CHAPTER V

TORSION-FREE LOCALLY CYCLIC DECOMPOSABLE GROUPS

The materials of this chapter are drawn from reference.

In this chapter, the problem as to which torsion-free groups are locally cyclic decomposable is solved. Namely, we prove:

- 5.1 Theorem. Let G be a group. Then the following are equivalent:
 - 1. G is strongly torsion-free.
 - 2. G is torsion-free locally cyclic decomposable.
- 3. G is the union of a family $\left\{G_{k} \mid k \in K\right\}$ of abelian torsion-free subgroups such that

$$G_j \cap G_k = \{1\}$$

if G + Gk.

Proof: 1 implies 2:

Let G be a strongly torsion-free group. Then G is torsion-free by Remark 2.6. For g \in G . Let

$$\langle g \rangle = \{ x \in G / x^m \in [g] \text{ for some non-zero integer m} \}$$

Then $\langle g \rangle$ is a commutative subgroup of G which can be easily shown as follows:

If g = 1, then, by Remark 2.6 (a), $\langle g \rangle = \{1\}$ and the claim is true. Thus we may and shall assume that $g \neq 1$. $\langle g \rangle$ is commutative: Let x, $y \in \langle g \rangle$. If one of the x and y is 1, then x and y obviously commute. Assume $x \neq 1 \neq y$, then by Remark 2.6 (c) $x^m = y^n$ for some non-zero integers m,n.

Hence
$$(xyx^{-1})^n = (xyx^{-1})(xyx^{-1}) \dots (xyx^{-1})$$

$$= xy^nx^{-1}$$

$$= xx^mx^{-1}$$

$$= x^m$$

$$= y^n$$

i.e., $(xyx^{-1})^n = y^n$.

Since G is strongly trosion-free, we have $xyx^{-1} = y$, i.e., xy = yx.

Hence <g > is commutative.

 $\langle g \rangle$ is a subgroup of G: We obviously have $1 \in \langle g \rangle$. If $x, y \in \langle g \rangle$, then x^m , $y^n \in [g]$ for some non-zero integers m and n. Since x and y commute, $(xy)^{mn} = x^{mn}y^{mn} \in [g]$, and since $mn \neq 0$, $xy \in \langle g \rangle$. Finally, if $x \in \langle g \rangle \setminus \{1\}$, then $x^m \in [g]$, for some non-zero integer m so that

$$(x^{-1})^m = (x^m)^{-1} \in [g];$$
 i.e. $x^{-1} \in (g)$.

Hence < g > is a commutative subgroup of G.

Moreover, we shall show that $\langle g \rangle$ is isomorphic to a subgroup of the additive group Q of rational numbers, and, therefore, by Theorem 3.8, $\langle g \rangle$ is locally cyclic.

The case when g = 1 is obvious; assume $g \neq 1$. For any $x \in \langle g \rangle \setminus \{1\}$, $x^m = g^n$ for some non-zero integers m and n, by Remark 2.6 (c). Define $\varphi(x) = n_m$ and $\varphi(1) = 0$. φ is a well-defined function from $\langle g \rangle$ into Q: Let $x \in \langle g \rangle \setminus \{1\}$. Suppose $x^m = g^n$ and $x^s = g^t$ for some non-zero integers m, n, s and t. Then

 $x^{ms} = g^{ns}$ and $x^{sm} = g^{tm}$ so that $g^{ns} = g^{tm}$. Since $g \ne 1$ and G is torsion-free, ns = tm; i.e. $\frac{n}{m} = \frac{t}{s}$.

Hence φ is well-defined.

 $\underline{\varphi} \text{ is } 1-1: \text{ Let } x, y \in \langle g \rangle \text{ such that } \varphi(x) = \varphi(y) = n/_m.$ We may and shall assume that $x \neq 1$. Then $x^m = g^n$ and $y^m = g^n$ and $m \neq 0 \neq n$ so that $x^m = y^m$. Since G is strongly torsion-free x = y. Hence φ is 1 - 1.

 \mathcal{Q} is a homomorphism: Let $x, y \in \langle g \rangle$. We may and shall assume that $x \neq 1 \neq y$, and that $\mathcal{Q}(x) = \frac{n}{m}$ and $\mathcal{Q}(y) = \frac{t}{s}$. Then n, m, t, s are all different from 0 and $x^m = g^n$ and $y^s = g^t$. Since $\langle g \rangle$ is commutative, we have

$$(xy)^{ms} = x^{ms} y^{ms}$$

$$= g^{ns} g^{mt}$$

$$= g^{ns+mt}$$
so that $\varphi(xy) = \frac{ns+mt}{ms}$

$$= \frac{n}{m} + \frac{t}{s}$$

$$= \varphi(x) + \varphi(y)$$

Thus \(\text{is a homomorphism.} \)

Hence $\langle g \rangle$ is isomorphic to a subgroup of \mathbb{Q} .

Finally, we shall show that G is locally cyclic decomposable. But we already have $G = \bigcup_{g \in G} \langle g \rangle$, since each $\langle g \rangle$ is locally cyclic subgroup of G, we only need to show that $\langle g \rangle \cap \langle h \rangle = \{1\}$ if $\langle g \rangle \neq \langle h \rangle$. We shall prove the contrapositive.

Suppose there is a $1 \neq x \in \langle g \rangle / \langle h \rangle$; then $g \neq 1 \neq h$, and therefore there are non-zero integers m,n,s and t such that $x^m = g^n$, $x^s = h^t$. Then $x^{ms} = g^{ns}$ and $x^{sm} = h^{tm}$ so that $g^{ns} = h^{tm}$. Since $ns \neq 0 \neq tm$, $g \in \langle h \rangle$ and $h \in \langle g \rangle$ so that $\langle g \rangle \subset \langle h \rangle$ and $\langle h \rangle \subset \langle g \rangle$; i.e., $\langle g \rangle = \langle h \rangle$.

Thus (2) holds.

2 implies 3.

Since subgroups of torsion-free group are torsion-free and since Locally cyclic subgroups are commutative, by Lemma 3.4, 2 implies 3.

3 implies 1.

Suppose $G = \bigcup_{k \in K} G_k$, each G_k is an abelian torsion-free subgroup of G and $G_j \cap G_k = \{1\}$ if $G_j \neq G_k$.

Let $x, y \in G \setminus \{1\}$, and n be a non-zero integer such that $x^n = y^n$. Then $x \in G_j$ and $y \in G_k$ for some j, $k \in K$. Since G_j and G_k are torsion-free, then $1 \neq x^n \in G_j$ and $1 \neq y^n \in G_k$. Hence $1 \neq x^n = y^n \in G_j \cap G_k \neq \{1\}$ so that $G_j = G_k$. Thus $x^n = y^n$ is in the abelian torsion-free subgroup $G_j = G_k$, so that x = y by Remark 2.6 (b). Hence G is strongly torsion-free.