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In molecular beam epitaxy (MBE) film growing, atoms may encounter a
step edge — a region where two terraces of different height meet — while diffusing
across the growth front. A diffusing atom must overcome an additional potential
barrier when hopping down from the upper terrace to the lower one. This barrier
is known as the Ehrlich-Schwoebel (ES) barrier. In this work, a discrete MBE
model on one-dimensional substrate is used to determine effects of the ES barrier
on MBE growth. We found mound formation on the grown surface with larger
mound structure in weaker barrier systems and smaller mounds in stronger ones.
The study of the time evolution of mound properties such as the average mound
radius and the average mound height shows that this growth process can be divided
into two stages. In the initial stage, individual mound coarsens resulting in the
increase of the mound radius. In the second stage at later time, coarsening process
becomes very slow and the mound radius is approximately constant. With mound
radius fixed as a constant in time, newly deposited atoms are incorporated on

top of existing mounds and the average mound height increases as growth time
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Chapter 1

Introduction

Crystal growth, particularly high-quality epitaxial thin film growth, is one of very
interesting topics impacting today’s technology. A major issue in crystal growth
is to have a dynamical control over the growth process to obtain a thin film
with certain desired patterns. Thus, in order to be able to design a controlled
growth process, it is important to understand the nature of instabilities [1, 2,
3, 4, 5] that destroy controllability during a growth process. Ehrlich-Schwoebel
(ES) barrier [6, 7], one of those instabilities, is a ubiquitous phenomenon in real
experimental surface growth. An ES barrier produces an additional energy barrier
which inhibits diffusing atoms on upper terraces from coming down toward lower
levels. Therefore, this barrier enhances diffusing atoms to move toward upper
terraces and the result is mound formation. In this research, we used a discrete
growth model called MBE model [8, 9, 10] to simulate molecular beam epitaxy
(MBE) growth under effects of an ES barrier. Mound properties such as an average
mound radius and an average mound height were investigated via the study of

height-height correlation function [11, 12].

In the next chapter, Chapter 2, we will describe theoretical background
needed for our computational MBE growth studies. In addition, several useful
models used in computer simulations such as the random deposition (RD) model,
the Das Sarma-Tamborenea (DT) model, and the MBE model will be explained.

Since the MBE model is more realistic, it is the model selected in this thesis.

We will present our numerical results of the MBE growth in Chapter 3.



In this chapter, morphologies at various substrate temperatures and the scaling
properties of the model will be shown. Moreover, the relation between the surface

diffusion length and the substrate temperature will be shown in the last section.

In Chapter 4, we modified the basic MBE model to include effects of the ES
barrier. The barrier causes mound formation in the evolving surfaces. The time
evolution of mound properties such as an average mound radius and an average
mound height was observed by studying the height-height correlation function.
Finally, the last chapter, Chapter 5, is the conclusions of this thesis.



Chapter 2

Theoretical Aspects and Models

In this chapter, we will talk about the theoretical background needed for our work.
First, the molecular beam epitaxy growth is described by showing its fundamental
processes, i.e. deposition, desorption, and surface diffusion process. Second, mod-
els that have been proposed to describe kinetic roughening phenomena in surface
growth such as the RD model, the DT model, and the MBE model are presented.
Finally, we introduce the dynamical scaling hypothesis which we use to study the

kinetic roughening phenomena of the surface growth.

2.1 Molecular Beam Epitaxy Growth

Among numerous crystal growth techniques, MBE is a good choice to obtain high
quality films for variety of materials including both metal and semiconductor. In
addition, films grown by MBE rarely contain any bulk vacancy [9, 13, 14]. In this
technique, a flat singular substrate is held at a constant temperature in a vacuum
chamber with ultra-high pressure, i.e. smaller than 10 '° torr, to minimize the
impurities such as Hy, CO,, CO and H,O within the growth environment [13].
The temperature of the substrate is usually in the range between 500 K to 1000
K. Beams of materials to be grown are generated by thermal evaporation from
various sources and directed perpendicularly to the substrate. Thickness of the
film is controlled by deposition rate, number of layers grown in a unit time, and

time used in the growth process.



From microscopic point of view, the fundamental phenomena of the MBE
growth are the interplay between deposition, desorption and surface diffusion pro-

cess [13].

2.1.1 Deposition

During the deposition process, an atom from the beam is deposited on a random
position of the substrate, forms bonds with surface atoms, and then sticks there.
If the substrate and the film are of the same material, it is called a homoepitaxy
growth. Otherwise, in the case when the substrate and the film are different, the
growth process is a heteroepitaxy growth. In heteroepitaxy growth, strain due to
the difference in lattice constant of substrate and film materials has a crucial effect
on the growth process. In this thesis, however, we are only interested in homoepi-
taxy growth. The deposition rate, which plays an important role in determining
properties of the grown film, is calculated from the number of monolayers (ML)

grown in a unit time (ML/s).

2.1.2 Desorption

Desorption is the process that some surface atoms leave the growing surface by
breaking bonds formed with other atoms. The desorption probability depends on
the number and the strength of bonds that the atom possesses. For example, an
atom with strong bonds have less chance to leave the surface compared with an
atom with weaker bonds. Similarly, it is more difficult for an atom with many
bonds, e.g. atoms at kinks or pits, to desorp when compared with atoms with
fewer bonding. (Note that conventionally, a kink/pit means a site where an atom
can form one/two lateral bonds.) However, desorption rate is usually extremely
small under typical MBE conditions that it can be considered negligible. So in

this work, desorption is neglected.
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Figure 2.1: Schematic illustration of the lattice potential that diffusing atoms on

flat surface must overcome to hop to the next neighboring site.

2.1.3 Surface Diffusion

After an atom reaches the growth front and forms bonds with other surface atoms
in the deposition process, the atom can move on the crystal surface to search for
the most stable position if it has enough energy to break its original bonds. To be
more specific, in order for atom A in Fig. 2.1 to diffuse to a neighboring site on a
flat surface, it must have enough energy to overcome a lattice potential that exists
at the joint between lattice sites. The energy in this case is the thermal energy
that atom A obtains from the substrate. Therefore, the hopping rate R, which is
the number of hops in a unit time, increases with the substrate temperature 7'.

The Arrhenius hopping rate is given by [9, 15, 16]

E
R = R() eXp(—kB—T), (21)

where Ry is a characteristic vibrational frequency, E is the activation energy, kg

is the Boltzmann constant, and T is the substrate temperature. The activation
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Figure 2.2: Schematic illustration of the additional potential barrier at the step
edge, Ehrlich-schwoebel (ES) barrier, that diffusing atoms must overcome to hop

down to the lower terrace.

energy is the amount of energy required for an atom with n lateral bonds to hop to
a neighboring site. It is defined as E = Ey + nE, where F; and FE}, are the lattice
potential and the lateral bonding energy per neighbor respectively. Therefore, an
isolated atom, i.e. the atom without an lateral bond, can hop with higher hopping

rate than the atom at a kink or pit site.

While diffusing across the growth front, atoms have a chance to encounter
a step edge which is a region where two terraces of different height meet. When
a diffusing atom approaches a step edge from the lower terrace such as atom B in
Fig. 2.2, it preferentially sticks to that kink site at the bottom of the step edge.
However, when a diffusing atom approaches a step edge from the upper terrace
such as atom A in Fig. 2.2, it has been shown experimentally that the diffusing
atom will preferentially stick to the edge of the upper terrace instead of hopping

down to the lower terrace. This is because there is an additional potential barrier



at the step edge that a diffusing atom must overcome in order to be able to hop
down [6, 7]. This barrier is known as the Ehrlich-Schwoebel (ES) barrier [6, 7].
We will discuss effects of the ES barrier on MBE growth in detail in Chapter 4.

2.2 Discrete Growth Models

Since the study of MBE growth by the use of computer simulations has attracted
scientist’s attention for years, a number of discrete growth models have been pro-
posed to describe the kinetic roughening phenomena of the surface growth. Some
of the well known discrete models are the random deposition (RD) model [13], the
Das Sarma-Tamborenea (DT) model [17, 18], the Wolf-Villain (WV) model [19],
and the MBE model [8, 9, 10]. For these discrete growth models, each atom is
simplified to a simple unit square block and there is no off-lattice. In addition,
a periodic boundary condition and the solid-on-solid (SOS) constraint [11, 20],
where bulk vacancy, overhanging, and desorption are omitted, are applied. In this
thesis, we focus on a 141 dimensional discrete growth model where the growth is

performed on 1 dimensional substrate (d'=1) of size L.

In this section, the simplest version of discrete growth models called the
RD model, where there is no diffusion, will be described first. Although it is the
simplest model, results of this model agree well with the more complicated model,
i.e. the MBE model, in some conditions. Then discrete models which include
effects of the diffusion process, i.e.-the DT model and the MBE model, will be

discussed later in the section.

2.2.1 Random Deposition Model

The RD model includes only the deposition process while desorption and diffusion
of atoms are not allowed. The site that an atom will be deposited on is randomly

chosen. Then the atom falls vertically until it reaches the top of that site and be
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Figure 2.3: Schematic illustration of the RD model. Atoms fall vertically until
they reach the top of the randomly selected site and stick irreversibly.

incorporated there permanently. (See atom A and B as illustrated in Fig. 2.3.)
The characteristic of this model is that each lattice site is grown independently so

there is no correlations between neighboring sites.

2.2.2 Das Sarma-Tamborenea Model

The DT model [17, 18] is a dynamical model that once an atom is deposited at a
random site, it can diffuse immediately to a neighboring site according to the DT
diffusion rules. In this model, only the freshly deposited atom can diffuse and once
the atom hops to a neighboring site, it is incorporated there permanently. The
DT diffusion rule requires atoms to hop to increase their coordination numbers,
i.e. the number of bonds they form with their nearest neighbors.” Atoms with at
least one lateral bond, e.g. atom B and F in Fig. 2.4, do not move. If there are
more than one site to hop to increase the coordination numbers at a moment, e.g.
atom C and G, the diffusing atoms will choose a final site randomly. In addition,
if there is no site with higher coordination number to hop to, e.g. atom E, then

the diffusing atoms will be incorporated at their deposition site.



Figure 2.4: Schematic configuration defining the diffusion rules for the DT model.

2.2.3 MBE Model

The MBE model [8, 9, 10] was created as a realistic model to study MBE growth.
In this model, desorption is neglected and only the deposition and diffusion pro-
cesses are included similar to the DT model. However, in the MBE model, all
atoms that are still on the surface of the growing film can hop. The hopping rate
of each atom depends on the initial bonding configuration of that atom and the
temperature of the substrate, which makes this model a comparatively realistic

one.

In the MBE model, the deposition process is simulated by dropping one
atom at a time on the substrate. Atoms are dropped to randomly selected sites
with a constant deposition rate. During diffusion process, any surface atom (not
only a freshly deposited one) can hop to-a random neighboring site with hopping
rate depending on the Arrhenius expression Eq. (2.1). The parameters used here
are Fy=1.0 eV, and E= 0.3 eV unless noted otherwise. With these values of
parameters and substrate temperature T=650 K, an atom on flat surface, i.e. an
atom without any lateral bond, will hop approximately 200 times greater than an
atom at a kink site, i.e. atom with one lateral bond. Therefore, once an atom
sticks at a kink site, it will remain there for a long time. The hopping period 7, a

period of time that an atom spends to complete a hop to a neighboring site, can



10

be calculated from 7 = 1/R.

Solid on solid (SOS) constraint is assumed in this study. The SOS constraint
requires that a deposited atom will fall on top of a random column. Freshly
deposited atoms typically do not immediately hop, but at this moment a hopping
rate of every surface atom will be calculated. Then an atom which has a maximum
hopping rate will be selected to hop. The SOS constraint forces it to hop from its
position to the top of a neighboring column. We point out that the motion of the
atom will affect the bonding configuration of the surface, so we must calculate the

hopping rate of surface atoms again before selecting the next atom to hop [10].

2.3 Dynamical Scaling Hypothesis

In general, the aim of thin film growth is to obtain a high quality film, i.e. a
smooth film, because it has good contact properties and is suitable for electronic
devices. However, grown films are generally not absolutely smooth. Most of the
time, there exists some roughness on surfaces of the films. This roughness is a re-
sult of kinetic roughening that occurs during growth process. The kinetic surface
roughening phenomenon during thin film growth is what we want to understand.
To study this problem quantitatively, we can use the interface width 1 [13], which

is a root mean square height fluctuation of a growing surface:
W(L,t) = ((h— ()", (22)

where h = h(z,t) is the surface height at substrate site x and time ¢, (h) is the
average height, L is the size of the substrate, and (...) means that the quantity
in that bracket is averaged over the substrate. According to dynamical scaling

hypothesis, the interface width scales with L and ¢ as [21, 22]

W(L,t) ~ L* f(L/£(2)), (2.3)
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where L is the substrate size, « is the roughness exponent, and f(y) is the scaling

function which follows:

const fory <1
fly) ~ (2.4)
y=* fory>1.

Here £(t) is the lateral correlation length, which obeys the dynamical scaling be-

havior,

tV/7 for t1/¢ <« L
£(t) ~ (2.5)
L  fort'/* > L,

where z is the dynamical exponent. Combining Eqs. (2.3) - (2.5), scaling behavior

of the interface width is obtained,

t? fort < L*
W (L, t)-~ (2.6)
L% fort> L?,

where = a/z is the growth exponent. For a system with a constant substrate
size L, the interface width initially increases as a power law in time, and then
saturates at asymptotic time (¢ > L?). The growth exponent can be obtained
from the slope of the plot-of the interface width as-a function of time. Since
the slope must be calculated from data in the ¢t < L* range, the substrate size L

should be large enough in order to have enough data for an accurate 3 calculation.

The interface width is calculated from height fluctuations measured with
respect to the globally averaged height, so it describes the global scaling behavior.
However, we can study the local scaling behavior by studying the height difference
correlation function,

1/2

G(r,t) = {|h(z +r,t) — h(x,t)|2> : (2.7)
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where r is a distance between two sites on the substrate and (...) means that the

quantity in that bracket is averaged over the substrate.

It is important to note that if the roughness exponent « is less than unity
(av < 1), the surface is self-affine and global and local properties of the system scale
in the same manner. However, for @ > 1 or the so-called super rough surface, the

global and local properties scale differently.

For self-affine surfaces (o < 1), the conventional scaling form of the height

difference correlation function is

G(r,t)~ rg(r/E(t), (2.8)

where ¢(y) is the same as the scaling function f(y) in Eq. (2.4). However, for
super rough surfaces (o > 1), there is anomalous dynamical scaling that global
and local properties of system scale differently. The scaling function g(y) in Eq.
(2.8) is not the same as f(y) in Eq. (2.4), but follows

—Kk/2 f

Y ory <1

9(y) ~ (2.9)
y=  fory > 1.

When the length scale is greater than the correlation length (r > £(t)), the
scaling function is not different from the self-affine scaling discussed previously.

However, it is quite different when the length scale is less than the correlation

length (r < £(t)).

Combining Eq. (2.8) and Eq. (2.9), we obtain the asymptotic behavior of

G(r,t) for super rough surfaces:
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re—h/2¢6/22 for r < 17 < [
G(r,t) ~§ ro 202 for r < L < t'/* (2.10)
18 for r > t/%,

The additional scaling exponent « is equal to zero for self-affine surfaces. There-

fore, Eq. (2.10) can be written as

re for r < /¢
G(r,t) ~ (2.11)
8 for r > tl/%,

It is consistent with Eq. (2.6), which is the behavior of global scaling.

For self-affine surfaces, the roughness exponent o can be obtained by mea-
suring the slope from G(r,t) versus r log-log plot at small r. However, for super
rough surfaces, the slope of that plot changes from « to o/ = a—k/2, so we cannot
find o by this method. The well-known method to find « in a super rough surface
is to perform a scaling collapse by plotting G(r,t)/r® versus r/t'/# for several sets
of data at various time and changing the value of o and z until all data collapse

onto one line.



Chapter 3

MBE Growth

Using the MBE model to simulate molecular beam epitaxy growth, our simulation
results are presented in this chapter. Surface morphologies at various substrate
temperatures and scaling properties of the model are shown. We also present a
relation between the surface diffusion length and the substrate temperature (which

is a controllable parameter in real experiments) in the last section.

3.1 Morphologies

In this section, simulation results of surface morphologies at various substrate
temperatures (T') are presented. In Fig. 3.1 snapshots of surface morphologies at
T=450, 500, 550, 650, and 750 K are shown (bottom to top). All data are from
systems of substrate size L=1000 lattice sites and the morphologies are at 1000
MLs (monolayers) thickness. It is obvious from Fig. 3.1 that at low T, i.e. 450

K, the surface is very rough and it becomes smoother when 7' increases.

We can divide these temperature-dependent morphologies into three main
regimes. The first regime is at low 7', at approximately 450 K. In this regime
surface diffusion is very rare and atoms stick where they first arrive on the growing
surface most of the time. The second regime is at intermediate 1" where surface
diffusion has more effect on the growth process. Consequently, morphologies from

this intermediate regime are smoother than ones at low 7' regime. It should be
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Figure 3.1: Surface morphology of the MBE model at T'=450, 500, 550, 650, and
750 K (bottom to top) for system of L=1000 and t=100 MLs.
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noted, however, that these intermediate T" morphologies are still kinetically rough
surfaces. The third regime is at high 7" where atoms have long surface diffusion
length. Therefore, they can search for an energetically favorable position, i.e. kink
or pit, to stick. As a result the surfaces become extremely smooth as the growth

process becomes a layer-by-layer growth.

We found that at some 7', the morphology of the MBE model is statistically
equivalent to that of other dynamical models described in the previous chapter.
For example, in Fig. 3.2 the surface morphology of the MBE model at T=450 K
is very similar to that of the RD model, which omits surface diffusion of atoms.
And in Fig. 3.3 the surface morphology of the MBE model at T=550 K shows
deep grooves with relatively flat tops which looks like results of the DT model.

3.2 Scaling

In order to study scaling properties of the MBE model, we first start with the
interface width (global scaling). In Fig. 3.4, interface widths of systems at sub-
strate temperature T'= 450, 500, 550, 600, 650, 700, 750, and 800 K are plotted
as a function of time in log-log scale (top to bottom). The effective growth expo-
nents S.rs of each T' are extracted from slopes of these plots and shown in Fig.
3.5. We found that at 450 K, B, is equal to 0.5. It is the same as the RD model,
where diffusion is not allowed at all. It is important to note that in the RD model
B is equal to 0.5 while a and z approach infinity. The similarity of the growth
exponents confirms the consistence between the MBE model at low 7" and the RD
model:: As T increases, fB.rs decreases from 0.5. It is also interesting that at high
T, i.e. 750 and 800 K, we can see oscillations of the interface width during early
time. The oscillation corresponds to layer-by-layer growth in the first few layers.
The layer-by-layer growth means that films will be grown completely in a layer

before the next upper layer starts being grown.

It is not sufficient to study scaling properties by using only the growth expo-
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Figure 3.2: The comparison of surface morphology between a) the MBE model at
450 K and b) the RD model
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Figure 3.5: The effective growth exponent calculated from Fig. 3.4.
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T(K)| « o] z

600 | 1.16 | 0.374 | 3.10

650 | 1.10 | 0.364 | 3.02

Table 3.1: The critical exponents extracted from the data collapses in Fig. 3.6
and 3.7

nent. Here, we show a method to find other exponents, i.e. a and z, by performing
data collapse. Figures 3.6 and 3.7 illustrate data collapses of 7 sets of data at dif-
ferent times between 2048 and 10° MLs at 7=600 and 650 K respectively. The
maximum time carrying on simulations is believed to approach the asymptotic
time of the MBE model. The values of a and [ are estimated from these plots by
changing o and /3 to obtain the best fit of 7 sets of data and they are shown in
Table 3.1. At both temperatures « is greater than unity. It implies that the MBE
model at this intermediate temperature regime generates super rough surfaces.
The specific characteristic of super rough surfaces is that they possess anoma-
lous scaling behavior, i.e. global and local properties of the system are scaled

differently.

To confirm the existence of anomalous scaling in the model, we also studied
local scaling by plotting the height difference correlation function G(r,t) as a
function of 7. From Eq. (2.10), when r < t/* the slope of this plot is the local
roughness exponent .«/. If @/ (local scaling) is not equal to-« (global scaling), we
can confirm the existence of the anomalous scaling of the model. In Fig. 3.8 G(r)
plots-of substrate size L=1000-at time t=32768 MLs at T'=600 and 650 K as a
function of r are illustrated. The local roughness exponent o’ from these plots
is 0.69 and 0.67 for T=600 and 650 K respectively. The results show that global
and local scaling are different (v # o). Therefore, it confirms the existence of the

anomalous scaling.
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Figure 3.6: The data collapse of the MBE model at =600 K for system of L=1000
and t=2048, 4096, 8192, 16384, 32768 and 10° MLs. The exponents from the best

collapse are a-=1:16,2=3.10-and consequently f=a/z = 0.374-
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Figure 3.7: The data collapse of the MBE model at T=650 K for system of L=1000
and t=2048, 4096, 8192, 16384, 32768 and 10° MLs. The exponents from the best
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Figure 3.8: The G(r) plot from substrate size L=1000 at time t=32768 MLs for

T=600 and 650 K.
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Figure 3.9: Schematie illustration of the surface diffusion length calculation used

in the simulations

3.3 Surface Diffusion Length

In MBE growth, an atom deposited on the substrate tries to diffuse to an appro-
priate site before being incorporated. The displacement that a freshly deposited
atom can diffuse before being incorporated into a growing film is called the surface
diffusion length ¢;. The surface diffusion length is one of the important parameters
that have effects on the film quality. In this section, a relation between the surface
diffusion length ¢; and the substrate temperature 7" is presented. This relation is

of interest because 1" is a controllable parameter in real experiments.

In computer simulations based on the MBE model, ¢; is determined by
keeping track of each freshly deposited atom until it is incorporated and becomes
a part of the substrate. Forexample, atom A in Fig. 3.9 a) is initially deposited
on the substrate at position 0 and then hops three times to position 3. At this
moment, the surface diffusion length is equal to three. Afterwards, if atom A hops
back to the left neighboring site as illustrated in Fig. 3.9 b), now the surface
diffusion length reduces to two. In simulations, atom A will be monitored until

it is incorporated permanently into the film and the distance between the final
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position and the original position of atom A is the surface diffusion length of atom
A. Every freshly deposited atom is monitored this way and the average of the
diffusion length of all atoms becomes the surface diffusion length ¢, of the system

at that value of the substrate temperature 7'.

Our results of /4 as a function of T at deposition rate F=0.1, 1, and 2 ML/s
are shown in Fig. 3.10 (top to bottom). For each deposition rate, we find that
¢, increases with increasing T as £, oc e=". Consequently, surface morphologies
become smoother when 7" is higher, because atoms can search further away from
their original deposition sites for the most energetically favorable positions. At
the same 7', atoms deposited with high deposition rate F' will possess a smaller
/4 than ones deposited with lower F. This is because with the high deposition
rate, new atoms are deposited quickly on the substrate. This increases a chance
that a surface atom will be “buried” underneath newly deposited atoms and then
lost its ability to diffuse. In other words, the period of time that an atom remains
“active” is shorter in a system with higher deposition rate resulting in smaller
surface diffusion length in the system. Note that when T is low enough, ¢, will
fall all the way down to zero. It means that atoms cannot diffuse at all during
growth process so they will stick where they first arrive on the growing surface.
As a result, the surface morphologies become very rough as we have seen in the
previous section. In this very low T' regime, the MBE model is very similar to the
simple RD model.. We have found that the value of this “cut-off” T' (when there

is no diffusion on the surface) varies with the deposition rate as well.
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Chapter 4

ES Barrier in MBE Growth

After having studied the molecular beam epitaxy growth in systems without the
Ehrlich-Schwoebel barrier in the previous chapter, we will present our simulation
results of MBE growth under the ES effects in this chapter. Since ES barrier causes
mound formation, we studied mound properties, i.e. the average mound radius
and the average mound height, by using the height-height correlation function.
Observing the mound radius and the mound height evolution, we found that the
MBE model with ES barriers and the RD model, although not the same, share a

few similar characters.

4.1 MBE Model with ES Barrier

In order to study effects of the Ehrlich-Schwoebel barrier on MBE growth, the ba-
sic MBE model will be modified. Since the ES barrier occurs at the edge between
two terraces of different height, diffusing atoms must overcome this additional
barrier to hop to another terrace. It means that an atom will encounter the ES
barrier if it tries to hop to another site with different height. If it does not have
enough energy to overcome this barrier, it has to stay at its original site. For ex-
ample, if atom A in Fig. 4.1 tries to hop down to the lower terrace on its left side
(the site with smaller height), it will encounter the ES barrier. On the contrary, if
atom A tries to hop to the neighboring site on the right, the ES barrier will have
no effect on it. The probability that diffusing atoms successfully hop to another
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Figure 4.1: The effects of ES barrier on diffusion behavior of diffusing atoms. A
diffusing atom will encounter the ES barrier if it try to hop to the site with different
height (direction marked P; on arrowhead). However, it does not encounter the

barrier if it hop to the site with equal height (direction marked 1 on arrowhead).

site is defined by the tunneling probability,

P, = e (¥ for Ah # 0
Rt (4.1)
1 for Ah =0,

where E is the strength of the ES barrier, T" is the substrate temperature, and
Ah = hy — h; where h; is the height after hopping and h; is the height before
hopping. From Eq. (4.1), it can be seen clearly that the probability that diffusing
atoms can hop successfully is reduced greatly when they encounter ES barriers.
The exact; reduction depends on the strength of ES barriers; i.e. the probability
to hop-is very low when the ES barrier is very strong. In addition, the hopping

rate of diffusing atoms under effects of the ES barrier is changed to

Rps =P R, (4.2)

where R is the original Arrhenius hopping rate defined in Chapter 2. From the
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above equations, the hopping rate of diffusing atoms that encounter the barrier is
reduced with the factor P, whereas the hopping rate of diffusing atoms that do
not encounter the barrier stay at the same value of the original Arrhenius hopping

rate.

4.2 Morphologies

In this section, time evolution of surface morphologies under the effects of the
ES barrier is presented. The strength of the barrier is defined via the tunneling
probability P described in the previous section. In Fig. 4.2, surface morphologies
under effects of a moderate barrier are shown. The tunneling probability in this
system is P;=0.5 which is equivalent to E,=0.039 eV and the substrate tempera-
ture is fixed at T =650 K. The morphologies here are at t=102%, 103, 10* and 10°
MLs (bottom to top) while the last one on the top line is from a system that does
not include effects of ES barrier, i.e. P;=1.0. Comparing surface morphologies
under effects of ES barriers with the one that does not include the barrier, we
can conclude that the ES barrier causes mound formations in the film surfaces.
And we note that each mound can coarsen together during growth. Increasing
the strength of ES barriers by changing P; to 0.25 and 0.1 in the simulations, the
results are shown in Figs. 4.3 and 4.4. Mound structures still occur; however,
obviously, when the strength of ES barriers increases, the narrower and higher
mounds are obtained. We also study growth at low barrier (large Ps) and find

that mound structures coarsen with higher rate than that of higher barrier.

To study the effects of the substrate temperature on mound properties, we
fix the strength of the barrier to P;=0.5 and 0.1 and then carry out simulations
at T=600, 650 and 700 K. Surface morphologies from P,=0.5 at t=10°> MLs at
T=600, 650 and 700 K are plotted (bottom to top) in Fig. 4.5. The same thing
from P;=0.1 is illustrated in Fig. 4.6. Our results show that at moderate barrier

(P;=0.5) mound structures become wider and lower when 7 increases. Since at
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Figure 4.2: The mound evolution in the system with ES barriers for P;=0.5 and
T=650 K. Each line (bottom to top) presents the snapshot of surface morphology
at t=102, 10, 10*, 10° MLs. The top line is the snapshot of surface morphology
of system without ES barrier (P;=1.0)



31

1600 L) I L) I L I L] I L]

1400 -

1200

1000 -

800 -

Morphology

600

400

200

200 400 600 800 1000
Substrate site

Figure 4.3: The mound evolution in the system with ES barriers for P,=0.25 and
T=650 K. Each line (bottom to top) presents the snapshot of surface morphology
at t=10%, 103, 10%, 10> MLs.
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Figure 4.4: The mound evolution in the system with ES barriers for P;=0.1 and
T=650 K. Each line (bottom to top) presents the snapshot of surface morphology
at t=102, 107, 10°, 10° MLs.
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Figure 4.5: The effect of substrate temperature on mound shape. The snapshots

present the surface morphologies of systems with moderate barrier (Ps=0.5) at

t=10% MLs and T=600, 650, and 700 K (top to bottom).
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Figure 4.6: The effect of substrate temperature on mound shape. The snapshots
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35

high 7T diffusing atoms have enough energy to overcome the barrier, they can hop
down to fill up grooves so the individual mound can coarsen together resulting in
a wider and lower mound structure. However, at high barrier (P;=0.1), increasing
T in the same range does not have much effects on mound properties. Since the
strength of the barrier is so high that only few diffusing atoms can hop down to fill
up the groove in this range of substrate temperature, each mound hardly coarsens

resulting in small change in the structure.

To study mound properties in more details, the function H(r) [11, 12] is
used. This height-height correlation function is defined [11, 12] as

H(r) =< h(x)h(x + 1) >, , (4.3)

where r = |r| is the distance between two sites on the substrate and (...), means
the quantity is averaged along the substrate. The specific feature of this correlation
function is that for surfaces with mound pattern H(r) will oscillate around H = 0
line as illustrated in Fig. 4.7. The average mound radius can be obtained from
the distance of the first zero-crossing of this plot. In addition, the average mound

height is calculated from [H (r = 0)]'/2.

In Fig. 4.8 a), the mound radii calculated from H(r) plots at T=600
(square), 650 (circle) and 700 K-(triangle) for P;=0.1 (filled symbol) and 0.5 (open
symbol) are plotted as a function of ¢. For each line, the mound radius initially
increases rapidly and then saturates at some value. This shows that at initial time,
small mounds coarsen together resulting in bigger mounds, or in other words, in-
creasing of mound radius. The coarsening process goes on continuously until the
system reaches a saturate regime where the coarsening process is extremely slow

resulting in the almost-constant mound radius.

We found that the values of these saturated radii depend on both the sub-

strate temperature and the strength of the ES barrier. The saturated radius
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Figure 4.7: The height-height correlation function H(r) as a function of r from the
system with ES barriers. Parameters used here are T=650 K, L=1000, P,=0.5,
and t=10° MLs

increases when T increases, especially for a system with low barrier that increas-
ing T" has more effects on the saturated radius than a system with high barrier.
Since in the system with high 7" individual mound coarsens faster than that in
the system with lower 7', after coarsening regime the saturated mound radius of

a system with high 7T is certainly greater than that of a system with lower 7T'.

At each T, the saturated mound radius of a system with low barrier, i.e.
P;=0.5, is obviously greater than one with higher barrier; i.e. P;=0.1. We can
say that for P;=0.1 the barrier is so strong that there is very few diffusing atoms
that can overcome this barrier and ‘hop to the groove as part-of the coarsening
process. As a result, the rate of coarsening is very slow. Since in the system
with high barrier individual mound coarsens slower than the system with lower
barrier, after coarsening regime the saturated mound radius of a system with high
barrier is certainly smaller than that of a system with lower barrier. In Fig. 4.9

a), the evolution of mound height is presented. For each line, the mound height
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Figure 4.8: The evolution of the average mound radius of the system with P;=0.1

(filled symbol) and 0.5 (open symbol) at T=600 (square), 650 (circle), and 700 K

(triangle). a) normal scale b) log-log scale
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increases continuously with higher rate at initial and then slows down at later
time. Obviously, the mound height of a system with P;=0.1 is greater than that
of P,=0.5 for each T'. Since in a system with high barrier the number of diffusing
atoms that successfully hop down to fill up the grooves is less than that with lower
barrier, the mound height of a system with high barrier is certainly greater than

that with lower barrier.

From our study of the time evolution of mound radius and mound height, we
can divide the growth process into two stages. At first, there are mound formations
and then the individual mound coarsens together resulting in the increase of mound
radius in this stage. Afterwards, coarsening rate becomes extremely slow. The
mound radius becomes approximately constant at this point. Since the mound
height increases continuously while the mound radius is a constant value, in this
second stage the individual mound only grows vertically as if each mound is a

separated system.

4.3 Scaling

To gain a deeper understanding of MBE growth under the effects of the ES barrier,
scaling properties are studied in this section. Plots of the interface width versus
time for P;=0.1 (strong barrier)and P;=0.5 (moderate barrier) at T=600 and 650
K are shown in Fig. 4.10. From Eq. (2.6), the growth exponent can be obtained
from slope of the plot of interface width as a function of time at't < L?*. However,
there seems to be a crossover at t ~ 1000 MLs in the plot in Fig. 4.10. From the
study of time evolution of mound radius and mound height in Fig. 4.8 b) and Fig.
4.9 b), it can be concluded that the coarsening process of mounds in a system
under ES barrier drastically slows down around 1000-3000 MLs. It is, therefore,
possible that the scaling behavior of the MBE model under the effects of the ES
barrier changes when the mounds stop coalescing. To avoid this crossover, we

chose the time range between 2000 and 10> MLs for the slope calculation. Values
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Figure 4.10: The interface width as a function of time of the systems with ES

barriers.

of the growth exponent (/) extracted from these plots are all approximately 0.5
(0.56 for T=600 K and P,=0.5, 0.50 for 7=600 K and P,=0.1, 0.59 for T=650
K and P;=0.5, 0.49 for T=650 K and P,=0.1). We have known that 5=0.5 is a
special characteristic of the RD model, where atoms are incorporated at random
deposition sites without any diffusion. It is rather puzzling that the MBE growth
with ES barrier model where atoms on the surface can hop continuously behaves
similar to the RD model. In order to study this aspect in more details, other
exponents (« and z) are calculated by performing data collapses. Figure 4.11
shows the data collapses for 7 sets of data at different time between 128 and 8192
MLs at T=600 (main panel) and 650 K (inset) for P;=0.5. The same thing for
P,=0.1 is shown in Fig. 4.12. The roughness exponents o and the dynamical
exponents z extracted from these plots are quite large (ranging from 3.2 to 3.6
for a and 6.4 to 7.1 for z) comparing with ones of systems without ES barriers.
A collection of critical exponents, i.e. «, 3, and z, extracted from Figs. 4.11

and 4.12 is shown in Table 4.1, where [ is calculated from the ratio of a to z.
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Figure 4.11: The data collapses of the systems with P;=0.5at 7=600 (main panel)

and 650 K (inset). Each collapse contains data for 7 times from-128 to 8192 MLs.
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Figure 4.12: The data collapses of the systems with P;=0.1 at 7=600 (main panel)

and 650 K (inset). Each collapse contains data for 7 times from 128 to 8192 MLs.
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We note that from this table g is also very close to 0.5 whereas o and z are
large but finite. Actually, in the RD model, 3 is equal to 0.5 while o and z are
infinite. Interestingly, the growth exponents of both the MBE model with ES
barriers and the RD model are approximately the same, whereas the roughness
and the dynamical exponents are quite different. From the similarity of one critical
exponent, we deduce that both models share some similarity, which we will discuss

this at the end of this chapter.

To verify that v and z are indeed finite, we extend the simulation time to
10%> MLs. The data collapses for 8 sets of data at different time between 1024 and
10% MLs at T=600 and 650 K for P,=0.5 and P,=0.1 were performed. The critical
exponents extracted from these plots are shown in Table 4.2. We found that «
and z increase from the value at the early time in Table 4.1; however, they still
remain finite. Moreover, the growth exponents remain approximately 0.5 (0.55 for
T=600 K and P;=0.5, 0.49 for T=600 and P;=0.1, 0.57 for T=650 K for T" =650
K and P;=0.5, 0.49 for T=650 and P;=0.5). Obviously, due to the difference of «
and z the MBE model with ES barriers is not exactly the same as the RD model.

Analyzing the correlation length and mound radius in Fig 4.13, we found
that there are some similarities between the MBE model with ES barriers and
the RD model. For the system without ES barriers (top line), the correlation
length increases continuously through the simulation and finally it will extend to
the size of a substrate. This means that the distance that atoms correlate to each
other will extend to the entire system eventually. However, for the system with
ES barriers, the correlation length increases at initial time and then seems to be
saturated at some point. This shows that the correlation length cannot exceed a
certain limit. Inaddition, we note that the correlation length of the system with ES
barriers is always less than the mound radius of that system. It implies that in the
growth process of system with ES barriers, individual mound grows independently
and have no correlations with other mounds like the growing behavior of the RD

model. This is the cause of 5=1/2. However, from the non zero value and the
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limiting to mound radius of the correlation length, there are correlations among
lattice sites in each mound. It is the different behavior between the two models
and is the reason why « and z in the MBE with ES model are not infinite like

that of the RD model.
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Exponents T=600 K T=650 K
P,=0.1 | P,=0.5 | P;=0.1 | P,=0.5
o 3.43 3.62 3.3 3.2
0.49 0.51 0.49 0.50
z 7.0 . 6.8 6.4

Table 4.1: The critical exponents extracted from the data collapses in Fig. 4.11
and 4.12 for time range between 128 and 8192 MLs

Exponents T=600 K T=650 K
P,=0.1 | P,=0.5 | P,=0.1 | P,=0.5
64 7.8 4 7.1
0.49 0.55 0.49 0.57
a 13.0 14:3 10:5 12.5

Table 4.2: The critical exponents extracted from the data collapses for time range

between 128 and 10°> MLs
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Figure 4.13: The correlation length as a function of time from systems with (circle)
and without (triangle) ES barrier. The middle line (square) presents the evolution

of mound radius.



Chapter 5

Conclusions

The aim of this thesis is to determine the effects of the Ehrlich-Schwoebel barrier on
molecular beam epitaxy growth by using computer simulations. First, the MBE
model, which attempts to include essential processes of the MBE growth such
as deposition and diffusion, was studied. The MBE model was simulated under
various conditions to study two main properties, i.e. the morphology and the
scaling behavior. Moreover, the relation between the surface diffusion length, the
displacement that a freshly deposited atom can diffuse before being incorporated
into a growing film, and the substrate temperature, a controllable parameter in
real experiments, was determined. To study the effects of ES barriers on MBE
growth, the basic MBE model was modified. The ES barrier is included into
the model through the tunneling probability. We found that there are mound
formations in systems with ES barriers. The evolution of mound properties, i.e.

the average mound radius and the average mound height, was then studied.

For systems without ES barriers, surface morphologies at various substrate
temperatures were obtained. It is obvious that at low substrate temperature,
i.,e. 450 K, the surface is very rough and it becomes smoother when substrate
temperature increases. We can divide these temperature-dependent morphologies
to three main regimes. The first regime is at low temperature, at approximately
450 K. In this regime, surface diffusion is very rare so surfaces are very rough. The
second regime is at intermediate temperature where surface diffusion has more

effects in the growth process, so surfaces at this regime are smoother than ones
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at low temperature regime. It should be noted, however, that these intermediate-
temperature morphologies are still kinetically rough surfaces. The third regime is
at high temperature where atoms have long surface diffusion length. Therefore,
they can search for an energetically favorable position to stick, so the surfaces

become extremely smooth as the growth process becomes a layer-by-layer growth.

Keeping track of each freshly deposited atom until it is incorporated and
becomes a part of the film in simulations, we found that surface diffusion length

“A/T when A is a

{4 increases with increasing substrate temperature 7" as /4 o e
constant. Consequently, surface morphologies become smoother when 7' is higher,

because atoms can search for the most energetically favorable positions.

For systems with ES barriers, obviously there are mound formations. Mound
properties such as the average mound radius and the average mound height were
studied by using the height-height correlation function H(r). We found that sys-
tems with strong barriers have a narrower and higher mound structure than ones
with weaker barriers because atoms can better overcome the weaker barriers to
hop down to fill up the grooves. Consequently, the coarsening rate of systems with

weaker barriers is faster than that with strong barriers.

From our study of the time evolution of mound radius and mound height, we
can divide the growth process into two stages. At first, there are mound formations
and then the individual mound cearsens together resulting in the increase of mound
radius in this stage. Afterwards, a coarsening rate becomes extremely slow so the
mound radius becomes approximately constant-at this point. “Since the mound
height increases continuously while the mound radius is-a constant value, in this
second stage the individual mound only grows vertically as if each mound is a
separated system. Since each mound grows independently like growth manner of
the RD model, the growth exponents of the systems with ES barriers are very close
to 0.5. It is important to note that the growth exponent of the RD model is equal
to 0.5 while the roughness and the dynamical exponent are infinite. Strikingly,

the roughness and the dynamical exponent of systems with ES barriers are indeed
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finite, so growth manners of both the MBE model with ES barriers and the RD

model are not exactly the same.

Calculating the correlation length of systems with ES barriers, we found that
the correlation length is not equal to zero while it is exactly zero in the RD model.
In summary, individual mound of systems with ES barriers grows independently
like the growth behavior of the RD model. However, there are correlations among
lattice sites in each mound. This makes the MBE model with ES barriers different
from the RD model.

Since the model we use in this study requires so much time in simulations
and there is also a problem with the limitation of computer resources, in this
work we perform our simulations only in one dimensional substrate systems. In
the future, substrates can be extended to two dimensions to compare simulated
results with real experimental results. In addition, limit of height that a diffusing

atom can hop should be considered in order to make the model more realistic.



[4]

8]

9]

References

Das Sarma, S., Punyindu, P., and Toroczkai, Z. Non-universal mound forma-

tion in non-equilibrium surface growth. Surf. Sci. 457 (2000): L369-L375.

Schinzer, S., Kinne, M., Biehl, M., and Kinzel, W. The role of step edge
diffusion in epitaxial crystal growth. Surf. Sci. 439 (1999): 191-198.

Ramana, M. V., and Cooper, B. H. Instability in molecular beam epitaxy
due to fast edge diffusion and corner diffusion barriers. Phys. Rev. Lett.

83 (1999): 352-355.

Khor, K. E.,; and Das Sarma, S. Quantum dot self-assembly in growth of
strained-layer thin films: A kinetic monte carlo study. Phys. Rev. B 62
(2000): 16675-16664.

Long, F., Gill, S. P. A., and Cocks, A. C. E. Effect of surface-energy anisotropy
on the kinetics if quantum dot formation. Phys. Rev. B 64 (2001): 121307-
121310.

Ehrlich, G., and Hudda, F. G. Atomic view of surface self-diffusion. Tungsten
on Tungsten. J. Chem. Phys. 44 (1966): 1039-1043.

Schwoebel, R. L., and Shipsey, E. J. Step motion on crystal surfaces. .J. Appl.
Phys. 37 (1966): 3682-3686.

Das Sarma, S. Growth models for virtual molecular beam epitaxy. Computa-

tional Materials Science 6 (1996): 149-151.

Das Sarma, S., Lanczycki, C. J., Kotlyar, R., and Ghaisas, S. V. Scale in-
variance and dynamical correlations in growth models of molecular beam

epitaxy. Phys. Rev. E 53 (1995): 359-388.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

ol

Lanczycki, C. J. Nonequilibrium interface growth: Roughening, coarsen-
ing and scale invariance. Doctoral dissertation, Faculty of the Graduate

School, University of Maryland, 1995.

Punyindu, P., Toroczkai, Z., and Das Sarma, S. Epitaxial mounding in lim-
ited mobility models of surface growth. Phys. Rev. B 64 (2001): 205407-
205430.

Stroscio, J. A., Pierce, D. T., Stiles, M. D.; and Zangwill, A. Coarsening of
unstable surface features during Fe(001) homoepitaxy. Phys. Rev. Lett.
75 (1995): 4246-4249.

Barabdsi, A. -L., and Stanley, H. E. Fractal Concepts in Surface Growth.

Cambridge: Cambridge University Press, 1995.

Siegert, M., and Plischke, M. Solid-on-solid models of molecular-beam epi-

taxy. Phys. Rev. £ 50 (1994): 917-931.

Mottet, C., Ferrando, R., Hontinfinde, F., and Levi, A. C. Simulation of the
submonolayer homo epitaxial clusters growth on Ag(110). Eur. Phys. J.
D 9 (1999): 561-564.

Schinzer, S., Kohler, S., and Reents, G. Ehrlich-Schwoebel barrier controlled
slope selection in epitaxial growth. Eur. Phys. J. B 15 (2000): 161-168.

Das Sarma, S., and Tamborenea, P. I. A new universality class for kinetic
growth: One-dimentional molecular beam epitaxy. Phys. Rev. Lett. 66
(1991): 325-328.

Tamborenea, P. 1., and Das Sarma, S. Surface-diffusion-driven kinetic growth

on one-dimentional substrates. Phys. Rev. E 48 (1993): 2475-2594.

Wolf, D., and Villain, J. Growth with surface diffusion. Furophys. Lett. 13
(1990): 389-394.



52

[20] Das Sarma, S., and Punyindu, P. A discrete model for non-equilibrium growth

under surface diffusion bias. Surf. Sci. 424 (1999): L339-L346.

[21] Das Sarma, S., Ghaisas, S. V., and Kim, J. M. Kinetic super-roughening and
anomalous dynamic scaling in nonequilibrium growth models. Phys. Rev.

E 49 (1994): 122-125.

[22] Vvedensky, D. D., Zangwill, A., Luse, C. N., and Wilhy, M. R. Stochastic
equations of motion for epitaxial growth. Phys. Rev. £ 48 (1993): 852-
862.

[23] Piankoranee, S. Persistance in thin film growth on pattern substrates. Master’s

thesis, Faculty of Science, Chulalongkorn University, 2004.



93

Vitae

Soontorn Chanyawadee was born in March 6, 1980 in Nakhon Phanom. He
received his bachelor degree of science (first class honor) in physics from Khonkaen
University in 2001. He was supported financially by the Development and Pro-
motion of Science and Technology Talents Project (DPST) during his study.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 Theoretical Aspects and Models
	2.1 Molecular Beam Epitaxy Growth
	2.2 Discrete Growth Models
	2.3 Dynamical Scaling Hypothesis

	Chapter 3 MBE Growth
	3.1 Morphologies
	3.2 Scaling
	3.3 Surface Diffusion Length

	Chapter 4 ES Barrier in MBE Growth
	4.1 MBE Model with ES Barrier
	4.2 Morphologies
	4.3 Scaling

	Chapter 5 Conclusions
	References
	Vita



