CHAPTZER IT
THREE PEARLS OF BANACH SPACE TECHNIQUES

1. Banch Spaces

1.1 Definition. A complex vector space X is said to be a normed
linear space if to each x € X there is a nonnegative real

number {x{f , called the norm of x, such that

(a) fIx+ y|f g!jx“ A e for all x and y € X,
(b) Jax I = {q“]x” if x € X and o¢ is a complex
number,
(c) Yx| = 0/ implies % =. O.
l.2 Theorem. Let X be a normed linear space. Then d(x, y) =’|x - y]}

is a metric on X
Proof. Let x, y,'z be any elements in X. d(x, y) = ['x -y H
is always nonnegative real number. By (a) in Definition 1.1,
we have
1 ~ p
Fx = flgibe= vl o« -
so that d(x, z) g dalx, y) + aly, z).
By taking O = 0 in (b) in Definition 1.1, we have
x = 0 implies ||x| = o0
and (c) in Definition 1.1, show that
x =y if and only if d(x, y) = O.
Finally, by taking o€ = = 1 in (b) in Definition 1.1, we have

W=yl =1y =x



1.3

1.4

so that d(x, y) = da(y, x).

This completes the proof.

Definition. A Banach space is a normed linear space which is

complete in the metric defined by its norm.

Example (a).

el
For any fixed n, the set 1Fz of all n-tuples
X = (xl, XZ,..., Xn)’
where Xy Xsreeey x —are real numbers, is a real Banach space
if additive and scala®t multiplication are defined by
X +y = (x1+ Yoy X Toveena X + yn)

where x = (xl, X5y oo d 4 xn) ) ¥ = (yl, Yoreess yn); for any x

n
and y€ TR »
ox = (mjl,ax?.u.,mxﬁ
, n
where x = (xl, X reesey xn); for/any x € TR and any xR »

Anse
and if || x| =/ € X; .
¥ i=1 '
n

Proof. Since]}{h, under these operations, is clearly a real
normed linear space with the norm 'f.[] s we only need to
show completeness.

- .

Let '{xm} be any Cauchy sequence in TR where x’ is of
the form (xi, xg,...., xi) s xi € MR for i =1; 24 cvess 0;
j€ Z (> 0). For any £ > 0, there exists ne & >0)

T -
such that for all my > Dy m, 2 n, ” X - X ])(8. For

each i =1, 2, ... , n, we have



!
my myl [ m o my, fonm
xi - xi .-V(xi - xi ) $!! iEl(x
m m
"

for all ml'z,no, mz'z n . This shows that, for i = 1, 2y...,n,
{»le}is a Cauchy sequence in [R , which is complete. There
exists xie]R such that x?——-}xi as Medug Tor i = 12,604
ne Let x = (xl, Xopones xn) 5,ﬂ{n . We claim that x" iy X
as m—p 0. It follows, from x?-—-—-ﬁ x, as m—poo , for i =
1,2,4+0y n, that there exists n: g 77 . 7 0) such that for any
m > ni 3 lx?-xi|<-—§-— b

I

Let n‘k = max { ni ‘ INENWL, 2, ¢n0y n.} .

For any m 3 n*, we have

‘ n o~ 2
| <™ - x || =/Jg(x’f‘-x_)2<\jz £ . £ .
i=1 1 1 i i=1 o

This completes the proof.

1.5 Example (b).
n

For any fixed n, the set ([; of all n-tuples
X = (xl,xz,..., xn),
where xl,xz....,xn are complex numbers, is a Banach space if
addition and scalar multiplication are defined componentwise,

as usual, and if
’-————-—-———-

el =[5 |x,)?

j\/i=l | %3 .

Proof. The proof follows the same pattern as in pro6f of (a).

>
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2. Bounded Lingar Transformation

2+1 Definition. A transformation T from a normed linear space X

into a normed linear space Y is called linear if

T(xXx + By) = o¢T(x) + B T(y)

for any x, y € X and any (x, B €& a_.

2.2 Theorem . Let X and Y be normed linear spaces, The set
& (X, Y) of all linear transformations of X into Y is a
complex vector space, under the operations defined in the
proof,
Proof. For any £,/ g € .:l;é(X, ¥Y), any x € X and any océid: ,
we. define
(f + g)lx) = £lx) + glx),
() (%) = “ocfix).
For any £, g € ;g(x, Y), any x, y &€ X and any &, A ,
BE C}:. we have |

(f + g)( ot x + By) = f( o x + By) + gl o¢ x + By)

o £(x) + BE(y) + oxglx) + Bgly)

i}

(f + g)(x) + B(f + g)(y)
£

so that f + g ¢ (X, Y) and

A (flxx + By))

(Af)(oxx + By)

A (o £(x) + Bf(y))

"

X (AD)(x) + BC(AS(y)

so that A f¢€ é@(X,Y). This completes the proof.

1
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2¢3 Definition. For any T in £(X,Y), T is called a bounded

linear transformation if there is a nonnegative real A such that

that HNTxH & A& ) xlt for all x € X,
The smallest such A is denoted by || TIl , called the norm of
T; in particular, HTx|| £ IITH x1l for all x € X.

2.4 Theorem. The set B(%(X,Y) of all bounded linear transformations
of X into Y is a complex vector subspace of the complex vector
space é@ (x,Y).

Proof. By definition of B%(X,Y) and C.SJ%(X,Y), we see that
B&Q) (X,Y) is a subset df _cg(X,Y). Consider for any
fy, g € B%(X,Y), any x /& X, we have

|2+ @I = Jhetx) + g(x)]|
< EE % sl

I~

HEf i<+ el xil

= A Hx“ 3

1
where A, = CHel+ g Y € TR(),O), so that £ + g ¢ B%(X,Y)

and for any X & d.,

NGl = ot (G = o) eGOR Sl i
= Az‘lx'l '
where A, = lacl]l £11 €TR(20), so that o f €B£(X,Y). Then

B%(X,Y) is closed under vector addition and scalar multiplica~
tion which are defined in the complex vector space é@ (X'Y).
Hence B%(X,Y) is a complex vector subspace of complex vector

space %(X,Y). The proof is complete.
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2.5 Theorem. Let T be any element in Bé@(X, Y); that is, there is
a nornegative real A shch that || T(x)|! £ & [l x || for all x = X,

The following formulations of It T {} are equivalen% :

(V= Inf-{ﬁé?&)b) f o) & all x| for all
X e X“(
(2) it = supt”T(x”er X\ {_O}}.
f1x}!
(3) @lTH =  sup HT(X)H \ x& Xy |x{] = 11.
J

Proof. (1) lmplles (2)

From equation (1), ,l T f) lHT(X)” for x ¢ X \ { O} so that
. x|
ol s supi"T(X)“i X & XN { O}} It remains to show that
T|)& sup {HT(T!)H x/&/ %N {o}}. If || T)] = O then

min AHT(x) ]
xeX\{O} It x )
b such that 0 < b < ;OT I s+ since “ TH is the infimum of A >0

720.= “T” « If HT;‘! ”> 0 then, for any

such that || T(x) [!‘\ A '! X H, there is a x in X such that
x>0 x i, th:.s implies x# 0; o’rhereW1se T(x) = O
and 0) b H x {f whlch contradlcts the fact that || x!j20 .

1 T T(x) ”\b. so that sup “____._.T(X) ”)

Then we have b and
\ x|l xeX\{o} ilx|} 7
sup : "T(x}_!_! ) (I T1l, since b €(0, HTIl)s This completes

xeX N\ {o} x|
the proof of (1) implies (2).

Next, we want to show that equations (2) and (3) are
equivalent. This follows, since for any y € X \ {O} sy Y= X

for some e G:and for some x € X such that #f xI! = 1, so that

the following equalities hold :
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oup { }g_; T(y)i| _ sup T kTGOl
yE€XN{0 v x€ X i I x€X
i x 1] =1 = nxy =1 Tt
= sup || T™x)I| .
XeE X
ihxil =1

The theorem will be proved when we show that equation (2)
T(x)!!
| x|l
for all x € X \ {0} and for any & &€ TR (2 0) such that

implies equation (1). Fronm quatioﬁ (2), we have || T! Z

A llTll, l'T(x)l!.f AN x|| for all x € X. Hence
o] = inf{AeTRbo)f Hr( € & x|} for allxex}.
Now, the proof is complete.

2.6 Theorem, For any linear transformation T of a normed linear
space X into a normed linear space Y,,the following three
conditions are equivalent :

(1) T is bounded.
(2) T is continuous.
(3) T is continuous at one point x, € Xo
Proof. (1) implies (2).
If || T)[ = O then T is the zero transformation which is
continuous. Assume [|T|l €TR (>0). For any £ 70, let
8 = € y for any x, X in X such that i’x.- xol‘<\8 implies

HTH o

PG - e[ LTI |x = %) < 1T wTy - €

(2) implies (3) is trivially.
(3) implies (1).

Given any & > 0, there is a S‘> 0 such that ” X - xo',<(%



2«7
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implies [ T(x) - T(x )l < &, 1In other words, ”x” < S

. . X

implies || T(xo+ x) - T(xo)” = “T(x)” < E or = ”

implies || T(’f)”\( £ « Hence, | Tl = su ’I.‘ f
8 HEURNAE

implies that T is bounded.

Theorem. Bg')(X,Y) is a normed linear subspace of the linear

space ég (X, Y).

Proof. Note that B%(X,Y) is a, complex vector subspace of

the linear spaceé@ (X4y¥). ' For any T € B%(X,Y), we define

frll = “sup [l T(x) ||
xeX
Wxw =1

We claim that B%(X,Y) with the above norm is a normed linear
space. By Theorem 2.5, we see that |[ T ]| is a nonnegative real

number. For any Tl’Ta'T € B%(X,Y), any ol € G:. we have

I .+ =  sup (T, + T = T, (x)+ T,(x)
1# Tl = sup = oo ]
%91 =ik hxil=1
< sup T.(x) [} +  sup T (D=l 1H+{]T ,
xsex ” 1 “ s X H 2 “ “ 1” “ ZH
f1x#i =1 Ihxn =1
and [lacT || = sup |} (AT (x) || = |} sup HTN =t BT
xe X xg X
hxn=1 x| =1
1f {IT ] = 0, we have || T(x) HEHTI jixH = 0, for all x € X.

&

This implies that T(x) = O for all x & X; that is y T is a zero

transformation. The proof is complete,

Theorem. If Y is a Banach space then Bc%(X,Y) is a Banach space.

Proof, Let {fn}’be a Canchy sequence in B%(X,Y). Let € > 0

be given. There is a n € Z (>0) such that fl £t || < £

>3



15

for all m >/

Bég(X,Y), we have for any x such that [|x || = 1,

o n.'; n . By the definition of '|.1' in

“fm(x) - fn(x)l[ < § form% n , n>n . This shcws that

-{fn(x{} is a Cauchy sequence in Y, which is complete, hence
{fn(x)j~ converges to an element f(x) & Y. This is also true
for any x € X since we can write x = Ay with || yf! = 1 and
A = |l x||, hence fn(x) = ).fn(y) tends to a limit

£(x) = Af(y).

The linearity of f follows since

flx +y) =1lim AfA(x % y)) = lim (£ (x) + £ (y))
nepso, B n-sco o E
= lim /8 (x) 4+ 1lim £ (y)
n<yoe B n—sono 2
= f(xXA 200, 004814
and f(a¢ x) = 1linm (fn(txx)) = ~Tim cxfn(x)
n—yoa n-—-=> 00

"

X f(x).

i

o lim fn(x)
N—>c0

The boundedness of f can be proved as follows. Since
{fn(X)}' converges to f(x), there is nlejZZ {> 0) such that
&
for 2all n » n,, !lfn(x) - f(x)‘f < - For any x € X such
that |} x|] = 1, 1let §£ = 3, there is n,€ ZZ {>0) such that
1 +

ll fna(x) - f(x) < 1, hence llf(x)l’ <1 + ’

£ (x)
2

ll fn2”,-since fnée B&g(X,Y); that is, |rf(x)[] < (1 + “fnJP[[X”

for all x € X such that ||x,, = 1. This inequality is still

true for any x € X since we can write x = A.y with []y[[ =

[ 17380059
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and A = || xll , hence || £(x) ]| = [lf()ky)|, =|| ;\f(y)[lz
ANE = Hx e L =g @+ I fnzu) which implies

that f is bounded,

We know that !Ifn_ f!{ = ii?x lf(fn- f)(x)l' « There is a
I xtl=1 £
x € X such that | x || =1, ” (fn— f)(xo) H; “ £-f N-E .
fet n° = mas (no,-nl). For any n 2 ﬁ*,
| £ £ ”é i (£, f)(xo)H +§- =] £,(x) - £x )] +§3-

s” fn(xo) 7 fﬂgxo),, X "fn*(xo) - f(Xo)” i

Wi

s‘c‘E:g_

< S AEIF8

5 //3hx
This completes the proof.

3. The Open Mapping Theorem.

Theorem. (The Open Mapping Theorem) ‘Let U and V be the open

unit balls of the Banach spaces X and Y, respectively. To
every bounded linear transformation T of X onto Y there corres-
ponds a S > O such that
(1) »(1)D 8v.

Note the symbol §V stands for the set .{Sy': vy e V‘} ;
that is, the set of all ye Y with Iy | < 8 .

Let us now explain the name of the theorem. Let W1 be any
open ball in X with center at X and radius r » O; that is |
the set of all X+ rx where x € U. From the linearity of T,

we have T(xo+ rx) = T(xo) + r T(x). It follows from (1) that
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there is a & » O such that T(U) D 8V; that is,
T(wl)D{Txo+ ry ! yEV, ry = rd > O} . Hence the image of
every open ball in X, with center at X 4 say, contains an open
ball in Y with center at Txo. Thus the image under T of every
opén set is open; that is, T is an open mapping.
Here is another way of stating (1) : To every y with
Ny < 8 there corresponds an x with |{ x |} < 1 so that
Tx = y.
Proof. Given y € Yy there is an x € X such that Tx = y; if
lxll <k, it follows that'y € T(kU). Hence Y is the union
of the sets T(kU), for k' =1, 2, ... . Since Y is complete,
Theorem 1l43.5 implies that Y is not a countable union of nowhere
dense sets. There exists-a —T(kU) of Y such that T(kU) is not
nowhere dense. By the definition of nowhere dense set, we have
the closure T(kU) contains a nonempty open subset W of Y.
This means that every point of W is the limit of a sequence
{ Txi} , where x&_e kU; from now on, k and W are fixed.
Since W is open, we can choose X € W and 41'> 0 so that
Y&V € Woif |y < 72 « For any such y there are
sequences {xi} . {x;}- in kU such that
(2) Tx;..9 y, and sz,_5y6+ ¥y as i —yoo.
Setting xi = x; . x; s We have’l X "S'[x;‘} + ” x{ “ < 2k

and Txi-—)y. Since this holds for every y with |[{y|] < 7{,

the linearity of T shows that the following is true if

5:'71‘/21(:
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To each y€ Y and to each £ > 0O there corresponds an
x € X such that
(3) lIxl| g §hvil and|[y-txl| <E&.
This is almost the desired conclusion, as stated just before
the start of the proof, except that there we had €& = 0.
Fix yé& 8V, and fix & > 0. By (3) there exists an Xy
with || %, || ¢ g"“ vl <88 /41 and
&) fly - || < 38€

which follows from (3) that
-1

S E:

= )

that is, ||y - Txl/ £ 8% 3

2y szl

5 S £ &5

and

2X
. |
)

Suppose Xpyeeey X = are chosen so that
=n
(5) ||y = Tx)- Thyeee—tx {2 Sa .
Use (3), with y replaced by the vector on the left side of (5),
to obtain an fxn+1 so that (5) holds with n + 1 in place of n,
and
oy =l _~n -n

(6) “Xn+1” < g”y = TXjeeee = Txn”_ §2"8€e = 2""¢ ,
for n = 1, 24 34y ses o ‘

If we set S, = X) *ees X (6) shows that ‘£Sn}» is a
Cauchy sequence in X. Since, for any Ei > 0, choose n € 20> 0)

n
such that for any positive integer p, 2 ° > g (1 + 2—1°°'+2—p+l)

o 4
and for any n 3 ns

“ S ep” snl =

R Ty £ EeY [ [T
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€27 4a.4 p=(ntp-l)e 2B (1 4 2 hy . 2B

-n
£2 ° £ (1 + 2-1 + oee + 2~p+1) < E’l'

Since X is complete, there exists an x € X so that Sn—e.x as
n—>00, The inequality 1%, ]| < 1, together with (6), shows

that

Il =l

“gil xn” ngln Xn” F 2-15 +oeeat 270E 4ol

11
1+ 2"15(1 F o0+ 25 ,) = 1 4 2"]3 ____} 1+¢ .
1-3
-5 |
Since T is continuous, TS, ==> Tx W By (5) TS —»y. Hence
Tx = y. We have now proved that
(7) w1+ g)v)S/8v,
or
(®) o) D EeriSw
for every £ > 0. 'The union of the sets on the right of (8),

taken over all £ >0, is 3 V. This proves (1).

3¢2 Corollary. If X and Y are Banach spaces and if T is a bounded
linear transformation of X onto Y which is also one=-to-one, then
there is a 8) O such that
(1) ;thll> Sl x|l (x € X),
Proof. If § is chosen as in (3) in the proof of the Open
Mapping Theorem. In (3) of that theorem, Tx = y has already

been proved and T is now one-to-one, shows that

Hex]] > 8lxll (xex).
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4. The Banach-Steinhaus Theorem or the Uniform Boundedness

Principle

Definition. Let f be an extended real-valued function on a

topological space. f is said to be lower semicontinuous if the

set {x : f(x) >(x} is open for every real ¢ . f is said

to be upper semicontinuous if the setf {x : f(x) <Cx}- is open

for every real X .

Lemma. (a) An extended real-valued function f is continuous
if and only if it is both upper semicontinuous and lower
semicontinuocus.

(b) The suppremum of any collection of lower semiconti-
nuous functions is lower semicontinuous.

Proof of (a). Assume f is continuous. Then the set

{ x ¢ f(x)X» 0:} is open for every real o¢ so that f is lower
semicontinuous. Similarly, f is upper semicontinuous.
Conversely, let 8? be the class of all open intervals inf'ﬁ{°
Let V be any open set in %ﬁi. V can be written as a countable
union of open intervals in ﬁé « That is, V = ;?;;i y where
IiE@. Let T = (o, 8) (may be [-00. 8)y (OXyo00] ) be
any open interval in ;ﬁ.. By hypothesis, f-l [-oo,B) and
f-l(CX, +00] are open so that f—l(I) = f-lfch,B)l\ f”l(Ci,OOJ
is open. Hence f-l(V) = U{f_l(Ii) 1:1 = 1,2,..0,1, € is
open. Therefore f is continuous and the proof is complete,
Proof ofv(b), Let g = sup £ where £, is a lower semiconti-

nxl
nuous function, n =1, 2,... . Let p¢ be any real number. For




4,3

any x € g-l(cx,oo] y we have o < sup

n> 1l
there exists me ZI (> 0) such that o < sup fn(x) - £ £
nkl

f (x) £ +00 where £ =(sup f (x) -o¢)/ 2. Hence x is
m n

o n2 1 =1
. 5 —1 -,
in U & K,00| so that ol .U f (oC,00]. For
any x € U f (o d)], we have of < f (x)< sup £ (x) £ 0O

n>1 n J m n n

for some me {>0) so that'x e,g-%gx;1ﬁ. Hence

-1 3
U f (00] Cg Tt (06,00) and g (o, +00] = U £ (o¢,00] .
nyl - nyl "

Since the countable unidn of open sets is open. Then g is lower

semicontinuous and’the /lemma’ is proved.

Theorem,(The Banach~Steinhous Theorem or the Uniform Boundedness
Principle). Suppo;e X -is~a Banach space, Y is a normed linear
space, and {:ﬂ,}»is a-collection of bounded linear transformations
of X into Y, where oc ranges over scme index sét A. Then either
there exists an M < go such that

(1) || Tall € M, for every ek , or

(2) sup ][Tu:x’, = 00 4 for all x belonging to some dense
A EA '

G3 set in X , where GS is the intersection of a countable
collection of open sets of X.

Proof. Put Y (x) = sup [| T * {|  for all xe X.
oE A

Let Vn ={x: (‘P(x) > n} (B = 1y 2y sas ) s

i

Since each T, is continuous and the norm of Y is a
continuous function on Y, each function x T, x| is

continuous on X. By Lemma 4.2, l? is lower semicontinuous, and
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each Vn is open,

If one of those sets, say VH' fails to be dense in X, then
there exist an xoe X and an r > O such that |Ix|} ¢ r implies
X+ X %’ Vy 3 this means that l? (xo+ x) £ N, or

| Tq (x o+ )| & W
for all X € A and all x with [Ix]] & r. Since x = (Xo+ x) - Xy
we then have
T x| & || To e+ x| 22 lIT, x || £ 2N

Hence, " Te H = sup “ T 36 ” £ . M, for all OL € A.
1l =2 -3

The other possibility isithat every Vn is dense in X. In
that case |, rlvn is/a/dense GS in X, by Baire's theoren,
Moreover ‘P (x) = of /for évery x e ﬂVn. Hence the theorem

is completely proved.

5« The Hahn-Banach Theorem

5.1 Proposition. Let V. be a complex vector space.

(a) If u is the real part of a complex-~linear functional f on
V, then

(1) f(x) = u(x) - iu(ix) for all x € V.

(b) If u is a real-linear functional on V and if f is defined

by (1), then f is a complex-linear functional on V.

(¢) If V is a normed linear space and f and u are related as in

(1), then [ £l = |lul] .
Proof. If « and B are real numbers and z = & + iB , then

the real part of iz is - B. Thus for all complex number z,
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(2) 2z = Re z - i Re (iz)
Since
(3) Re (if(x)) = Re f(ix) = u(ix) ,

(1) follows from (2) with z = f(x). Under the hypothesis (b),
we have that f(x + y) = u(x + y) - iu(i(x + y)) = u(x) + uly)
- iu (ix) - iu(iy) = f(x) + f(y) and f( &k x) = u(ecx) -

inv (ixx) = o (ulx) - iu(ix)) = of £(x), for all real oL and
for all x, y in V.

But we also have

(&) f(ix) = ulix) < dulsx) s ulix) + iu(x) = i (£(x)),

which proves that f£/is a complex-linear functional on V.

Since [u‘(x) 'é ‘ftx)[é"f” l.xll, for all x& X, we have

sup lu(x)‘ £ £l so that lull< | £1] . oOn the other hand,
x£0 x|
to every x € V there corresponds a-gcomplex number o, |l = 1

so that o f(x) = | f(x)[.. Then
(5) 2] = £letx) = ulot®) & P dloocx | = full Ixlf

so that ||f]l € [lul] . Thus the part (c) is proved.

Definition. Let M be a subspace of a normed space X. Let F

and f be bounded linear functional on X and M, respectively.

F is an extension of f if the domain of F includes the
domain of f and F(x) = f(x) for all x in the domain of f. In
this case, f is also called a restriction of F.

The norm !IFII and ],f}] are computed relative to the

domains of F and f, explicitly ;
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e sup{'“fiﬁﬂ, X & BX {0}},
Fei =Sup{."_lri_7:_' , X E X\ {0}}'

5.3 Theorem. (The Hahn-Banach Theorem) If M is a subspace of a

normed linear space X and if f is a bounded linear functional
on M, then f can be extended tc a bounded linear functional F
on X so that || F|| = |[£ll &

Proof. We first assume that X is a real normed linear space
and, consequently, that ¥ is a real-linear bounded functional
on M. If |l fll =0, the desired extension i€ F = O. We may
assume that || £ + O,  First we shall deal with the case where
hell = 1.

Choosg xOE;X, xo % My—and-let Ml be the vector spaee spanned
by M and X e Then Ml consists of all vectors of the form x +;\xo,
where x € M and A is a real scalar. If we define fl(x + ;\xo) =
f(x) + Aot , where o is any fixed real number. Then fi(X) =

f(x) for all x € M and for any [31, B Al' "AZ e R ,

2'!
xl, x2 e M,
£y [Bl(x1+ Alxo) + Bz(x2+ XZXOJ} = Blfl(xl+ Alxo)
* Bty G+ Agx )

that is, f1 is a linear functional on M, extending f. The

1
problem is then reduce to choose o so that the extended
functional still has norm 1. This will be the case provided

that

(1) |£x) + A | & “x + kon (x € M, A_real).
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Replace x by - Ax and divide  both side of (1) by [Al . The
requirement is then that
(@) 1£6) -kl x = x )} (xeM),
‘+that is, that Ax Lo QR Bx for all x € M, where
L

(3) Ax = f(x) - || x - xOH and B_ = f(x) £ x - x 1.
There exists such an of if and only if all the intervals
L B Bx] have a common point ; that is, if and only if
(4) A < By for all x-and y ¢ M.
To prove this equivalence, suppose that there exists x and

v .
y € M such that By < Ax. We  have AySBy < Ax S Bx' This
implies that [:Ay, By](}[ax, Bi] = 4) or not all the intervals
[Ax, Bx] for all x € M have a common point. Conversely,
suppose that r] [Ax, B;] = 4’, then by the finite intersec-

XEM
tion property, there exist Xy Xqyeeny xh'e'M such that

n
(a_,8Jn N [a B ] z ({) Leta:Max{A !i:l,...,nl,
X % : X X.. X. J
o o izl "~ i B i
- I n} finthenciay= Ax y for some

b = Min {B
X5 Kk

k E_{l,..., n}-, b = Bx for some m € {1,..., n} and
m

A, B |n E& y B.] = 4} - This implies that B. < A, for
[ X, x; xS X Xy Xy

some xo, xk in M. Thus the desired equivalence is proved. Now
(4) holds by virtue of (3), since
£x) = £(9) = £ =ML llx -y W Nx - x |l +]ly - x .
We have now proved that there exists a norm-preserving

extension fl of f on M1°
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Let O be the collection of all ordered pairs (M, £7), where
M’ is a subspace of X which contains M and where f is a real-
linear extension of f to M', with [If# = 1.

Partially order § by declaring (M) £') & (M”, £7) to mean
that M'cM” and £'(x) = £'(x) for all x € M’ . The axioms of
a partial order are satisfied, & is not empty since it contains
(M, £), and so the Hausdorff maximality theorem asserts the
existence of a maximal totally ordered subcollection (2 of ¥ .

Let § be the collection of all M such that (i, £/)€ £) .,
Then @ is totally ordered, by set inclusion, and therefore the
union ’I‘Z of all members of § is a subspace of X. If x e’irl', then
X E MI for some M/e @; defined’ F(x) = f'(x), where £’ is the
function which occurs” in the pair (M) f') € L. F is well-
defined since, for .any x & F(, suppocse - there exist M: M” such
that x € M and x € M “where Q47 [ana (M7 ") e (L. By the
totally ordering of ﬂ, we may assume M’C M” so that f”(x) =
£/ (x)
I =i
(; £) € £) such that [[FGOJ| = N GONSHEN 1 x0 = 1 xM,

It

F(x). F can easily be checked to be a linear functional.

~ /
1, since for any x € M there exists x ¢ M where

that is || F |k £ 1, and for any € > 0, there exists x € M7\ {0}
such that |ix)(1 - €g) £ ][f’(x)l[ = | F(x)}l L UFH x4 . This
implies that I[FIl 2 1 and J|F|| = 1. F is an extension of f on
M since we have M, £) £ (M/, £) for all (M: ) eufil and

/

'y £) & (M, 7 for a11 (', /) e L. This implies that

F(x) = f(x) for all x € M.
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~

Suppose M is a proper subspace of X. Let Xﬁ.é XN M. As

in the first part of the proof, let Ml be the vector space

~

o~
spanned by ﬁ and x M is a proper subspace of Ml' We define

1.
T+ A (%) Y% xeM, A.€ TR and o i
Fl(x + lxl) = F(x) + ‘Al 1 where x € M , 1 and of is
a fixed real number which is chosen so that ‘,Fllf = “ F[' = la
~ —~ ~
Finally we arrived at a pair (M , F) } (M, F) and_O.u(Ml,Fl)
is a totally ordered subset of 6’ which contradicts the maxi-

mality of () . This shows that M = X.

If f is a real-linear bounded functional on M such that

1]

e

R where R ig & /pusitive real. Let g = g so that

1, there exists /a real-linear bounded functional exten-

e
sion G on X such that [|'G}| = || &ff"'= 1. Let F = RG then F is

an extended real-linear funétional of f on X so that )] F |l =] f].
If now f is a complex-linearvfunctional on the subspace M

of the complex normed linear space X, let u be a real part of f,

use the real Hahn-Banach theorem to extended u to a real-linear

functional U on X, with U}l =]l ull ", and define

(5) F(x) = U(x) - i U(ix) for all x € X.

By Proposition 5.1, F is a complex-linear extension of f, and
HFEL = HUuf = ftuy = £ o

This completes the proof.
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6. Classical Banach Space LP(CP) (L¢p <o)

Anticipating the construction of chapter III, let zsze the
(1-dimensional) torus and B the Lebesgue measure on it. Ve may

visualize ™ as the set {zs q I ~lzl = l}.

Definition. If 1 € p <po and f is a complex-valued, Lebesgue

measurable function on.cP, define

1/p

et - ( e aw .
Y

P.
Then L (qP) gonsists of all meamurable complex functions

f on T for which i'f’lp' <o0'and we call |[/f Hp the L - norm
of £.
Actually, }[. H satisfies all the axioms of a norm except
P

that ” £l = 0% may‘not implies that f = O,
p

Definition. A property is said t6 hold a.e. or for almost all
X in'CFj if it holds everywhere on CP except on a measurable

set of measure zero.

Definition. Suppose g :CPF~wﬂ> (0,90] is measurable. Let S

be the set of all real of such that

b (™Y ((ac, o01)) = o,

IfS= ¢, put p=oo. If S%(f).putﬁzinfS. Since

o
g1((B,001) = U gl ((p+ 1 ,007),
n=1 n

and since the union of a countable collection of sets of measure
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zerc has measure zero, we see that B € S. We call B the

essential supremum of 8o
If f is a complex measurable function on qj , we define

1] f”m to be the essential supremum of |f] , and we let

BV (P ) consists of all f for which HtHl < +a0 ., The
— — — ————— Y ————— &

6.4

6,5

o0
functions in L (%) are sometimes said to be essentially

bounded.

Proposition. 'f(x)‘ £ A holds for almogt all x if and only

if Ay el .

Proof, Assume first that)" 1£(x)} € A  holds for almost all x.

i

That is, there is a measurable set B = |£1°%L ( A ,00] so

that {f(x)] ¢ A for x# Eand u(E) = 0, By definition of
"f”°° y we have “f”oo <A,

Conversely, if £ _$A - thenyu ’ﬂ-l ( ”f“eo’ ool ) = C.
But |f|'1 ( A,00] is a subset of |f| = (llftlpo. oo] which

implies that u( lf]-l (A,m) ) = 0. Then |f(x)] £ A holds for

almost‘all Xe

Theorem. P () is a complex vector space for 1 £ p <co .

Proof. We must show the following properties :

P
(L) 1 £, ge L (¥ ) then so is f + g, and

Hf + g ”p < NfHP+ i g” 5

e
(2) 1f f e L (% ) and o is a complex number then

afel (P). 1n fact, |lxf i =lo<Hlfup .
p

For 1 < p <ee , (1) follows from Minkowski's inequality.

/
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For p=1, (1) is a consequence of the inequality
lt+g|l€lel + Jgl
For p = co , (1) follows from

l£(x) + g(x)| £ {£G) + |g(x)| for all x in e

—

& ”f”oo + |l gll oo for almost all

iin?o
By Proposition 6,4 we have

e+ el g el #Avell_ -

(2) follows from the equality
p 1/p 1/p
( P 3 .. ( P
)qul d 1 20 R el an for 1{p <00,
/

T / P

and

loc | =/ 4eCliEd for p =00 .,

This completes the proof.

Suppose f, g € Lp ("P) y for 1 5 p <o, define

al £y = f - "
(f, g) Il gllp

Then d satisfies all the axioms of a mctric except that
d (f,g) = 0 might not imply f = g.
Let us write f~~ g if and only if d(f, g) = 0. This is eas:ijly
seen to be an equivalence relation in Lp('¥1) which partition
il ) into equivalence classes. If F and G are two equivalence

.
9

classes, choose f & F and g &€ G, and define d(F, G) = d(f, g)

note that f Pufl and g,m;gl implies

a(f, g) £ a(r, fl) + d(fl, gl) + d(gl.g) = d(fl, gl)
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and similarly, d(fl,gl) £ d(f,g). Hence d(f, g) = a(f )

1153
so that 4(F,G) is well defined.

The set of all equivalence classes of Lp(_q:l) is now a
metric space by defining d(F,G) = d(f,g) = lf - g Hp. Note
that it is also a vector space, since ffvfl, g N8y imply

f+gn f1+ 8y and o f ~n~ o f From now on we shall dencte

1
the set of all equivalence classes by ® (TP ) as well,
Theorem. LP(P ) is a complets metric space for 1 £ p £ 00,
Proof. Consider 1 $.p <00 e

Let {fn} be a Cauchy sequence in vl (WF). Take £==,
there exists n, € ZZ (70) such that Il f = fnl“p < i
n '>, n e Suppose we have ‘obtained a sequence n; <N, < seee <Ny
Then letting & = ik, there exists n 3 m _in 7.(>0) such

1

that || £ - fnk!!p < = for all n y/m . Hence, there is a sub-

sequence {fni} » (B € 8,8 o..aos; BuCh that

I 04 188
(*‘) “ fn. - fn- 152 fOI‘ i = l, d’ qoe e
i+l i
Define
k o
g = z f - f [ g = 8 f - f °
k i:l‘ Biel nil i=1 ' Piyl P4

Since () holds, the Minkowski's inequality shows that,

for any k € 77 (>0),

1/p 1/p 1/p
A ([ea)es (|| Pap |
!’gkllp ~ \ _J S ‘gkdu b f=1 { fni+1~f i duf
] EP \ le /l-'f? /
k K .
=3 |+ -t | <z 27t<y 2o
izl B3l ni"p izl i=l
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Hence an application of Fatou's lemma to {g{f} gives

1/p Y2 . VP
Ie “; - Jgpdp = lim gl‘; dp | £ ]:_:_L_r_n Jgk dp } 5 1.
p P 'Pl(—aoo . k —» 0 fP 1
And g € 1 (P implies g is finite a.e. on ¥ , so that the

o0
series I (f - fn ) converges absolutely a.e. on ¥ | Then

i=1 M i

the series

K¥)  p s (5.1 3 - £ ()

By i=1 i+l i

converges absolutely a.6s on T . We denote the suﬁa'i"“(**)
by f(x), for those x at which (X ) converges, put f(x) = O on

the remaining set of measure zero. Since

k<1
£ (x) +% /(s (x) - £ (%)) = £ (%)
e VRN ny oy,

]

we see that

£(x) = 1im “fr (X) ae.e. or £(x) = 1lim £ (x) a.e. .
k -0 By i—yoo By

Since '{fn} is a Cauchy sequence in I? (F). For any
given § >0, there exists N € Z (> 0) such that
P P
Ifn— fm] d e < g if nZ N, m > N. TFor some i onwards
P R P P
we have ni') N such that Ixn - fml dyu< g . For every

i
m > N, Fatou's lemma therefore shows that

: P
(% % %) Jlf-fl J:.le e, -t [ aw
1—>00 1
: P
¢ U Jlfn.-fmf’dvé £ -
1380 1

We conclude from (% % %) that f - fme f (‘F ), hence that
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fe€1’ (P), and finally that Iz - £ up._>o as m—s og -
This completes the proof for the case l £p<op0 .

In Lw(‘?), suppose {fn} is a Cauchy sequence in L°°(*P),

let A, and B
m

K n be the sets where lfk(x) ] >N fk“w and

L]

] fn(:'c) - fm(fc) > il £ - fm”oo’ and let E be the union of these

sets, for k,myn = 1,2,3,..,. Then n(E) = 0, and we show that on
the complement of E the sequence {fn} converges uniformly to a
bounded function. For any xe E® {fn(;:)} is a Cauchy

sequence in { , which is complete, so that lim fn()'c) = f£(x).
N> o0
For any € » 0, there exist Dgy Ny € ZZ(>0) such that for all

n >

7 D,

- - E
nZnOJ fn(x) - £(x) |/ < Sand for all m Y 0y, 1y
€ ‘ ‘

i £ .- fm”oo< 2 - Let n®='max (n_, ny). For any n3) n' there
is a )'co € E° such that

sup | £, (x) <3G | &£ (x )~z + E

. c n_-o . 0 3

xge E

e (k) - £, )

e} n 0

s £ ) -2 | o+ §

< €&,

and for any X [ E¢ »

l£(0)] € | £(x) - fno(i>l . lfno<i>t <E + ]fn0<§)ls tfno(i),
<
=< “fno ”m<°° .

. [
Define f(x) = O for x€E. Then f€L (¥) and] = Il => 0

as N—rp .
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