CHAPTER II

H-RAY DITTR.ACTION

IT.1 Reclationships of Reciprocal Lattice to Bragg's

Law and Lauec's Conditions.

IT.1.1 Introduction of x-ray diffraction

Like visible light, x-rays which are also electromagnetic
waves, when passing through a crystal cause diffraction if

certain geonetrical conditions are fulfilled.

Fig.2.1 4in electron acts as a source of secondary x-rays.

All atoric in the path of an x-ray bhecam scatter x-rays
; (15)
sinultaneously but the atom is not a point source of x-rays. #in
electron within the atom is set in vibratory motion under the

influence of a beam of x-rays, and gencrates a new set of

coherent clectromagnetic waves having the same frequency and
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wavelength as the incident beam. In this explanation we neglect
the interaction between the incident beam and the seattered
waves including no re-scattered waves by other lattice points.,
Then the electron has the effect of scattering the incident
radiation and acts as a source of secondary x-rays. Each
clectron scatters x-rays and they combine to give the effect of
2 point source. Therefore, the atom as a whole scatters x-rays.

(3,15)

This cooperative scattering is known as diffraction.

Zero ordor — Diffraction mazxinun

axtinction

—\_ 2nd order

source .

Fige.2.2 Cooperative scattering by two sources

IT.142 The Laue conditions

In order to understand three dimensional Lauye's conditions
we must first understand simple diffraction by a row of identical,
equally spaced atoms., Iach atom in the row can be considered as
the center of radiating, spherical wave shells, as a beam of

x=-rays passes it. Thesc scattered waves interfere with one



another and when they are in phase they combine to give moximumn
diffraction. This happens when the path difference between rays
scattered from adajacent atoms is zerc or any whole number of
wavelengths, i.c.
path difference = hA where h is some integer O, + 1,

+ 2y .. Wwhich designetes the order of diffraction. See TFig.2.3.

Two rays of x-ray bean strike the row of periodicity a,
at an angle of incidenceJ/” and make the diffracted angle \é

(i = 0,1,2,3,¢e00 Jo—Then Trom Fig. 2.3.

a (cos {k - cog/ﬁl) = OA for zero order diffraction,

a cos 1]

Zero order iy Mirst order

A

—e

Orders of diffraction

General Orders

indicated by nunbers

Fig.2.3 The conditions for diffraction by a row of atoms.
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Fig. 2.4 ©Showing cones of diffracted beam formed by a

row of didentical regularly spaced atoms.

a (cos ¥4 cos//1 ) = 1)X for lst order
diffraction where a is the distance betwcen atom A and B. In
general

a(cos Y = co§/q ) = hA where h is an integer (1l.a)
In vector notation we can write

- N ~
ae(i8 <18, 0= hA (1.b)
Fal ; ~

where So is the unit vector for incident beam and S is the

unit vector for diffracted beam. For a given incident direction

~
=

S lattice spacing a, wavelength A , and integer wyalue h,
J

there is only onec possible scattering angle

cos 4 = cos//% . B (2)

This defines a cone of rays which all atoms of a row are

scattering in phase and coaxial with the row with half apex



angle equals to Y as illustrated in Fig, 2.4.

The expression of equation (1) is called Laue's equation

for a row of atoms.

If there is a plane containing a lattic array of atoms
with spacing a in one direction and b in the other, there will

be two simultaneous diffractions to be fulfilled :

. Wl Vel
g: (8 = f—so) h A (3)

Pl ~
be ( S8 )
(0]

"

x A  where k is an integer.

Becausc cach row has its own set of cones about its axié, the
intersection of these¢ twe concentric cones of h and k order is
a direction for diffraction.  (Fig. 2.5)

The same argument applied for three dimensional lattic
array of atoms with spacing ¢ for the third dimension. Therefore

(1, 83405)° :
Laue's conditions for diffraction to occur are as follow

e (§-§O) =%

Be (B =8 ) = KK 4 (L)
(e}

Eo (?""E) - IA ]

O .

where h, k, and ﬂ arc integers. The requircment that three
cquations are sinultaneously satisfied acts as a limitation for
diffraction to occur, that is, it can occur only if the diffracted
angles, Y, , Vh‘ and x& define the same direction (Fig. 2.6).
This fulfilling of Laue's equations, h th order cone of spacing

a, k the order of spacing b, and ,fth order of spacing c, is
equivalent to a reffection of the incident beam by the atoms of

the planes(h k ! p



Fig.2.5 Intersecction of two cones defining possible

scattering direction.

(a) (b)

Fig.2.6 (2) Intersecting cones defining possible

diffraction for three-dimensional lattice

(b) Defining possible diffraction direction

(three cones intersect in one line,
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I7.1.3 The "reflcction" of x-rays by crystal planes and Bragg'g

law.(ags,a,ll:-,w)

To understand the consequences of the principles explained
above, consider the lattic in Fig., 2.7. ''hen Laue's conditions
are satisfied i.c. in the h th order cone around O., in the k th
order around 0B, and in the th order around OC have the same
line of intersection, this neans that the rays scattered from
point & and point O have a path difference of h wavelengths.
Therefore the point /v at aldistance a/h from the origin O
scatters a ray one Wwavelength ahead of those at the origin.
3inilarly at B and € rays are scattered with path differences of

‘ /
k and ﬁ wavelength from O and at B and C the path difference is

one wavelength. Thus, points AiB: and C} scatterc rays differing
in phase by the same number of wavelengths from those scattered
at 0, so they have ng path difference from one another. These
points lie on the crystal plane that has Miller indicies (h k.f).
therefore this plane acts as if it were reflecting the incident

beam. There are families of these planes which are parallel to

one another and each capable of scattering rays.




D
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C e
Tige2.8 (a) Reflection by a plane (h k Y )

(b) Reflection from stack of planes (h k 1)
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Condsider a set of parallel planes of atoms in a crystal

i !

LA, BB: ané CC with interplanar spacing d as shown in

Fig. 248,(a) shows the condition for a plane (h k X ) and (b)
illustrates the diffraction condition from the different planes
tc occur with the incident angle © and reflected angle €. The

condition for constructive reflection is that

path difference = n,ﬂ where n is an integer.
then FG + GH =\ A
and FG = GES'= - dZgin 86 .
Thus 2 40 | =X (5)

which is Bragg's law for diffraction.

II.1.4 The Reciprocal’ lattice with Bragg's law and Laue's

equations,

There is a relationship between the reciprocal lattice
and Bragg's law. Since the diffraction is related to Laue's
equations and Bragg's equation therefore they are all interalated.
Consider Bragg's equation (5) which can be written as

BA
24

By eliminating the term n we can write

. A
sin 6 = o
bk 2dy  }
or
sin® , , | = Z‘?hﬂ (6)



Gquation (6) can be expressed by a right angled triangle
inscribed in a circle with a diameter of its hypotenuse side

(Fig, 2.9) 10,
diffracted bean

P A A~
i ] ))’d hkzls—scl):tr‘ﬁkji

N 0 incidcnt; ‘j%f 0
Xeray a v
bean plane of freflected bean
(a) (b)

Fig, 2.9 Geonigtrical representation of Dragg's law,
In physical terms we can ‘assume the incident beam enters
and passes out in the direction 40. Then there is a crystal
plane (h k t ) at ‘Bhe ceater of the tircle which makes an angle
6 with AO, Then CP fiust-be the dircction of the reflected bean.
To relate this tolfthe reécipocal lattice concept, let us first
(11.12)

define the basis vectors of a reciprocal lattice a*, b*, and c*

in relation to the direct lattice constant as

a*l a = E::‘-o _6 = -C-:::I E = A
and a*, b = a‘, ¢ = b*, c =b*,a=2¢*.1a=
E . g = O
(7)
Then a reciprocal lattice vector can be written as
ot _ T, T | B
LR ha*® + kb* + K c (3)

i i
where h,k and X are all integers. Bragg's law can be
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o £ 19 2512)
interpreted in terms of reciprocal lattice by defining ~ '

_._a,_. : = |r+hkal N R ] (9)

Point O is the origin of the reciprocal lattice and point F is
the end of the reciprocal lattice vector ?ﬁk!(Fig.2.9 (v)).
Since OP is normal to AP and AP is parallel to the crystal plane

therefore OP must be normal to the crystal plane and OP can be

the vector normal to the reflected plane. From equation (4)
we get
e A '\ -— m— — . —
2.(53 =8 ) = Ah = a.F* - = a.(ha*+ kb* + 9 c*);
o hk¥
5 - S — S b.r* = B(hA* o ﬁﬂ*
b.(S so) AW 5, B(ha*+ kB¥+ X c*), (10)
3.8 -8) = AM/IEF ¢ = SmEr KB L%,
~ A %
Then 5 - So =g *

This is illustrated =in-Figs: 2+10

- A
hk

reflected planc

(h x ) 9

o]
o]

01y
(5

I'ig.2.10 Bragg reflection and the reciprocal lattice.

~ ~
Since the vector 5 - 3 is at risht angles to the reflected

plane and parallel to the vector ;*hkf then these two can be
normal vectors of the reflected plane. From Fig. 2,10 we can

easily seen that



e 004910 &

|S—S‘ = 2 sin 6
A —
and |8 -3 | = | r*hl’Q! URLRRR, & 1)

and from cquation (9) and (12) we have

2 sin © = Ak veees (13)
A dpieh

which is Bragg's law, Then the reciprocal lattice, Bragg's law,
and Lauec's conditions are all related to onc another.

Bragg's law is satisfied whenever a reciprocal lattice
point lies anywherc on thc circle or on the surface of a sphere

(t
in thrce dimensions. ~Thig sphere is called the spherc of reflec-

) '

tionjor v Ewald's sphero., Then the reciprocal lattice can be
used in conbination with the sphere of reflection to explain any
x-ray diffraction experineat. Reflection occurs conly when the
orientation of the crystal-is-such that a reciprocal lattice
point lies on the circumference—of-acircle. Jo a photographic
record of the reflecteld x=ray beams is nothing more than a photo-
graphic record of the reciprocal lattice.

Since all three of them are relatecd to one another, then
they are two ways in which reflection can occur, viz : by varying

A or ®& in Bragg's law one at a time.

Radiation & Method
Variable Vthite Tixed Lauc; stationary single crystal
T'ixed Monochronatic Variable Powder; poly crystalline

Rotation; 'leisscnberg;

single crystal-nonstationary.
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(a) Varying A by using white radiation on a fixed single
crystal, The Bragg anpgle € is therefore fixced and each set
picks out the A that satisfied Bragg's law for the particular
value of d and &. Dach diffracted beam thus has a different

wavelength. This is called the Laue method :

(b) Varying 6 ,

(1,2:3,6,10,15,16)
(1) Rotation method. A single crystal is mounted with

onc of its axis normal to a monochromatic x-ray beam, and rotates
about this axis. This 3llols a particular set of lattice planes
to reflect the beams as the crystal reaches each of the several
special preintations. / The, result is that the diffracted beams
from cones that are cdaxial about the rotation axis of the
crystal. By using a cylindrical film coinciding with the
crystal's axis of rotation the diffracted beams intersect the
film in a set of eircles which appear‘as straight lines when
flattened out and are called layer lines. This method is called
the rotation method and with it the direct lattice constant of
the rotation axis can be determined: Consider Tig. 2:11, the

—

angle Y 1is the semi- apex angle of the cone, depends

™

on the spacing y of the reciprocal planes. Tor convenience in
measurements coriplementary angle Y is used. Tor the first

layer cone, 'ﬂ is fixed by

AR ]

sin Y =

1]

~ e
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where Eijﬁ the cylindrical coordinate of a reciprocal lattice

(n)

(c)

Flst layer

-Zero layer

photosraph,

Showin:; the existence of layer lines in a

rotation pattern,

Cylindrical reciprocal lattice coordinate.

as shown in Fig. 2.11 (¢), and ¢ is the direct lattice constant
along a rotation axis.
For the nth layer linc
n /
51n “J = ‘311 = il s as e s s (15)
n } c
y JJ
2nd layer P
f:::::: LA
H ‘1lst layer
= YoE m
A=ray heap 1
L.
¥ G
[ A=ray hean
' B
|
l A%
spherc of e (e)
. c
reflection e
rotation ——
3 Lattice row parallel
axis
with rotation axis
()
Ny
= : 7
a=ra sean
y bean . &
5
(v)
Fine2.11l (a) The rcometrical representation of rotation
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Then from equation (14) and (15)

Cc = _A'“-' ® s 0 w0 @ (16)

and
n A

— O i -
sin ¥
n
To find ~ 1 and ‘Jn , (see Tig.2.11(a)) : triangle OGH is

similar to triangle OGH , therefore

tan V]_ = "
0G
but GH = ¥, the distarnce between the zero and first layer lines
and OG = r, the radius /of the cylindrical camera.
Thus
b
‘1 = -
tan R 5
23271
= tan - -covo-.e(18)
Y1 5
From equation (16) and (18)
C = ‘K' ......-.0(19)
; «f T3
. sin (tan ~ =7)
r
Similarly for the n th layer line
o] = /\ < ..a....(ZO)
1 yn)

sin (tan” o
r

where Ya is measured from the average distance between the + n th

and the = n th layer lines on the film.
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(2,3,10,15,16)
(2) Weissenberg method., The development of the rotation

method by applying the idea of a moving film is called the
Weissenberg method. This method resolves each diffracted spot
of a single cone onto different portions of the film by screening
out unwanted cones, and the film is made to move in synchronism
with the rotation of the crystal. So a particular set of reflec-
tions such as 0k , 1 k¥ 4, or 2 k is allowed to fall on the
film in such a way that to each point on the photograph there
corresponds a single value of k and . The method provides
another two crystallographic constants, an angle between them,
and indicies of spots whose space group can be determined.
Tndicies of more than one layer are needed to obtain all the
necessary data inorder to specify the crystal's space groups.

For the zero layer the normal beam method in which the
incident beam is normal to the rotatiom axis, is used. For
other layers the equi-inclination method is used, in wvhich the
incident beam enters the reflecting circle along the generator
of the reflected cone to avoid the hlind region of certain
reflections lying near the origin of that level, (see Pig. 2.12)

There are two instrumental settings for the upper level
photograph.

(1) The inclination angle p , the complement of the

angle between the incident beam and the rotation axis, can be

determined from Fig. 2.12(b)
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1 = sin —~ X% ooia s ae et AR

where %Sn can be obtained from the rotation photograph. From

equation (15) and (18) we have

g — K J
r"'\' = Sin I tan l -nj EEEE R (22)
n = v
Conseguently

., I sin tan” = 1
u = gin L 1 ARSI (e

ks 2 =3

blind region 4%&

A=ray b
ray eam: /ofevef

O&Nd
Reflecting | s 1
sphere reflecting ¢ + 7 >
Cr¥etal sphere uf i T
rotation axis Crystal film
rotation axis
(a) (b)

Figs2+12 Geometrical arrangements for the Weissenberg method.

a) normal beam method, b) equi-inclination method.
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(2) the layer line screen setting s which is the dis-
tance s mm. through which the layer line screen must bLe moved
from its zero level position. TFrom Fig.2.1l2 we see that the
distance is related to the radius of the screen r_ and the

fo=l

inclination angle p as follow
<] = rS tanu N I I I (2}"')

But ¥ =\ where the angle 3y is the

complement of the semiangle of the diffracted cone.
Thus ’ ﬂu\tt 't:-inﬁ
s = I‘ tan lI"‘ ’-' .',?;‘.’ 3 CRC R ] (25)

The reciprocal cylindrical coordina gs“% f'é? and (%

Ta vy

(see Fig.2.11 (c¢)) “can be obtained directly from the spot on

the film and the reciprocal lattice net can be constructed with

chosen axes.

(3) Powder method. This method used powdered crystal

or a fine grained polycrystal oriented at random to a monochromatic
beam. The conditions for diffraction are just as in the rotation
method., This method provides much useful information but in the
present research its use is confined to obtaining a more refined
measurement of the three cell dimensions.

"
We can obtain sin“® . from the powder photograph and

from Bragg's equation (5) and (6)

2 LB
a8 = e siesee siais seh e 026

>
Hyy |




22

il
where d is the interplanar spacing for plane (hk X ). For

hk {

the orthorhombic system

2§
; i wis $e daiateTe R
Aoy | (27)
R
*
J a2 bz- ca

Knowing, a, b, and ¢ from the rotation and VWeissenberg photographs
we can calculate sin2 thi « By comparing the observed values of

sind 6 and sin2 ehki y We can obtain a value for new d

ke for

each diffracted line consequently the new a, b, and ¢ can be

obtained.

ELq2 Space Group

A crystal structure is a periodic space pattern which is
an orderly periodic arrangement of atoms that constitues a
crystal, There are 230 kinds of space group and each crystal
belongs to one of them., & fundamental property of the patterns
is a repetition, so in developing the classification of crystals,

the elements of symmetry can be divided into three categoriesB:

l. translation
2. point group symmetry

3. space group symmetry

3 EsWe Nuffield, X-Ray Diffraction Method (New York : John Wiley

SOHS, Inc. '1966), Pelle 1 - 90
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II.2.1 Translation and plane lattice

From the crystal structure each repeat motif is replaced
by a point called a lattice. The lattice can be considered as
a collection of equipoints that portrays the translational perio-
dicity of the structure. The translational periodicity can be
represented by three primitive translation vectors, a, b, and c.
The axial lengths a, b, and ¢ with three interaxial angles, !
between b and ¢, £ between a dnd ¢, and T bhetween a and b, define
a unit cell of the primitive type, i.e. it has points at the
corners only. This translation lattice limits only five distinct
plane lattices which are based on the magnitude of the transla-

tion and the angle between them as shown in Fig,2.13,

3 5
% . { S >
a ¥
i : a
a#* b i b 2
o
" g
¥ % a¥#b - = 90° a=">»> a=o>=
2 3 = a0° 3 =9 ¥ = 90° o
iizzllelo~ 8 Diamond g ¥ = 120
& Rectangular Grare Triangular

Fig., 2.13 Five plane lattices

IT.2.2 Point groups and crystal systems

If a body can be divided into parts that are related to

one another in certain ways then it is symmetrical, and the
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operator that transforms one part to the other symmetrically

related part is called a symmetry operation, leaving the body

indistinguishable from its original state. The symmetry opera-~

tions which are required for repetition are rotation, reflection,

and inversion. This operation can be described by symmetry ele-

ments by which the equivalent points are(br?ught into coincidence.,
15

They are divided into three main elements ; symmetry axes, a

symmetry plane, and a center of symmetry.

(1) Symmetry axes are produces by rotation through an

2Y

angle ——, and are said to have n-fold axis of rotation. But

n
this operation is limited to conform with that possible in a
periodic extended lattice. This limits us to axes of one-, two-,

three~, four~, and sixfold rotation symmetry axes.

(2) 4 symmetry plane operates by reflection across the
plane which brings the eguivalent point into coincidence with

itself. This may be designated as mirror plane mn,

(3) A center of symmetry operates by inversion across a
center which matches the equivalent point on one side with those
at other side. In vector expression r is converted to ~r by

inversion operator.

Two symmetries of rotation and inversion exhibit other
symmetry axes called rotation-inversion axes. They are 1-,2-,

3=y 4=, and 6- fold rotation inversion axes, designated by
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i, 5,-5, ﬁ, and 6. The 2 is equivalent to m, so it is actually

10 units of symmetry shown in table 2.1.

Table 2.1
(1%,pp.15)
Symmetry Elements
Symmetry Symbol
No symmetry i &
Mirror plane of syumetry m or (2)

o

Twofold rotation

Threefold rotation 3
Threefold rotation inverter 5
Fourfold rotation i
Fourfold rotatory inverter E
Sixfold rotation 6
Sixfold rotatoéry inverter g
Inverter 5
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These features are the basis of the classification of the
crystal into 32 crystal classes. These 10 units of symmetry
element combine in 32 ways to represent all the kinds of symmetry
found in a crystal. So there are 32 point groups. A& point group
may be defined as a group of symmetry operation which can operate
on infinite three dimensional lattices so as to leave one point
unmoved.,

The 32 crystal classes may be divided into seven main
crystal systems, each characterized by the possession of a
certain minimum of symmetry elements, and referable to certain

characteristic axis as shown in table 2.2.
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Table 2.2

(11)
Crystal system and its minimum symmetry elements

System its minimum symmetry element
Triclinic one fold symmetry only
fonoclinic a single twofold axis
Orthorhombic tgfee mutually perpendicular twofold axes
Tetragonal a single fourfold axis

Trigonal or Rhombohedral| a 8ingle threefold axis or sixfold axis
Hexagonal a single sixfold axis

Cubic four equivalent threefold axes.

LL.2.3 G8pace lattices and the 1L Bravais lattices

Space lattice can be thought of as a periodic stack of plane
lattices with different ways of stacking and consistent with the
symmetries of 32 point groups. They are only five unique space

lattice types as shown in table 2.3.



Table 2.3

(1)

Space lattice types

28

Name Location of nonorigin points Symbol
Primitive P
Side-centered Center of A face or (100) if A-centered A

Center of 3 face or (0l0) if B-centered B
Center of C face of (001) if C-centered o
Face ~ centered Centers of 4i,B, and C faces P
Body ~ centered Center of each cell 44
Rhombohedral If primitive rhombohedron is R

referred to hexagonal cell

These five space lattices are distributed in the seven

crystal systmes and constrituie fourtcen Bravais lattices as

shown in table 2.L.

The 14 Bravais lattices modify the primitive

lattice but still conform to the symmetry of one of the seven

crystal systems called nonprimitive lattices containing 2 or more

lattice points per unit cell.

of 7 primitives and 7 nonprimitives.

So the 14 Bravais lattices consist
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Table 2.4

The Fourteen Bravais Lattices

is!

Triclinic Monoclinic P Monoclinic C

Iy

Orthorhombic

L

Tetragonal

i

Cubic

Trigonal I Trigonal and Hexagonal P
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(3,14,15)
II.2.4 Space groups

A space group is an array of symmetry elements that is
consistent with an infinite extended regular repeated pattern.
The 32 point groups combine with the 14 Bravais lattices resulting
in 230 unique space groups. also threce-dimensional translation
and symmetry operators introduce two new kinds of symmetry opera-
tions, screw axis and glide planes. VWhen these are combined with

the symmetry elements, they lead to the same 230 space groups.

(13

The screw axis is the combination of the rotation axis
and a translation paralle¢l to this axis, restricted by the trans-
lation periodicity of the crystal to repetition at angular inter-
vals of 180, 120, 90 and 60 degrees. Screw axis are designated
by an integer n and a subscript m, where n = 2,3,4, and 6 and
m= 1,2,s0ey;n ~1, TDHES 21 is a twofold rotation with a transla-

tion /2 of a unit translation parallel to this axis called the

2-fold screw axis.

(3)
Glide planesjrepresent reflection across a plane combine

with a single fraction of translation % or ¥ of unlt trarslation

parallel to the plane. There are axial glide (a,b, or c),
diagonal glide (n), and a diamond glide (d). The plane is
describe as an axial glide plane (a, b, or ¢) if the glide is

parallel to the edge of the unit cell with translation a/2, b/2,
or o/2; n gitde ip LB : b) laxe) .. (b 28] 5 itde 4
2 2

(a + 1) (a + ¢) (v + ¢)
1} 1 Ll- y OT _“"4'

, for this d glide occurs only
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in I and F unit cells.

Inturn these two new operators may combine with plane
lattices to yield a nonprimitive cell. Combining 2-fold rota-

tion axis with screw axis yields a body-centered lattice (I).

X-rays are extremply sensitive to the screw axis and glide
planes because these operators cause a halving of certain classes
of interplanar spacings which caouses systematic extinctions in
the x~ray diffraction patterns. From these extinctions the space
groups can be specified first, then the point group since x-rays
are subtly sensitive to symmetry. The diffraction pattérn
appears centrosymmetic which cause only 11 Laue symmetry elements

to appear, .

The sequence for determining the space group from the
x-ray diffraction patterns is as follows, First consider the
general type of indicies nk { y 1f no extinction the lattice is
primitive (P) and if any of these are symmetrically absent the
lattice is nonprimitive. (See the conditicns in table 2.5).
Then reflections with one zero index are considered; systematic
absences amongst these give information about glide planes.
Finally, reflections with two zero indicies are considered,

systematic absences give information about screw axis.
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Table 2.5
(3,0003)
Symmetry interpretations of extinctions
— = e E
Glass of | Zomdition fox Interpretation of Symbol of
i?flec* non ext:!.nctlon C]{tinction symmetr
icn n = an integer elem. |
hkﬁ, h+k+wl = 21 Body-centered lattice I
h+k = 2n - C~centered lattice C
h+JZ = en B=centered lattice B
k+,ﬂ' = 2n fi=centered lattice A
h+k " 2n }
h+_ﬂ = 2n T Tace-centered lattice F
xed = onl
h,k,.ﬂ all
even or all odd
—h+k+£ = 5n Rhombohedral lattice indexed
=
on hexagonal systen =
h+k+-€ = 3n Hexagonal lattice in dexed
on rhombohedral system B
hk..ﬂ, no condi- P
) tions
ok § k = 2n (100) glide plane, compo=. |-
nent b/2 b(P,B,C)
-ﬁ = {2n (100) glide plane, compo-
nent ¢/2 ¢(P,C,I)
k«ﬂ = 2n (100) glide plane, compo-
nent (b/2+c/2) n(P)
k+_ﬂ‘ = bn (100) glide plane, compo-
nent (o/k+c/4) a(r)
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Class of| Condition for Interpretation of Symbol of
reflec- | non oxtinotion  (yopion symmetry
i n = an integer N
hoﬁ, h = 2n (010) glide plane, compo-
nent a/2 al(P,4,I)
.£ = 2n (010) glide plane, conpo-
nent ¢/2 c(P,4,C)
p
h+JZ. = 2n (010) glide plane, conpo-
nent (a/2+c/2) n(P)
neld = bn (010), glide plane, compo=-
nent (a/b+c/k) a(r),(B)
hkO h = '2n (001) glide planec, compo-
nent a/2 a(P,B,I)
k = 2n (001) glide plane, compo=
nent b/2 b(P,4,B)
fl
h+k = 2n (001) glide plane, compo-
nent (a/2+bv/2) n(P)
h+k = 4n (001) glide plane, compo-
nent (a/b+b/L) c(T)
h00 h = 2n [100] screw axis, conpo-
nent a/2 21+ 42
(0)40) ki=2n 'OlO] screw axis, compo-
nent b/2 21, #2
OO‘P. -ﬁ = 2n [001.] screw axis, compo-
nent ¢/2 2.4 .6

|
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Table 2.6

(151PP0375)

Space group determination of orthorhombic point group 222

Possible reflection Space group
2
I hk £ all orders (P)
1) Okf1 all orders
i
1.1) hO-k all orders
1,1.1) hkO all orders
|
1,1.1.,1) hOO all orders
1 359 1 TS N Okp- all orders
a) ooJﬁ all orders P222
b) ooﬁ with ﬁ-: 2n P
2221
J 1.,1.1,1.2.1) OkO with k = 2n
| }
a) 00 2ll orders 34
2212
b) 004 with &L sn P
222
“ ]
l,1.1.,2) hOO with h = 2n
2.1) 0kO all orders
a) OO,-L all orders P
il )
i
b) OO-E- with L = 2n P
2.22
] gt )
2.,2) OkO with k = 2n
a) 00X all orders P2 2.2
; . i B |
b) 004 with L= 2n Py i
i PR g
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