CHAPTER I

SOME THEOREMS FROM METRIC SPACES

l. Metric spaces

1.1 Definition. Let M be a nonempty set. A metric d on M is a

P o . ap—— e

function of MXM into -R ( 3 0) satisfying

(1) d(x, y) = 0if and ‘only if x = y for all x and y € M,
(2) da(x, y) =-dly, x) for-all x and y € M,
(3) alx, z) £ A4(x//g) i+ d(y, 2) for all x y Y and z € M,

Then (M, d) is called & metric space.

2, Complete Metric spaces

2+1 Definition. Ih.a metric space (My d), a sequence {xn} is a

Cauchy sequence/r if - lim d(xm, xn) = 0O ; that is, given
myn e

any £ » 0, there exists noi'ZZ (> 0) such that for all

m%n,n n d(xm, xn)<E. h

22 Definition. A metric space is complete if every Cauchy

sequence converges,

23 Definition. An open ball with center X and radius r> O is

defined as the set

B(x, r) ={yeM’ a(x, y) < r}.



3« Baire's Theorem

51 Lemma. If (M, d) is a complete metric space and if V1:)V23 olois
is a sequence of nonempty closed subsets of M such that the

diameters of Vn converges to O as n-300, then fﬁ Vn is a

singleton.

Proof. Let.{xn} be a sequence in Vl such that xie Vi for

i=1, 2y eeey» L&% E > 0 be given. Since diameter (Vn)-§ 0

as n—yeo, there is n € 7Z (> 0) such that diam vV, <€ for
e

all n > no. For any m> no, n 2 no, we may assume m 2 n $o

that VmC Vn and d(xm, xn) £ sup .{d(x, y)' X € Vn’ vy € Vn}

= diam Vn( £ . Hence {ng} is ‘a Cauchy sequence of M, which

is complete. There is %€ M such that X = lim X_e« And this
. n—yoeo 1

x belongs to Vl since V1 is-closed. | Next we will show that x

belongs to Vn for'all n. Suppose x %‘\Gl for some n, and
0

since Vn is closed then there is r > O such that
o

B(x, r) n Vno = d) » For any x in Vno, X does not belong to

B(xy r). This implies that d(xn, x) 3 r which contradicts
the fact that x is the limit of {xn} . PFinally, we will show
that x is unique. Suppose there exists y in Vn for all n and
y distincts from x. We have, for all n,

0§ alx, y) £ sup {d(xﬁ vl %, ve Vn}v = diam Vo

which contradicts the fact that diam Vd—) Oas n—pog . This

completes the proof.



3.2 Theorem. (Baire's Theorem) If (X, d) is a complete metric
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space, the intersection of every countable collection of dense

open subsets of X is dense in X.

Proof. Suppose Vl, VE’ ..... are dense open subsets of X.
Let W be any nonempty open set in X. We have to show that
oo 3

n Vn has a point in W, Let B(x, r) be the closure of

B(x, r).
Since V1 is dense, W f Vl is a nonempty open set. There
exist x; and r such that 2> r > 0, B(xl, r) C wnvl. Let
r o) 7
IR 1> r,> 0/ such that B(xl,rl)CB(xl,r) C W nvl.

If n) 2 and x and r are chosen, the denseness of V_ shows
n-1 n-1 n
that Vnn B(xn-l’ rn-l).ls not empty, and we can therefore find

X _ and r such that
n n

- 1
Blxyy r)) C Bl v ) V_and 0< Py £ = .

By induction, this process produces a non~increasing sequence
of nonvoid closed sets ﬁ(xn, rn) in X such thatc:}ameterS'of
ﬁ(xn, rn) £ s —p0 as n—poo. By Lemma 3.1, gll §(xn, rn)
is a singleton, saz*fx}-. By construction, x belongs to wryvn
for all n and W 0 I’Ol Vn is not empty. This completes the
proof. .

Definition. A set E { X is nowhere dense if its closure §

contains no nonempty open subset of X.

Any countable union of nowhere dense sets is called a set of

o ev—

the first category.




3.4 Theorem. The following statements are equivalent :
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(1) A is nowhere dense in X.
(2) & is nowhere dense in X.
(3) X\A is dense in X.
Proof, (1) implies (2) is clear.
(2) implies (3).
Assume A is nowheré densc. Then we have int () = o
and int (A) = —iac. Take-complement of equality:iac: ¢ we

—

have A° = X or X ~A/= X. This ends the proof,

(3) implies (1)«
Assume X‘\I ig demse in X then we have A° = X . By
) WY | B —c¢
taking the complement we have EE = ¢ and int (A) = A

8> that int (&) = (}5 ~—This¥nds the proof.

Theorem. Complete metric space (X, d) is not of the first
category.

Proof. Let gF‘be any countable family of nowhere dense subsets
of X. For each A € g?, by Theorem 3.4, (A)® is a dense open
subset of the complete metric space X. Since gﬁ is countable,
by Theorem 3,2 (Baire's Theorem), there is a p € X such that
pe (R)° for every A € g. In particular, we have p* ADA
for all A Eg. Hence X is not the union of the family g.

The proof is complete.
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