CHAPTER IV

LOCALLY CYCLIC DECOMPOSABLE GROUPS

The materials of this chapter are drawn from references [4],[8].

This chapter contains some preliminaries about locally cyclic decomposable group. But the main theorem of this chapter is the fact that any group has at most one non-trivial locally cyclic decomposition, and that if such a decomposition exists, it coincides with the set of all maximal locally cyclic subgroups of the given group.

4.1 <u>Definition</u>. A group is <u>locally cyclic decomposable</u> if it has a locally cyclic decomposition, that is, a family $\{G_k \mid k \in K\}$ of subgroups of G such that i. $G = \bigcup_{k \in K} G_k$; ii. if $G_j \neq G_k$ implies $G_j \cap G_k = \{1\}$,

11. If $G_{j} \neq G_{k}$ implies $G_{j} \mid G_{k} = \{1, j\}$

where 1 denotes the identity element of G and

iii. each G_k is locally cyclic.

4.2 <u>Definition</u>. A subgroup of a given group is a <u>maximal</u> <u>locally cyclic subgroup</u> if it is locally cyclic and is not properly contained in any other locally cyclic subgroup of the given group.

4.3 Theorem. A group G is locally cyclic decomposable if and only if every two elements a_1 , a_2 of G such that $[a_1] \cap [a_2] \neq \{1\}$, there exists a third element a_3 of G such that $a_1, a_2 \in [a_3]$. <u>Proof</u>: Sufficiency : Define a relation Ξ in $G \setminus \{1\}$ as follows: For each $a_1, a_2 \in G \setminus \{1\}$, we put $a_1 = a_2$ if and only if there exists $a_3 \in G$ such that $[a_1], [a_2] \subset [a_3]$. Clearly \equiv is both reflexive and symmetric. To show that it is transitive, suppose that $a_1 = a_2$, $a_2 = a_3$. Then there exist b_1 , b_2 of G such that $[a_1]$, $[a_2] \subset [b_1]$, $[a_2]$, $[a_3] \subset [b_2]$. Since $\begin{bmatrix} b_1 \end{bmatrix}, \begin{bmatrix} b_2 \end{bmatrix} \supset \begin{bmatrix} a_2 \end{bmatrix}$ we see that $\begin{bmatrix} b_1 \end{bmatrix} \cap \begin{bmatrix} b_2 \end{bmatrix} \neq \{1\}$ hence by the assumption of the theorem there exists $b_{\chi} \in G$ such that $\begin{bmatrix} b_1 \end{bmatrix}, \begin{bmatrix} b_2 \end{bmatrix} \subset \begin{bmatrix} b_3 \end{bmatrix}$. Therefore $\begin{bmatrix} a_1 \end{bmatrix}, \begin{bmatrix} a_3 \end{bmatrix} \subset \begin{bmatrix} b_3 \end{bmatrix}$. This means that a = a3. Hence = is an equivalence relation and decomposes $G \setminus \{1\}$ into a collection $\{G_{\sigma}\}_{\sigma \in A}$ of equivalence classes. For each $\delta \in \Delta$, we put $X_{\delta} = G_{\delta} \cup \{1\}$. We want to show that X $_{\delta}$ is locally cyclic for all $\delta \in \Delta$.

Let $a_1, a_2 \in X_{\mathcal{J}} \{1\}$, we have $[a_1], [a_2] \subset [a_3]$ for some $a_3 \in G$. Let $a \in [a_3]$, where $a \neq 1$. Then $[a_1], [a] \subset [a_3]$ implies that $a \neq a_3$. Consequently $a \in G_3$. Therefore $[a_3] \subset X_3$. Hence X_3 is locally cyclic and G is locally cyclic decomposable. Necessity : Suppose G has a locally cyclic decomposition ${G_k \atop k \in K}$

Let $a_1, a_2 \in G$ such that $[a_1] \cap [a_2] \neq \{1\}$. Suppose that $a_1 \in G_{k_1}, a_2 \in G_{k_2}$ such that $k_1 \neq k_2$. Then $G_{k_1} \cap G_{k_2} \neq \{1\}$, which is a contradiction. Hence $a_1, a_2 \in G_{k_0}$ for some $k_0 \in K$. Since G_{k_0} is locally cyclic, there exists $a_3 \in G_{k_0} \subset G$ such that $a_1, a_2 \in [a_3]$. This proves the necessity.

4.4 <u>Theorem</u>. Every subgroup of a locally cyclic decomposable group is locally cyclic decomposable.

<u>Proof</u>: Let G' be any subgroup of a locally cyclic decomposable group G. For each $a_1, a_2 \in G'$ such that $[a_1] \cap [a_2] \neq \{1\}$, there exists $a_3 \in G$ such that $a_1, a_2 \in [a_3]$, by Theorem 4.3. Hence $a_1, a_2 \in [a_3] \cap G'$. Since $[a_3] \cap G'$ is a subgroup of the cyclic group $[a_3]$, it follows that $[a_3] \cap G'$ is also cyclic. Again by Theorem 4.3, G' is locally cyclic decomposable.

To prove the main theorem, we need two more lemmas.

4.5 Lemma. No locally cyclic group can have a non - trivial locally cyclic decomposition whose members are proper subgroups, where a locally cyclic decomposition $\{G_k\}$ is said to be

non - trivial if each $G_k \neq \{1\}$.

<u>Proof</u>: Let G be a locally cyclic group. We may assume that $G \neq \{1\}$, if not, G will not have any proper non - trivial subgroup and we will have nothing to prove. Suppose that $\{G_k \mid k \in K\}$ is a locally cyclic decomposition of G where $G_k \neq G$.

Let $a \in G_i$, $b \in G_j$, $i \neq j$ such that $a \neq 1$ and $b \neq 1$. Since G is locally cyclic so a, $b \in [c]$ for some $c \in G$. Thus $c \in G_k$ for some $k \in K$. Since $G_i \cap G_k \supset$ $[a] \cap [c] = [a] \neq \{1\}$, then $G_i = G_k$. But then $G_i \cap G_j = G_k \cap G_j \supset [c] \cap [b] = [b] \neq \{1\}$ so that $G_i = G_j$, contradicting the choice of G_i and G_i .

Hence the Lemma is proved.

4.6 Lemma. If L is a locally cyclic subgroup of a group G, then there exists a maximal locally cyclic subgroup of G that contains L.

<u>Proof</u>: Let $\mathcal{M} = \{ M \subseteq G / L \subseteq M \text{ and } M \text{ is locally cyclic} \}$. We partially order \mathcal{M} by inclusion; i.e., $M_1, M_2 \in \mathcal{M}$, $M_1 \leq M_2$ if and only if $M_1 \subseteq M_2$; and let $\mathcal{C} \subset \mathcal{M}$ be a chain. In view of 2.2, we can prove that \mathcal{M} has a maximal element by showing that \mathcal{C} has an upper bound.

Consider UE, it is clear that $L \subseteq UE$; moreover

US is an ascending union, hence by Lemma 3.3, we know that US is locally cyclic. Therefore US is a locally cyclic subgroup of G that contains L, then $US \in \mathcal{M}$. Hence US is an upper bound of \mathcal{C} . Then \mathcal{M} has a maximal element, this proves the lemma.

Now we come to the uniqueness theorem for locally cyclic decomposable group.

4.7 <u>Theorem</u>. If a group G is locally cyclic decomposable, then it has exactly one non - trivial locally cyclic decomposition $\{G_k \mid k \in K\}$ which coincides with the collection of all its maximal locally cyclic subgroups.

<u>Proof</u>: Let G be a locally cyclic decomposable group. Since the case for which $G = \{1\}$ is trivial, we assume that $G \neq \{1\}$. Furthermore, we may assume that G is not locally cyclic, for otherwise it follows from Lemma 4.5 that G can not have a non - trivial locally cyclic decomposition whose members are proper subgroups of G, that is, $\{G\}$ is the only possible such locally cyclic decomposition.

Let $\{G_k \mid k \in K\}$ be a non - trivial locally cyclic decomposition of G. We first show that each G_k is a maximal locally cyclic subgroup of G. Suppose there is a G_k which is not a maximal locally cyclic subgroup of G. Let M be a

40

maximal locally cyclic subgroup of G such that $\{1\} \not\subseteq G_{k_{O}} \not\subseteq M$, such M exists by Lemma 4.6. Let $a \in G_{k_{O}} \setminus \{1\}$ and $b \in M \setminus G_{k_{O}}$. Then $b \in G_{m}$ for some $m \in K$. Since both a and b belong to M, a, $b \in [c]$ for some $c \in G$ and there is an $n \in K$ such that $c \in G_{n}$. But $G_{n} \cap G_{k_{O}}[c] \cap [a] =$ $[a] \neq \{1\}$ so that $G_{n} = G_{k_{O}}$. Moreover, $G_{m} \cap G_{k_{O}} =$ $G_{m} \cap G_{n} \supset [b] \cap [c] = [b] \neq \{1\}$ so that $G_{m} = G_{k_{O}}$. Hence $b \in G_{k_{O}}$ which is a contradiction. Thus $G_{k_{O}}$ must be a maximal locally cyclic subgroup. Hence each G_{k} is a maximal locally cyclic subgroup of G.

We are left to show that each maximal locally cyclic subgroup of G is one of the G_k . Suppose to the contrary that there is a maximal locally cyclic subgroup M of G such that $M \neq G_k$ for all $k \in K$. Then $M \neq \{1\}$ and can not be contained in any G_j for any $j \in K$ so that we can find a pair $j, k \in K$ such that $M \cap G_j \setminus \{1\} \neq \phi$ and that $M \cap G_k \setminus G_j \neq \phi$. Let $a \in M \cap G_j \setminus \{1\}$ and $b \in M \cap G_k \setminus G_j$. Since $a, b \in M$, $a, b \in [c]$ for some $c \in G_m$ and for some $m \in K$. Then

$G_{i} \cap G_{m} \supset [a] \cap [c] \supset [a] \neq \{1\}$

so that $G_j = G_m$. Similarly $G_k = G_m$. Thus $G_j = G_m = G_k$ which is a contradiction since b $\in G_k \searrow G_j$. Hence every maximal

41

locally cyclic subgroup of G is one of the ${\rm G}_{\rm k}.$ The theorem is now completely proved.