CHAPTER IV

ON INVERTIBLE GRAPHS

Invertible Spaces

By the n-sphere, s^n , we mean a homeomorph of $\{(x_1, x_2, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{2} x_i^2 = 1\}$. J.G. Hocking and P.H. Doyle have shown that for any non-empty open subset U of s^n , there is a homeomorphism h from s^n onto itself such that $h(s^n - u)$ is a subset of U. Motivated by this property of s^n , they define a topological space (s, γ) to be invertible (or an invertible space) if for each non-empty open subset U of S, there exists a homeomorphism h of S onto itself such that h(s, -u) lies in U; and h is called an inverting homeomorphism for U.

Since we use the result in our thesis, we shall show that the 1-sphere, S^1 , (which is a homeomorph of $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$) is an invertible space. Consider $\mathbb{R} \cup \{\infty\}$, a homeomorph of $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let U be any non-empty open subset of $\mathbb{R} \cup \{\infty\}$. Let $a \in U$ and $a \neq \infty$, then there exists r > 0 such that $\{x \in \mathbb{R} \mid |x = a| \le r\} \subseteq U$. Define $h : \mathbb{R} \cup \{\infty\} \longrightarrow \mathbb{R} \cup \{\infty\}$ as follows: $h(x) = \frac{r^2}{(x-a)} + a$ if $x \in \mathbb{R} = \{a\}$, $h(a) = \infty$ and $h(\infty) = a$. It is clear that h is a one-one and onto function, $h = h^{-1}$ and h is continuous on $\mathbb{R} = \{a\}$. Now, we show that h is continuous at a and ∞ . Let V be any neighborhood of ∞ , then there exists $\mathfrak{E} > 0$

4.1 Theorem. Let (S, T) be an invertible space which contains a non-empty open, connected subset U of S. If S is not connected, then U and S - U are the components of S and they are homeomorphic.

<u>Proof.</u> Let h be an inverting homeomorphism for U. Then $S - U \subseteq h(U)$. Assume S is not connected. Suppose S - U is a proper subset of h(U). Then $h(U) \cap U \neq \emptyset$; so $S = h(U) \cup U$ is connected by theorem 2.23 since h(U) and U are connected. This is a contradiction and hence S - U = h(U). That is U and S - U are homeomorphic and S - U is connected. Since $S = U \cup (S - U)$ separation, we get that U is both open and closed and S - U is both open and closed. By theorem 2.30, U and S - U are the components of S. #

4.2 Theorem. Let (S, γ) be an invertible T_1 -space and S contains an open connected subset U which consists of at least two points.

Then (S, T) is connected.

<u>Proof.</u> Suppose S is not connected. By theorem 4.1, U and S - U are the components of S. Let $p \in U$. Since S is a T_1 -space, $U - \{p\}$ is open in S. Since U contains at least two points, $U - \{p\} \neq \emptyset$. Let h be an inverting homeomorphism for $U - \{p\}$, so $h(S - (U - \{p\})) \subseteq U - \{p\}$ and hence $h(S - U) \subseteq U - \{p\} \subset U$. Since h(S - U) is connected and both open and closed, it is a component of S by theorem 2.30. This is a contradiction since U is a component of S. Hence (S, \mathcal{T}) is connected. #

Invertible Graphs.

In this section we shall be concerned with \mathbb{R}^n , Euclidean n-space. By a zero-simplex σ^0 we mean a singleton subset of \mathbb{R}^n . A one-simplex σ^1 is defined to be a homeomorph of an open interval (0, 1) of real numbers such that its closure σ^1 in \mathbb{R}^n is homeomorphic to [0, 1], and $\sigma^1 - \sigma^1$ is made up of two distinct points which are homeomorphic images of 0 and 1. The two points in $\sigma^1 - \sigma^1$ are called the end points of σ^1 . It is clear that they are non-cut points of the connected set σ^1 . A zero-simplex whose element is one of the end points of a one-simplex σ^1 is called a face of σ^1 . Hence every one-simplex has two faces. If σ^1 is a one-simplex and σ^0 is a face of σ^1 , then we say that they are incident.

A graph G is defined to be a finite collection of zero-simplexes and one-simplexes satisfying the following conditions:

- 1. The simplexes of G are disjoint and no two one-simplexes have the same end points.
 - 2. If a one-simplex is in G, then both of its faces are in G.
 - 3. There is at least one one-simplex in G.

Let G be a graph. The element of a zero-simplex in G is called a vertex of G. Thus, if σ is a one-simplex in G, then its end points are vertices of G. Let |G| denote the point set union of all simplexes in G, i.e., $|G| = \bigcup_{\sigma \in G} \sigma$, then we call |G|, considered as a subspace of \mathbb{R}^n , the topological realization of G or the 1-polyhedron covered by G. By the definition of a graph G, it follows that if $\sigma \in G$, then $\overline{\sigma} \subseteq |G|$ where $\overline{\sigma}$ is the closure of σ in \mathbb{R}^n ; so we have $|G| = \bigcup_{\sigma \in G} \overline{\sigma}$. Since G is finite and $\overline{\sigma}$ is a closed and bounded subset of \mathbb{R}^n for every $\sigma \in G$, |G| is a closed and bounded subset of \mathbb{R}^n and hence |G| is a compact subspace of \mathbb{R}^n .

Let σ be a one-simplex of a graph G. Let $\{v_1, v_2\}$ be the set of end points of σ . Then v_1 , v_2 are non-cut points of $\overline{\sigma} \subseteq |G|$. Since $\overline{\sigma}$ is an arc, by lemma 3.7, the topology of $\overline{\sigma}$ is the order topology for some linear order on $\overline{\sigma}$. Let < be a linear order on $\overline{\sigma}$ which determines the topology of $\overline{\sigma}$ such that v_1 , v_2 are the first and last elements of $\overline{\sigma}$, respectively. If x and y are any two distinct points in $\overline{\sigma}$ such that x < y, then the notations (x, y), [x, y], (x, y] and [x, y) are defined as $\{t \in \overline{\sigma} \mid x < t < y\}$, $\{t \in \overline{\sigma} \mid x < t \le y\}$ and $\{t \in \overline{\sigma} \mid x \le t < y\}$, respectively. It is clear that (x, y) is open in $\overline{\sigma}$ and [x, y] is closed in $\overline{\sigma}$. If $x = v_1$,

then $[v_1, y) = \{t \in \overline{\sigma} \mid t < y\}$ is open in $\overline{\sigma}$. If $y = v_2$, then $(x, v_2] = \{t \in \overline{\sigma} \mid x < t\}$ is open in $\overline{\sigma}$.

Now, consider $(x, v_2]$ and $[v_1, x)$ when $x \in \overline{\sigma}$ and $v_1 \neq x \neq v_2$. Since $\overline{\sigma}$ is an arc, by the proof of theorem 3.13, there exists a homeomorphism h from [0, 1] onto $\overline{\sigma}$ which is order-preserving. Then $h(0) = v_1$, $h(1) = v_2$. Since $v_1 < x < v_2$, there is an r in (0, 1) such that h(r) = x and $h((r, 1]) = (x, v_2]$ and $h([0, r)) = [v_1, x)$. Since (r, 1] and [0, r) are connected, $(x, v_2]$ and $[v_1, x)$ are also connected.

A graph G is defined to be an <u>invertible graph</u> if, as a 1-polyhedron, |G| is an invertible space.

Example.

In
$$\mathbb{R}^2$$
, let $\sigma_1^0 = \{(0, 1)\}$, $\sigma_2^0 = \{(1, 0)\}$, $\sigma_3^0 = \{(-1, 0)\}$
 $\sigma_1^1 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } 0 < x, y < 1\}$
 $\sigma_2^1 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } -1 < x < 0, 0 < y < 1\}$
 $\sigma_3^1 = \{(x, y) \mid x^2 + y^2 = 1 \text{ and } -1 < x < 1, -1 \le y < 0\}$.

See the picture.

Let $G = \{\sigma_1^0, \sigma_2^0, \sigma_3^0, \sigma_1^1, \sigma_2^1, \sigma_3^1\}$. Then G is a graph and $|G| = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}^2 + \mathbf{y}^2 = 1\}$ which is a 1-sphere. Thus G is an invertible graph. Note that G consists of three different vertices and three different one-simplexes.

4.3 Lemma. Let G be a graph. Then |G| is metrizable.

<u>Proof.</u> Since \mathbf{R}^n is metrizable, the conclusion follows from theorem 2.12. #

4.4 <u>Lemma</u>. Let σ be a one-simplex in a graph G. Then σ is an open subset of |G|.

Proof. Let G be a graph and let σ be a one-simplex in G. Let β be any element of G such that $\beta \neq \sigma$. Then $\overline{\beta} \subseteq |G|$ and $\overline{\beta} \cap \sigma = \phi$. This implies that $|G| - \sigma = \bigcup \overline{\beta}$ for all $\beta \in G$ such that $\beta \neq \sigma$. Since $\overline{\beta}$ is closed in |G| and G is finite, $|G| - \sigma$ is a finite union of closed sets in |G|. Thus σ is open in |G|. #

4.5 Lemma. If G is an invertible graph, then |G| is connected.

<u>Proof.</u> Let G be an invertible graph. Then |G| is metrizable by lemma 4.3; so |G| is a T_1 -space. Let σ be a one-simplex in G. Since σ is an open connected subset of |G|, by theorem 4.2, |G| is connected. #

4.6 <u>Lemma</u>. If G is an invertible graph, then G has at least 3 vertices.

Proof. Let G be an invertible graph. Suppose G has only 2 vertices, say v_1 , v_2 . Let σ be a one-simplex in G. Then the end points of σ are vertices of G. This implies that v_1 , v_2 are the end points of σ . Hence $G = \{\sigma, \{v_1\}, \{v_2\}\}$. Thus $|G| = \overline{\sigma}$ which is homeomorphic to [0, 1]. If [0, 1] is invertible, then there is an inverting homeomorphism h for (0, 1) such that h(0), $h(1) \in (0, 1)$. But 0 and 1 are non-cut points of [0, 1] and the property of being a non-cut point is a topological property, so we have non-cut points in (0, 1) which is impossible. #

4.7 <u>Lemma</u>. Let G be an invertible graph. Then for any vertex v of G there exists a one-simplex σ in G such that $\{v\}$ and σ are incident.

<u>Proof.</u> Suppose there exists v, a vertex of G, such that $\{v\}$ is incident with no one-simplex in G. Then for any β in G such that $\beta \neq \{v\}$, $\overline{\beta} \cap \{v\} = \phi$; hence $|G| - \{v\} = \mathbf{U} \overline{\beta}$ for all β in G such that $\beta \neq \{v\}$. Since G is finite and $\overline{\beta}$ is closed in |G|, $|G| = \{v\}$ is closed in |G|, i.e., $\{v\}$ is open in |G|. But $\{v\}$ is closed in |G| since |G| is metrizable, so $\{v\}$ is a proper subset of |G| which in both open and closed in |G|. Therefore, |G| is not connected and we have a contradiction of lemma 4.5. #

4.8 <u>Lemma</u>. For any vertex v of an invertible graph G, {v} is incident with more than one one-simplex of G.

Proof. Let G be an invertible graph. Suppose there exists

a vertex v of G such that {v} is incident with only one one-simplex σ of G. Firstly, we will show that v is a non-cut point of |G|. Suppose $|G| - \{v\} = A \cup B$ separation. Since $|G| - \{v\}$ is open in |G|, A and B are also open in |G|. Since σ is connected, $\sigma \subseteq A$, say. Let $\beta \in G$ such that $\sigma \neq \beta \neq \{v\}$. Then $\overline{\beta} \subseteq [G]$ and $\overline{\beta} \cap (\sigma \cup \{v\}) = \phi$. Hence $|G| - (\sigma \cup \{v\}) = \bigcup \overline{\beta}$ for all β in G such that $\sigma \neq \beta \neq \{v\}$; so $\sigma \cup \{v\}$ is open in |G|. Since $\sigma \subseteq A$, $(\sigma \cup \{v\}) \cup A = A \cup \{v\}$ being the union of open sets is open in |G|. Therefore, $|G| = (AU\{v\})UB$ separation which contradicts lemma 4.5; so $|G| - \{v\}$ is connected. That is v is a non-cut point of G . Secondly, we will show that for any x in σ , x is a cut point of G. Let x be any point in σ . Let < be a linear order on $\overline{\sigma}$ which determines the topology of $\overline{\sigma}$ and < determines v as a last element. Then x < v. Therefore, [x, v] is closed in $\overline{\sigma}$ and hence it is closed in |G| since $\overline{\sigma}$ is closed in |G|. Since v is the last element of $\overline{\sigma}$, $(x, v] = \{t \in \overline{\sigma} \mid x < t\}$ is open in $\overline{\sigma}$. Then there exists an open subset U of |G| such that $\overline{\sigma} \cap U =$ (x, v]. Since $(x, v] \subseteq \sigma \cup \{v\} \subseteq \overline{\sigma}$, $(\sigma \cup \{v\}) \cap U = (x, v]$. This shows that (x, v] is a finite intersection of open sets in |G|. That is (x, v] is open in |G|. Since $|G| - \{x\}$ is open in |G| and $|G| - [x, v] \subseteq |G| - \{x\}$ and $(x, v] \subseteq |G| - \{x\}, |G| - [x, v]$ and (x, v] are open in $|G| - \{x\}$. Now, we have $|G| - \{x\}$ $(|G| - [x, v]) \cup (x, v]$ separation. This proves that x is a cut point of G. That is o which we have proved to be an open subset of |G| contains only cut points of |G|.

By an invertibility of G, there exists an inverting homeomorphism h for σ such that $h(v) \in \sigma$. Since v is a non-cut point of |G| as we have proved above, it implies that there is a non-cut point in σ which is a contradiction and the lemma is proved. #

Following from lemma 4.6 and lemma 4.8 we have :

4.9 <u>Lemma</u>. Every invertible graph G has at least 3 distinct one-simplexes. #

4.10 <u>Lemma</u>. Let G be an invertible graph. Then there exist $\{\sigma_{\mathbf{i}} \mid \mathbf{i}=1,\,2,\,\ldots,\,n\}$ a set of one-simplexes of G and a set $\{\mathbf{v}_{\mathbf{i}} \mid \mathbf{i}=1,\,2,\,\ldots,\,n\}$ of vertices of G for some natural $n\geq 3$ such that $\sigma_{\mathbf{j}}$ is incident with $\{\mathbf{v}_{\mathbf{j}}\}$, $\{\mathbf{v}_{\mathbf{j}+1}\}$ where $\mathbf{j}=1,\,2,\,\ldots,\,n-1$, and $\sigma_{\mathbf{n}}$ is incident with $\{\mathbf{v}_{\mathbf{j}}\}$, $\{\mathbf{v}_{\mathbf{j}}\}$.

Proof. Let m be the number of all one-simplexes of an invertible graph G. Then m \geq 3. Let σ_1 be a one-simplex in G. Then there exist v_1 , v_2 the vertices of G such that v_1 , v_2 are end points of σ_1 , i.e., σ_1 is incident with $\{v_1\}$, $\{v_2\}$. By lemma 4.8, there is a one-simplex of G different from σ_1 , say σ_2 , such that σ_2 is incident with $\{v_2\}$. Let v_3 be the other end point of σ_2 , i.e., v_3 is a vertex of G such that $\{v_3\}$ is incident with σ_2 . It is clear that $v_3 \notin \{v_1, v_2\}$. Now, we have found a set $\{v_1, v_2, v_3\}$ of distinct vertices of G and a set $\{\sigma_1, \sigma_2\}$ of distinct one-simplexes of G such that σ_1 is incident with $\{v_1\}$, $\{v_{1+1}\}$ for j=1, 2.

neg ?

Let B be the set of natural numbers i where $3 \le i$ such that there exist a set $\{\sigma_j \mid j=1,\,2,\,\ldots,\,i-1\}$ of distinct one-simplexes of G and a set $\{v_j \mid j=1,\,2,\,\ldots,\,i\}$ of distinct vertices of G such that σ_j is incident with $\{v_j\}$, $\{v_{j+1}\}$ where $j=1,\,2,\,\ldots,\,i-1$. It is clear that $B \ne \emptyset$ since $3 \in B$; and since there are only m one-simplexes in G, it follows that $i \le m$ for any $i \in B$. Since B is finite, B has a maximum element. Let i_0 be the maximum element of B. If $i_0 = m$, then by lemma 4.8, there exists a one-simplex say σ_m such that $\sigma_m \ne \sigma_{m-1}$ and σ_m is incident with $\{v_m\}$. Since $v_m \ne v_j$ where $j=1,\,2,\,3,\,\ldots,\,m-1$, $\sigma_m \notin \{\sigma_j \mid j=1,\,2,\,3,\,\ldots,\,m-1\}$. Let $v_j \in A$ be the other end point of σ_m . Since $\{\sigma_j \mid j=1,\,2,\,\ldots,\,m\}$ is the set of all one-simplexes of G and $\{v_1\}$ is not incident with an element of $\{\sigma_j \mid j=2,\,\ldots,\,m-1\}$, by lemma 4.8, $\{v_1\}$ must be incident with σ_m .

That is $v_1 = v$. Consider $i_0 < m$. By lemma 4.8 and the same reason as above case, there exists a one-simplex $\sigma_{i_0} \notin \{\sigma_j \mid j=1, 2, \ldots, i_{0}^{-1}\}$ such that σ_{i_0} is incident with $\{v_i\}$. Let v be the other end point of σ_{i_0} . If $v \notin \{v_j \mid j=1, 2, \ldots, i_{0}\}$, then i_0 is not a maximum element of B which is a contradiction. Thus v must be in $\{v_j \mid j=1, 2, \ldots, i_{0}\}$, say $v=v_t$. Since $v_{i_0}-1 \neq v \neq v_{i_0}$, $1 \leq t \leq i_{0}-2$. Therefore, we have a set of one-simplexes $\{\sigma_j \mid j=t, t+1, \ldots, i_{0}-1, i_{0}\}$ and a set $\{v_j \mid j=t, t+1, \ldots, i_{0}-1, i_{0}\}$ of vertices of G such that σ_j is incident with $\{v_j\}$, $\{v_j+1\}$ where $j=t, t+1, \ldots, i_{0}-1$ and σ_i is incident with $\{v_i\}$, $\{v_t\}$,

For any $j \in \{t, t+1, \ldots, i_0\}$, let s(j) = j - t + 1 and let σ_j , v_j be denoted by $\beta_{s(j)}$, $U_{s(j)}$, respectively. Then $\{\sigma_j \mid j = t, t+1, \ldots, i_0\}$ = $\{\beta_1, \beta_2, \ldots, \beta_{i_0-t+1}\}$ and $\{v_j \mid j = t, t+1, \ldots, i_0\}$ = $\{U_1, U_2, \ldots, U_{i_0-t+1}\}$. Since $1 \le t \le i_0 - 2$, $i_0 - t + 1 \ge 3$. Let $n = i_0 - t + 1$. Hence we have a set $\{\beta_1, \beta_2, \ldots, \beta_n\}$ of one-simplexes of G and a set $\{U_1, U_2, \ldots, U_n\}$ of vertices of G for some $n \ge 3$ such that β_j is incident with $\{U_j\}$, $\{U_{j+1}\}$ where $j = 1, 2, \ldots, n-1$, and β_n is incident with $\{U_n\}$, $\{U_1\}$. #

4.11 <u>Lemma</u>. Let G be an invertible graph. Let $\{\sigma_i \mid i=1,2,...,n\}$ be a set of one-simplexes of G as stated in lemma 4.10. Then for any x and any i such that $x \in \sigma_i$, x is a non-cut point of |G|.

proof. Let j ∈ {1, 2, ..., n}. Let x be any point in |G| such that x ∈ σ_j . Suppose x is a cut point of |G|. Let |G| - {x} = A ∪ B separation. Since |G| - {x} is open in |G|, A and B are open in |G|. Let {v_i | i = 1, 2, ..., n} be the set of vertices of G as stated in lemma 4.10. Then we have v_j, v_{j+1} are end points of σ_j (note v_{j+1} = v₁ if j = n). Let < be a linear order on $\overline{\sigma}_j$ which determines the topology of $\overline{\sigma}_j$. Assume v_j < v_{j+1}. Then v_j < x < v_{j+1} and [v_j, x), (x, v_{j+1}] are connected subsets of $\overline{\sigma}_j$. By virtue of theorem 2.10, [v_j, x) and (x, v_{j+1}] are also connected in |G|. Since $\overline{\sigma}_{j-1}$ $\overline{\sigma}_j$ = {v_j}, $\overline{\sigma}_j$ $\overline{\sigma}_{j+1}$ = {v_{j+1}} and (x, v_{j+1}] $\overline{\sigma}_j$ and [v_j, x) $\underline{\sigma}_j$ $\overline{\sigma}_j$, it follows that $\overline{\sigma}_{j-1}$ $\overline{\sigma}_j$ (x) = {v_j} and (x, v_{j+1}] $\overline{\sigma}_j$ $\overline{\sigma}_j$ $\overline{\sigma}_j$ it follows that $\overline{\sigma}_{j-1}$ $\overline{\sigma}_j$ (x) = {v_j} and (x, v_{j+1}] $\overline{\sigma}_j$ $\overline{\sigma}_j$ $\overline{\sigma}_j$ it follows that $\overline{\sigma}_{j-1}$ $\overline{\sigma}_j$ $\overline{\sigma}_j$ $\overline{\sigma}_j$ and (x, v_{j+1}] $\overline{\sigma}_j$ $\overline{\sigma}_j$ $\overline{\sigma}_j$ it follows that $\overline{\sigma}_j$ $\overline{\sigma}_j$

$$\begin{split} &\sigma_{j+1} = \sigma_1 \text{ if } j = n). \quad \text{Since } \overline{\sigma}_{i} \cap \overline{\sigma}_{i+1} = \{v_{i+1}\} \text{ and } \overline{\sigma}_{i} \text{ is connected} \\ &\text{in } |G| \text{ for all } i = 1, 2, \ldots, n, \{\overline{\sigma}_{i} | i = 1, 2, \ldots, j-1, j+1, \ldots, n\} \\ &\{[v_j, x), (x, v_{j+1}]\} \text{ is a collection of connected subsets of } |G| \\ &\text{which form a bridged system (see p. 11). Since } \overline{\sigma}_{j} - \{x\} = [v_j, x) \cup (x, v_{j+1}], \quad \bigcup_{i=1}^{n} \overline{\sigma}_{i} - \{x\} = \bigcup_{i=1}^{n} \overline{\sigma}_{i} \cup [v_j, x) \cup (x, v_{j+1}]. \quad \text{By} \\ &\text{theorem 2.22, } \lim_{i=1}^{n} \overline{\sigma}_{i} - \{x\} \text{ is connected in } |G|. \quad \text{By virtue of theorem} \\ &2.10, \quad \bigcup_{i=1}^{n} \overline{\sigma}_{i} - \{x\} \text{ are also connected in } |G| - \{x\}. \quad \text{Then} \\ &\bigcup_{i=1}^{n} \overline{\sigma}_{i} - \{x\} \subseteq A, \text{ say. Since } x \in \sigma_{j} \subseteq \lim_{i=1}^{n} \overline{\sigma}_{i} \subseteq A \cup \{x\} \text{ and } \sigma_{j} \text{ is open} \\ &\text{in } |G|, x \text{ is an interior point of } A \cup \{x\}. \quad \text{Therefore, } A \cup \{x\} \text{ is open in } |G| \text{ by theorem 2.3. That is } |G| = (A \cup \{x\}) \cup B \text{ separation} \\ &\text{which contradicts lemma 4.5. Hence x is a non-cut point of } |G|. \quad \# \end{aligned}$$

As a consequence of lemma 4.11, we have :

4.12 <u>Lemma</u>. If G is an invertible graph, then there exist at least three one-simplexes in G such that each of them contains only non-cut points of |G|. #

4.13 Theorem. Let G be an invertible graph. For any x in |G|, x is a non-cut point of |G|.

<u>Proof.</u> Let G be an invertible graph. Suppose that there exists a point x in |G| such that x is a cut point of |G|. By lemma 4.12, there is σ , a one-simplex of G, such that $x \notin \sigma$ and σ contains only non-cut points of |G|. Since σ is a non-empty open set in |G| and G is invertible, we have an inverting homeomorphism h for σ such that $h(x) \notin \sigma$. This implies that there is a cut point in σ which is

impossible. Therefore, there is no cut point in |G|. #

4.14 <u>Lemma</u>. Let $\{\sigma_i \mid i=1, 2, \ldots, n\}$ be the set of all one-simplexes of an invertible graph G. Then, for each i, if x and y are any two distinct points in σ_i , $|G| - \{x, y\}$ is not connected.

Proof. Let $i \in \{1, 2, ..., n\}$. Let x and y be any two distinct points in σ_i . Let < be a linear order on $\overline{\sigma}_i$ which determines the topology of $\overline{\sigma}_i$. Assume x < y. Then [x, y] and (x, y) are closed and open in $\overline{\sigma}_i$, respectively. Since $\overline{\sigma}_i$ is closed in |G|, [x, y] is also closed in |G|. Since (x, y) is open in $\overline{\sigma}_i$, there exists U an open subset of |G| such that $(x, y) = \overline{\sigma}_i \cap U$. Since $(x, y) \subseteq \sigma_i \subseteq \overline{\sigma}_i$, $(x, y) = \sigma_i \cap U$ which is open in |G|. Since $|G| - \{x, y\}$ is open in |G| and |G| - [x, y], (x, y) are subsets of $|G| - \{x, y\}$, |G| - [x, y], (x, y) are open in $|G| - \{x, y\}$. Therefore, $|G| - \{x, y\}$ is not connected. #

4.15 Theorem. Let G be an invertible graph and let x and y be any two distinct points |G|. Then $|G| - \{x, y\}$ is not connected.

<u>Proof.</u> Let G be an invertible graph. Let x and y be any two distinct points in |G|. By lemma 4.12, there exists σ , a one-simplex of G, which is open in |G| and x, y $\ \sigma$. Since G is invertible, there is an inverting homeomorphism h for σ such that h(x), h(y) are in σ . By virtue of lemma 4.14, we have that $h(|G| - \{x, y\}) = |G| - \{h(x), h(y)\}$ is not connected. This implies

that $|G| - \{x, y\}$ is not connected. #

4.16 <u>Theorem</u>. If G is an invertible graph, then |G| is homeomorphic to S^1 , the 1-sphere; i.e., |G| is homeomorphic to $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$.

Proof. Let G be an invertible graph. Let x and y be any two distinct points in |G|. By theorem 4.15, $|G| - \{x, y\}$ is not connected. Let $|G| - \{x, y\} = C \cup D$ separation. Since $|G| - \{x, y\}$ is open in |G|, C and D are open subsets of |G|; hence C U {x, y}, being the complement of D in |G|, is closed in |G| and similarly D $U \{x, y\}$ is closed in |G|. Therefore, $C U \{x, y\}$ and $D U \{x, y\}$ are compact, metrizable spaces. We must now show that they are also connected. Consider C U {x, y}. By theorem 4.13, y is a noncut point; so $C \cup D \cup \{x\} = |G| - \{y\}$ is connected and hence x is a cut point of CUDU {x}. Then, by corollary 2.32, CU {x} and D $\bigcup \{x\}$ are connected in C \bigcup D $\bigcup \{x\}$ and hence are connected in |G|by virtue of theorem 2.10. Similarly, y is a cut point of $C \cup D \cup \{y\}$, so $C \cup \{y\}$ and $D \cup \{y\}$ are connected in [G]. Now, $(C \cup \{x\}) \cap (C \cup \{y\})$ is not empty and both are connected hence by theorem 2.23 we see that $C \cup \{x, y\}$ is connected. Similarly, D $U\{x, y\}$ is also connected. Thus, C $U\{x, y\}$ and D $U\{x, y\}$ are both compact, connected metrizable spaces. By theorem 2.38, then, C U(x, y) and D U(x, y) both have at least two non-cut points. Assume that there exists a point c in C such that c is a non-cut point of $C \cup \{x, y\}$; also assume that there exists a point d in D

such that d is a non-cut point of D $U\{x, y\}$. Then $(C \cup \{x, y\}-\{c\})$ and (DU {x, y} - {d}) are both connected. By theorem 2,23, $|G| - \{c, d\} = (C \cup \{x, y\} - \{c\}) \cup (D \cup \{x, y\} - \{d\})$ is connected which contradicts theorem 4.15. Thus c and d as defined above can not both exist. Hence either C \cup {x, y} or D \cup {x, y} is an arc by theorem 3.13. Let $C \cup \{x, y\}$ be an arc, x and y must then be the two non-cut points of $CU\{x, y\}$. Assume now that $DU\{x, y\}$ is not an arc. This means that the point d as defined above exists. That is, d is a non-cut point of D U {x, y}. Let p be any point of C. Then, since C U {x, y} is homeomorphic to an arc with end points x and y, p is a cut point of $C \cup \{x, y\}$. Hence, $C \cup \{x, y\} - \{p\}$ is the union of two connected subsets M and N one of which contains x and the other of which contains y. Therefore, $|G| - \{p, d\} =$ (D \cup {x, y} - {d}) \cup (M \cup N) is connected by theorem 2.23. This is a contradiction by theorem 4.15. Thus, D U {x, y} must also be an arc with x and y as the two end points because they are non-cut points of D \bigcup {x, y}. Thus |G| is the union of two arcs with exactly their end points in common.

Let γ_1 , γ_2 be two homeomorphisms from [0, 1] onto $CU\{x, y\}$ and $DU\{x, y\}$, respectively such that $\gamma_1(0) = \gamma_2(0) = x$ and $\gamma_1(1) = \gamma_2(1) = y$. Let h be a homeomorphism from [0, 1] onto [-1, 1] defined by h(t) = 2t-1. Then h(0) = -1 and h(1) = 1. Let A_1 be a subspace of S^1 , i.e., $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$, determined by $\{(x, y) \mid y \geq 0\}$ and let A_2 be a subspace of S^1 determined by

 $\{(\mathbf{x},\,\mathbf{y})\mid\,\mathbf{y}\leq0\}$. The projection function $P_{\mathbf{x}}$ restricted to A_1 and A_2 yields the homeomorphisms g_1 and g_2 from A_1 and A_2 , respectively, onto $[-1,\,1]$. Thus if we define $\mathbf{f}=\gamma_1\circ\mathbf{h}^{-1}\circ\mathbf{g}_1$, then \mathbf{f}_1 is a homeomorphism from A_1 onto $C\cup\{\mathbf{x},\,\mathbf{y}\}$ with $\mathbf{f}_1((-1,\,0))=\mathbf{x}$ and $\mathbf{f}_1((1,\,0))=\mathbf{y}$. Similarly, if $\mathbf{f}_2=\gamma_2\circ\mathbf{h}^{-1}\circ\mathbf{g}_2$, then $\mathbf{f}_2((-1,\,0))=\mathbf{x}$ and $\mathbf{f}_2((1,\,0))=\mathbf{y}$. Now \mathbf{f}_1 and \mathbf{f}_2 are defined on closed subspace A_1 and A_2 , respectively, of S^1 and they agree on $A_1\cap A_2=\{(-1,\,0),\,(1,\,0)\}$. Hence by theorem 2.11, the function $\mathbf{f}:S^1\to |G|$ defined by $\mathbf{f}((s,\,t))=\mathbf{f}_1((s,\,t))$ if $(s,\,t)\in A_1$; $i=1,\,2$, is continuous. By definition, \mathbf{f} is one-one and onto. Since |G| is a Hausdorff and S^1 is compact, \mathbf{f} is a homeomorphism by corollary 2.45. #