Cauchy sequence in \mathbb{C} , which is complete. Then the limit $\lim_{n\to\infty} \hat{f}_n(i)$ exists and defines a function $i\mapsto \hat{f}(i)=\lim_{n\to\infty} \hat{f}_n(i)$. Moreover, for all $i\in\mathbb{Z}$, $n\to\infty$

or
$$\|\hat{\mathbf{f}} - \hat{\mathbf{f}}_n\|_{\infty} < \varepsilon$$
.

It remains to show that $\hat{f} \in C_0$; that is, $\hat{f}(n) \to 0$ as $n \to \pm \infty$. For sufficiently large m such that $\|\hat{f}_m - \hat{f}\|_{\infty} < \frac{\mathcal{E}}{2}$ we have $\hat{f}_m(n) \to 0$ as $n \to \pm \infty$. Then there is an $n' \in \mathbb{Z}(>0)$ such that for all |n| > n',

$$|\hat{f}(n)| \le |\hat{f}(n) - \hat{f}_m(x)| + |\hat{f}_m(x)| < \varepsilon$$
.

This completes the proof.

If $\{a_n\}$ is a sequence of complex number such that $a_n \to 0$ as $n \to \pm \infty$, does it follow that there is an $f \in L^1(\mathbb{T})$ such that $\hat{f}(n) = a_n$ for all $n \in \mathbb{Z}$? In other words is something like the Riesz-Fisher theorem holds in this situation?

This will be answered negatively with the aid of the Open Mapping Theorem.

Theorem. The mapping: $f \mapsto \hat{f}$ is a one-to-one bounded linear transformation of $L^1(\mathbb{T})$ into (but not onto) C_0 .

Proof. Define T by Tf = \hat{f} . Then T is linear. By Theorem 5.1, T maps $L^1(\mathbb{T})$ into C_0 , and since $|\hat{f}(n)| \le ||f||_1$ for all n, so that $||T|| \le 1$. Let us now prove that T is one-to-one, that is, Tf = 0 implies f = 0 in $L^1(\mathbb{T})$.

Suppose then $f \in L^1(\mathbb{T})$ and $\hat{f}(n) = 0$ for every $n \in \mathbb{Z}$.

for any trigonometric polynomial g. By Theorem 2.3, we know that the polynomials are dense in $C(\mathbb{T})$, therefore for any $g \in C(\mathbb{T})$, there is a sequence of trigonometric polynomials

gn such that $\lim_{n\to\infty} g_n(x) = g(x)$ for every real x. Since every convergence sequence is bounded, there is an M > 0 such that $|f(x)|g_n(x)| \le M|f(x)|$ for all n, all real x, and $M|f(x)| \in L^1(T)$. By Lebesque's Dominated Convergence Theorem, we have $\lim_{n\to\infty} \int_{1/2}^{1/2} f(x) g_n(x) dx = \int_{-1/2}^{1/2} f(x) g(x) dx$. Hence

(1) holds for every g ∈ C(T).

If g is the characteristic function of any measurable set in \P . By Corollary to Lusin's theorem, there is a sequence $\{g_n\}$ in $C(\P)$ such that $|g_n| \le 1$ and $g(x) = \lim_{n \to \infty} g_n(x)$ a.e.

Apply Lebesque's Dominated Convergence Theorem once, more, then (1) holds if g is the characteristic function of any measurable set E in Ψ . Since $f \in L^1(\Psi)$ and $f(x) \times (x) dx = \int f(x) dx = 0$ for every measurable set E in Ψ , then we have f = 0 a.e. on Ψ .

If the range of T were all of C_0 , by Corollary 2.3.2, there exists a δ > 0 such that

 $\|\hat{f}\|_{\bullet} \geqslant \$ \|f\|_{1} \quad \text{for every } f \in L^{1}(\P).$ But if $D_{n}(t)$ is defined as in 4.3, then $D_{n} \in L^{1}(\P)$, $\|\hat{D}_{n}\|_{\bullet} = 1$ for $n = 1, 2, \ldots$, and $\|D_{n}\|_{1} \longrightarrow \infty$ as $n \longrightarrow \infty$. Hence there is no $\delta > 0$ such that the inequality

$$\|\hat{D}_{n}\|_{\infty} > 8\|D_{n}\|_{1}$$

holds for every n.

This completes the proof.

Now $L^p(\P) \subset L^1(\P)$ for all $1 . For any sequence of complex number <math>\left\{a_n\right\}$ such that $a_n \longrightarrow 0$ as $n \longrightarrow \frac{1}{2} \infty$, it does not follow that there is an $f \in L^p(\P)$, for $1 \le p \le \infty$, such that $\hat{f}(n) = a_n$ for all $n \in \mathbb{Z}$.

Remark. As we have seen some alternative interpretation of the meaning of "representation of a function" is desirable. This we shall do in the next chapter.