CHAPTER IV

ON INVERTIBLE GRAPHS

Invertible Spaces

By the n-sphere, sn, we mean a homeomorph of {_(xl, Xy eeer
+
x )eTRn+1 | 5. £ = 1}. J.G. Hocking and P.H. Doyle have shown
that for any non-empty open subset U of Sn, there is a homeomorphism
h from s" onto itself such that h(sn - U) is a subset of U.' Moti-
vated by this property of Sn,' they define a topological space (S, 7Y)
to be invertible (or an invertible space) if for each non-empty open

subset U of S, there exists a ‘homeomorphism h of S onto itself-such

that ©(S.- U) lies in U; and h is called an inverting homeombrphism

for U.

Since we use the result in our thesis, we shall sho-w that
. 1 y \ 2 2 2
the l-sphere, S°, (which is a homeomorph of {(x, y) €ER | x“+y“= 1D
is an invertible space. Consider TWU{~}, a homeomorph of
2 2 2 ; :
{(x, ¥) €ER I x  +y = 1}. Let U be any-non-empty open subset of
TRU{=}. Let a € ¥ and a # », then there exists r > 0 such that

{xemr | lx - al < r} € U. Define h : TRV {»} — TRU.{OO} as fol-
2

lows : hi(x) = ~ +aif xeTWR~ {al, h(a)‘-= © and h(®) = a.

It is clear that h is a one-one and onto function, h = h-l and h

(x-a)

is continuous on R = {a}. Now, we show that h is continuous at a

and ». Let V be any neighborhood of =, then there exists € >0
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such that A = {x €R. | |x| >€&}U{~}SV. Since B = {(xe®m | |x-a| <
IE%E} is a neighborhood of a such that h(B)& A&V, h is conti-
nuous at a. Again, let V* be any neighborhood of a, then there
exists g > 0 such that A* = {x €TR | |x - a|] < €*} € v*. since

B* = {xeWR | |x]| > rz"'_e:hl}U{m} is ‘a neighborhood of « such that
h(B*) € A*< V*, h is continuous at «®. This shows that h is a
homeomorphism from Sl onto itself. To see that h is an inverting
homeomorphism for U, let x be any point in Sl - U. If x= =,

h(x) € U. Assume x # «. Thus, Ix = a| > r and hence ]h(x) = a|

- |x_f_§.| < r. That is h(x) € {x e | |x-a| < r}& u. There-

1 1N ; ;
fore, we have h(S™ - U)S U. Hence, S~ is an invertible space.

4.1 Theorem. Let (S,7) be an invertible space which contains
a non-empty open, connected subset U of S. If S is not connected,

then U and S - U are the components of S8 and they are homeomorphic.

Proof. Let h be an inverting homeomorphism for U. Then
S - U h(u). Assume S is not connected. Suppose S - U is a pro-
per subset of h(U). Then h(U) NU # ¢; so S =h(U) YU is connected
by theorem 2.23 since h(U) and U are connected. This is a contra-
diction and hence S - U = h(U). That is U and S - U are homeomor-
phic and S - U is connected. Since S = U U (S - U) separation, we
get that U is both open and closed and S - U is both open and closed.

By theorem 2.30, U and S - U are the components of S. #

4.2 Theorem. Let (S,J ) be an invertible T -space and S contains

1

an open connected subset U which consists of at least two points.

¥

«
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Then (5,9 ) is connected.

Proof. Suppose S is not connected. By theorem 4.1, U and
S - U are the components of S. Let pé& U. Since S is a Tl—space,
U - {p} is open in S. Since U containé at least two points,
U - {p} # ¢. Let h be an inverting homeomerphism for U - {p}, so
h(S - (U - {p})) €U - {p} and hence h(S - U)E U -.{p} € U. Since
h(S - U) is connected and both open and clesed, it is a component
of S by theorem 2.30. This is a contradiction since U is a compo-

nent of S. Hence (S, %) is connected. #
Invertible Graphs.

In this section we shall.be concerned with ﬁ{ﬂ Euclidean

n-space. By a zero-simplex co we mean a singleton subset of ﬂ[?.

A one-simplex 01 is defined to be a homeomorph of an open interval

(0, 1) of real numbers such that its closure dl in TRn is homeomor-

phic to [0, 1], and 01 - 01 is made up of two distinct points which

are homeomorphic images of 0 and 1. The two points in Ul - 01 are

called the end points of Ul. It is clear that they are non-cut
points of the connected setﬁgi. A zero-simplex whose element is
one of the end points of a nne-simplex cl is called a face of 01.
Hence every one-simplex has two faces. If Ul is a one-simplex and

00 is a face of 01, then we say that they are incident.

A graph G is defined to be a finite callection of zero-sim-

plexes and one-simplexes satisfying the following conditions :
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1. The simplexes of G are disjoint and no two one-simplexes
\
have the same end points.
2. If a one-simplex is in G, then both of its faces are in G.

3. There is at least one one-simplex in G.

Let G be a graph. The element of a zero-simplex in G is
called a vertex of G. Thus, if 0 is a one-simplex in G, then its end
points are vertices of G. Let |G| denote the point set union of all
simplexes in G, i.e., |G| = &%hc, then we call |q|,rcoqsidered aé a

subspace of IH?, the topological realization of G er the l-polyhedron

covered by G. By the definition of a graph G, it follows that if

0 €G, then 0 & |G| where o is the closure of o in TR"; so we have
le] = ctQJGE' Since G is finite and 0 is a closed and bounded subset
of 1Rn for every o € C, |G| is a closed and bounded subset of ﬂln and

hence |G| is a compact subspace of R,

Let ¢ be a one-simplex of a graph G. Let {vl, vz} be the

set of end points-of o. Then vl, v, are non=-cut points of o= |G|.

2
Since o is an arc, by lemma 3.7, the topology of o is the order topo-
logy for some linear order on . Let < be a linear'order on o which
determines the topology of ¢ such that Vi V, are the first and last
elements of o, respectively. If x and y are any. two distinct points
in 0 such that x < y, then the notations (x, y), [x, y], (x, y] and
[x, y) are defined as {t e.E | x<t<yl, fteo]| = <t <yl

{teo | X <t <yland {te& o | x <t < y}, respectively. It is

clear that (x, y) is open in ¢ and [x, y] is closed in c. If x= Vs
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then [vl, y) = {t €35 | t <y} is open in 0, If y = v,, then

(x, vz] = {te o | x < t} is open in 0.

Now, consider (x, v2] and [vl, x) when x € 0 and vy # x # Vo
Since o is an arc, by the proof of thenfem 3.13, there exists a hg-
meomorphism h .from [0, 1] onto o which i; drder-preserving. Then
9 Since vy <X <V, there is an r in (0, 1)
such that h(r) = x and h((x, 1]) = (x, vz]iend h([0, x)) = [vl, x) .

h(0) = Vi h@) = v
Since (r, 1]. and [0, r) are connected, (x, vz] and [vl, x) are also
connected.

A graph G is defined to be an invertible graph if, as a

l-polyhedron, |G| is an invertible space.

Example.

m ®E, let o) = {(0, D} og = (1, 0)), 05 = (-1, 0}
ai = {(x, )| x2 + y2 = 1and 0.< x, y < 1}
c;={(k,y) |x2+y2=1and—1<x<0, 0<y <1}
c; = {(x, v) | x2 + y2 =1and -1 <x<1, -1 gy < Q}.

See the picture,
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g, cg, oi, 0;,_35}, Then G is a graph and
|G| = {(x, v) | xz it y2 = 1} which is a l-sphere. Thus G is an in-

Let G = {G?, o}

vertible graph. Note that G consists of three different vertices

and three different one-simplexes.
4.3 Lemma. Let G be a graph. Then |G| is metrizable.

Proof. Since TRP is metrizable, the conclusion follows

from theorem 2.12. #

4.4 Lemma. Let ¢ be a one-simplex in a graph G. ‘Then o is an

open subset of |G|.

23222: Let G be a graph and let ¢ be a one-simplex in G.
Let B be any element of G such that B # 0. Then g< |6| and
BNo =¢. This implies that |G| = o = U B for all B € G such that
B # 0. Since B is closed in |G| and G is finite, |G| - o is a finite

L] # A

union of closed sets in |G|. Thus o is open in Ke
4.5 Lemma. If G is an invertible graph, then ]G| is connected.

Proof. Let G be.an invertible graph. Then |G| is metriza-

ble by lemma 4.3; so IG| is a T -space. Let 0 be a one-simplex in

1
G. Since o is an open connected subset of |G|, by theorem 4.2, ||

is connected. #

4.6 Lemma. If G is an invertible graph, then G has at least 3

vertices.
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Proof. Let G be an invertible graph. Suppose G has only 2
vertices, say Vis Voo Let 0 be a one-simplex in G. Then the end
points of o are vertices of G. This implies that Vs v2 are the

end points of o. Hence G = {0, {v 1, {vz}}. Thus |G| = o which is

1
homeomorphic to [0, 1]. If [0, 1] is invertible, then there is an
inverting homeomorphism h for (0, 1) such that h(0), h(1) € (0, 1).
But 0 and 1 are non-cut points of [0, 1] and the property of being

a non-cut point is a topological property, so we have non-cut points

in (0, 1) which is impossible. #

4.7 Lemma. Let G be an inyertible graph. Then for any vertex v
of G there exists a one-simplex ¢ in G such that {v} and o are

incident.

Proof. Suppose there exists v, a vertex of G, such that {v}
is incident with no one-simplex in G. Then for any B in G such
that 8 # {v}, B N {v} = ¢; hence |G| - {v} =V B for all B in G such
that B # {v}. Since G is finite and B is closed in |G|, |G| =+{v}
is closed in |G|, i.e., {v} is open in |G|. But {v} is closed in
|G| since |G| is metrizable, so {v} is a proper subset of |¢| which
in both open and closed in |G|. Therefore, |G| is not connected

and we have a contradiction of leﬁma 4.5, #

4.8 Lemma. For any vertex v of an invertible graph G, {v} is in-

cident with more than one one-simplex. of G.

Proof. Let G be an invertible graph. Suppose there exists
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a vertex v of G such that {v} is incident with only one one-simplex
o of G, Firstly, we will show that v is a non-cut point of |G|

Suppose |G| - {v} = AU B separation. Since || = {v} is open in

|G|, A and B are also open in |G|. Since o is connected, 0 € A, say.
Let B € G such that o # B8 # {v}. Then B8 & |G| and BN(cL{v]}) = ¢.

Hence |G| - (¢ U {v}) =U B for all B in G such that o # B # {v}; so

o {v} is open in |G|. Since 0 € A, (VU {v}) U A=AV {v} being

the union of open sets is open in |G|. Therefore, |G| = (AU{vHUB

separation which contradicts lemma 4.5; so |G| - {v} is connected.
That is v is a non-cut point of |G|. Secondly, we will show that
for any x in o, x is a cut point of |G| Let x be any point in 0.

Let < be a linear order on o which determines the topology of o and
< determines v as a last element. Then x < v. Therefore, [x, v] is
closed in o and hence it is closed in |G| since o is closed in l6].
Since v is the last element of o, (x, v] = {t& o | x < t} is open
in 0. Then there exists an open subset U of |G| such that c MU =
(x, v]. Since (%, vl]€ o U{vle g, 6 V{vhHh AU = (x, v]. This
shows that (x, v] is a finite interséction of open sets in [Gl
That is (x, v] is open in |G|. Since |G| - {x} is open in |G| and

l6| - [x, vl € |6| - {x} and (x, vl & |G| - {x}, |G| - [x, v] and

(x, v] are open in |G| - {x}. Now, we have le| - {x} =
(|le] - [x, v]) U (x, v] separation. This proves that x is a cut
point of ]G . That is o which we have proved to be an open subset

of |G| contains only cut points of |G].
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By an invertibility of G, there exists an inverting homeo-
morphism h for o such that h(v) € o. Since v is a non-cut point of

|G| as we have proved above, it implies that there is a non-cut

point in o which is a contradiction and the lemma is proved. #
Following from lemma 4.6 and lemma 4.8 we have :

4.9 Lemma. Every invertible graph G has at least 3 distinct one-

simplexes. #

4,10 Lemma. Let G be an invertible graph. Then there exist

{o

1 | i =1, 2, ..., n} a set of one-simplexes of G and a set

{vi | i=1, 2, ..., n} 0f vertices of G for some natural n > 3

such that Uj is incident with {v. !}, {Vj+l} where § = 1, 2, ..., n-1,

J
and ¢ is incident with {v_}, {v }.
n 1 n

Proof. Let m be the number of all one-simplexes of an in-

vertible graph G. Then m > 3. Let % be a one-simplex in G, Then

there exist vl, v, the vertices of G such that vl, v, are end points

Z 2

i is incident with {vl}, {VZ}' By lemma 4.8, there is

a one-simplex of G different ffom 04s 83y O

of Ul, i.e., O

2s such that 02 is inci-

be the other end point of Tys s I - e Va is a

It is clear that

dent with {VZ}-a Let v,

vertex of G such that {va} is incident with 9,
& ¢{vl, vz}. Now, we have found a set {vl, Vs v3} of distinct

vertices of G and a set {01;02} of distinct one-simplexes of G such

that Gj is incident with {v

j}’ {vj+1} for § =1, 2.
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Let B be the set of natural numbers i where 3 < i such that
there exist a set {Oj [ j=1, 2, ..., i-1} of distinct one-simplexes

1, 2, ..., i} of distinct vertices of G such

il

ofGandaset{vj | 5
that Uj is incident with {Vj}, {vj+1} whiexe 3§ =L; 25 sisid=l & ITE
is clear that B # ¢ since 3 € B; and since there are only m one-sim-
plexes in G, it follows that i < m for any i € B. Since B is finite,
B has a maximum element. Let io be the maximum element of B. If
i_ = m, then by lemma 4.8, there exists a one-simplex say Gm such

0

that 0 # 0 and 0 is incident with {v }. Since v_# v. where
m m m m m j

-1
= X 25 3 weas oM=Ly Gm¢ {oj | JUERINE, 35 evsp W1}, T8t ¥
be the other end point of ¢ . Since {oj R = L 2 wun; m) ds the

set of all one-simplexes of G and {vl} is not incident with an ele-

I

ment of {o, | 3 =2, ..., m=1}, by lemma 4.8, {v,} must be incident

with o ,
m

That is Wy W Consider i0< m. By lemma 4.8 and the same reason

as above case, there exists a one-simplex Ui Q {crj l I 2 Xy By vy
0

io-l} such that o, is incident with{vi}. Let v be the other end
0 0
point ofic,. . If v¢{v. I-j=1, 2, «..p i }, then i_ is not a
10 J 0 0
maximum element of B which is a contradiction. Thus v must be in

{vj ] = e 29 ey iO}' say v = v . Since vio-l # v ¥ vio,
1< € 10—2. Therefore, we have a set of one-simplexes

{oj | % &) &3, 00 220, i } and a set {vj L 4 =& B4, aeis

0

i -1, io} of vertices of G such that cj is incident with {vj}, {vj+l}

where j = £, £+, ..., 1 -1 and 0. is incident with {v. }, {v.},
0 10 10 t
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For any j € {t, t+l, ..., j.o}, let s(j) = j - t + 1 and let Uj, vj

be denoted by B Us(j)’ respectively. Then {oj | j=.t, tt+l,

s(3)’
coes 10} = (B Byy eiey Bio-t+l} and {v, |3 =t e, ke, 440
= Uy, Uy, vy Uio_t"_l}. Since 1<t <ij -2, i)~ t+ i3 %,
Let n = io - t+ 1. Hence we have a set {Bl’ 82, alh iis Bn} of one-

simplexes of G and a set {Ul’ Ups woes Un} of ver tices of G for
some n > 3 such that Bj is incident with {Uj}, {Uj-l-l} where

J=1,2, souy n-ly .and Bn' is incident with {Un},{.Ul}. #

4.11 Lemma. TLet G be-an invertible graph. Let {Uih =05 vy B
be a set.of one-simplexes of G as stated in lemma 4.10. Then for

any x and any i such that x &€ 045 X is a nom-cut point of |G|

Proof. Let j € {l; 2, ..., n}. Let x be any point in fel|
such that xe,oj, Suppose x is a cut point of |lé|. Let |G| - {x}
= A UB separation. Since |G| - {x} is open in lel, A and B are
open in |G| Let {vi | £+ =1, 2, ..., n} be the set of vertices of

G as stated in lemma 4.10. Then we have vj.,, v are end points of

j+1

¥y

determines the topology of Ej, Assume vj < v

cj (note v .if j = n). Let < be a linear order on Bj which

j+1 7

41 Then

Yo S X SV and [v,, x): (x,

i j+1 3 Vi+

By virtue of theorem 2.10, [Vj' x) and (x, :vj+1] are also connected

;] are connected subsets of Ej.

in |G|. sSince o, ,M¥ o, = {v.}, CH R {'vf!"_'l} and

> k|
(x, Vj+1]§0j and [vj, x) e oj, it follows that cj-l'n [vj, X) =
{vj}and (%, vj+1]- N Tt ™ {Vj-l-l}' (note: A o i£ 1 = 4,
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iy ™ oy 1f 3 = n). Since oin Bygi ™ {vi+

insle] for alk 2= ¥y 2, a.esid {Ei[ 1w D, 2, vos 3=1y 3% s 0d

1} and Ei is connected

{,[vj, x) 3+ (=5 Vj+1]} is a collection of connected subsets of |G|
which form a bridged system (see p. 11). Since Ej = {x} =
A 0 e ;
[vj, x)'V (x, Vj+1], i\é’lqi = {x] = i=lin [vj, x) U (%, vj+l],f‘ By
n . - p
theorem 2.22; i\__}lai - {x} is connected in |G|. By virtue of theorem

jui

2.10, 1'3131 - {x} are also connected in |G| - {x}. Then

n n
U O c . § ; = i e 5 ) :
Y9 {x} €& A, say Sln.ce x € oj - 1'31“1— A V{x} and Cj is open
in |G|, x is an interior point of AU {x}. Therefore, A J {x} is

open in |G| by theorem 2.3. That is |G| = (A VU {x}) U B separation

which contradicts lemma 4.5. Hence x is a non-cut point of [G|. #
As a consequence of lemma 4.11, we have :

4,12 Lemma. If G is an invertible graph, then there exist at least
three one-simplexes in G such that each of them contains only non-

cut points of |G|. #

4.13 Theorem. Let G be an invertible graph., For any x in [GI, x

is a non-cut point of |G

.

Proof. Let G be an invertible graph. Suppose that there
exists a point x in IG| such that x is a cut point of |G| By lemma
4,12, there is 0,.a one-simplex of G, such the_lt X ¢ o and o contains
only non-cut points of |G| Since 0 is a non-empty open set in |G|
and G is invertible, we have an inverting homeomorphism h for.c such

that h(x) € 0. This implies that there is a cut point in © which is
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. i

impossible. Therefore, there is no cut point in |G

4,4 Lemma.. Let-{ci l 1 = 1,2y 3555 1} be the set of all one-sim—
plexes of an invertible graph G. Then, for each i, if x and y are

any two distinct points in Oy ]GI - {x, y} is not connected.

Proof. Let i€ {1, 2, ..., n}. Let x and y be any two dis-

tinct points in o Let < be a linear order .on o, which determines

i i

the topology of o,. Assume x < y. Then [x, y] ahd (x, y) are closed

i

and open in Ei, respectively, Since o, is closed in |G}, [x, y] is

» &
also closed in |G|. Since (%, y) is open in o, there exists U an

open subset of |G| such that (x,_y) = Eif\ U, Since (x, y)€& UiEE Ei’
(%, y) = oir] U which is open in |G|. Since |G| - {x, y} is open in
|¢| and |G| - [x, y], (x, y) are subsets of |G| - {x, y}, le| - [x, ¥l
(x, y) are open ‘in |G| - {x, y}. Therefore, |G| -*{x, y} =

(|G! - [x, y]) U (x, y) separation. Hence.IGl - {x, y} is not con-

nected., #

4,15 Theorem. Let G be an invertible graph and let x and y be any

two distinct points“LL|G‘. Then {G| - {x, y} is not éonﬁected.

Proof. Let G be an invertible graph. Let x-and y be aﬁy
two distinct points-in {G|. By lemma 4.12, there exists o, a one-
simplex of G, which is open in IG| and X, y ¢ a. Sincé G is inver-
tible, there is an iﬁverting homgomofphism h for ¢ such that h(x),
h(y) are in o. By virtue of lemma 4.14, we have that

n(le| - {x, y}) = |¢] - {h(x), h(y)} is not eomnected. This implies



54
that |G| - {x, y} is not connected. #

4.16 Theorem. If G is an invertible graph, then |G| is homeomor-
phic to Sl, the l-sphere; i.e., |G| is homeomorphic to
(e, 90 & B2 | 22497 = 1.

Proof. Let G be an invertible graph. Let x and y be any
two distinct points in |G|. By theorem 4.15, |G| - {x, y} is not
connected. Let |G| - {x, y} = C'UD separation. Since |G|-{x, y}
is open in |G|, C and D are open subsets o;‘? |G|; hence CV {x, yl,
being the complement of D in |G|, is closed in |GI and similarly
DV {x, y} is closed in |G|. Therefore, C VU {x, y} and D VU {x, y}
are compact, metrizable spaces. We must now show that they are
also connected. Consider C \) {x, y}. By theorem 4.13, y is a non-
cut point; so CY D Y {x} = |g| - {y} is connected and hence x is
a cut point of C\U D U {x}. Then, by corollary 2.32, CV {x} and
D U {x} are connected in C ) D\ {x} and hence are connected in |G|
by virtue of theorem 2.10. Similarly, y is a cut point of
cVU DV Iy}, so ¢ U{y} and D U {y} are connected in |G|. Now,
(cVU {x}) N (€U {y}) is not empty and both are connected hence by
theorem 2.23 we see that C U {x, y} is connected. Similarly,

D U{x, y} is also connected. Thué, CV{x, y} and D U {x, y} are
both compact, connected metrizable spaces. By theorem 2,38, then,
C J{x, y} and D U{x, y} both have at least two non-cut points.
Assume that there exists a point c¢ in C such that ¢ is a non-cut

point of C U {x, y}; also assume that there exists a point d in D
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such that d is a non-cut point of D U {x, y}. Then (CU {x, y}-{c})
and (DU {x, y} - {d}) are both connected. By theorem 2,23,

6| - {c, d} = (C VU {x, y} - {cHh VU (D Uix, y} - {d}) is connected
which contradicts theorem 4.15, Thus ¢ and d as defined above can
not both exist. Hence either C\) {x, y} or D U{x, y} is an arc by
theorem 3.13. Let C U {x, y} be an arc, x and y must then be the
two non-cut points of CU {x, y}. Assume now that DU {x, y} is

not an arc. This means that the point d as defined above exists.
That is, d is a non-cut point of D Wi{x, y}. Lét p be any point of
C. Then, since C\ {x, y} is homeomorphic to an arc with end points
x and y, p is a cut point of C\J {x, y}. Hence, CU {x, y} - {p} is
the union of two connected subsets M and N one of which contains x
and the other of which contains y. Therefore, |G| - {p, d} =

(DU {x, y} - {d})\J MU N) is connected by theorem 2.23. This is
a contradiction by theorem 4.15. Thus, DU {x, y} must also be an
arc with x and y as the two end points because they are non-cut
points of DV {x, y}. Thus |G| is the union of two arcs with exactly

their end points in common.

Let v, Y be two homeomorphisms from [0, 1] onto CU{x, y}

2
and D U {x, y}, respectively such that Yl(O) = Y2(0) = x and Yl(l)
= Yz(l) = y. Let h be a homeomorphism from [0, 1] onto [-1, 1]

defined by h(t) = 2t-1. Then h(0) = -1 and h(l) = 1. Let Al be a
subspace of Sl, foas, Ax, ) Gfﬁhz | x2 +.y2 = 1}, determined by

{x, v) | v > 0} and let A, be a subspace of st determined by
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{x, v) | ¥ < 0}. The projection function P_ restricted to A, and

Az yields the homeomorphisms g1 and g, from Al and AZ’ respectively,

onto [-1, 1]. Thus if we define f = ¥ oh—logl, then £, is a homeo-

1 1

morphism from A, onto C\ {x, y} with fl((-l, 0)) = x and fl((l, 0))

1

=y, Similarly, if £ oh_logz, then fz((-l, 0)) = x and

2 Ly
f2((1’ 0)) = y. Now f1 and f2

A,, respectively, of S-iand they agree on Alf\ A, = {(-1, 0), (1, 0)}.

are defined on closed subspace Al and

Hence by theorem 2.11, the function £ : S1 + |G| defined by £((s, t))

fi((s, t)) if (s, t) € A,; 1 = 1, 2, is continuous. By definition,
f is one-one and onto. Since |G| is a Hausdorff and S1 is compact,

f is a homeomorphism by corollary 2.45. #
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