CHAPTER III

CHARACTERIZATION OF THE ARC

A topological space is called an arc if it is homeomorphic to

the unit interval subspace, [0, 1], of R

3.1 Theorem. If A is an arc, then A is a compact, connected,

metrizable space with exactly two non-cut points.

Proof. By theorem 2.25, [0, 1] is a connected subspace of
TR ; by theorem 2.12, [0, 1] is a metrizable space, and by theorem
2.42, [0, 1] is a compact space. Thus, since congéctedness, com-
pactness and metrizability are topolbgical properties, any arc is
connected, compact and metrizable. By theorem 2.26, the open in--
terval {x | 0 < x < 1} is connected. By theorem 2.20, any set be-
tween a connected set and .its closure is connected. Hence,
{x | 0 < x <1} and {x | 0 < x < 1} are connected. This means that
0 and 1 are non-cut points of [0, 1]. Now, let 0 < p < 1. If
M={x|0<x<plandN={x | p <x <1}, then [0, 1] - {p} =
N VM separation and p is a cut point of [0, 1]. since the property
of being either cut point or non-cut point is a topological proper-
ty, any arc has exactly two non-cut points. #

Let p 'and g be points of a connected space S. A point X in

S is said to separate p and g in S if there exists a separation

Px\J Q. of 8 - {x} such that p e B and q € Q_. Thus, if % separates
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p and g in S, X must be a cut point of S. Define E(p, gq) to be

{x | x =p, or x = q, or x separates p and q in S}.

3.2 Lemma. Let S be a connected space; let p and g be two dis-

tinct points of S; let a and br be two distinct points of

E(p, q) - {p, q}. Let P.a\j Q_ be any separation of s - {al} such

that p € P ,and g € Q, let P, VU Q be any separation of s - {b}
P Ak <

such that p € b and q € Qb Then Pa Pb or Pbc Pa' where ©

denotes the proper subset relation.

Proof. Since S - {a} = PaU Qa and Pan Qa = ¢ and b # a,
b € P or b e Qg but not both (a) Let b € P_. By corollary 2.32,
Qau {a} is a connected subset of S. Furthermore, since b # a and
, | \ .
b € P, b ¢ o U {a}. Hence 9 U {al € P U Q. Since q&Q U {a}
and g € Qs the connected set 9_U {al = Q. by theorem 2.18. !I
Hence (QaU {a}) N (Pbu {b}) = ¢. Since QaU {al U g, - S,

P U {b}S P_. This means, since b§ P, that P, @ P_. (b) Let
b a b a

b

be&oQ. SinceQ NP = ¢ and b # a, bg§ PV {a}. Hence, since
- - - T "

s - {b} PbU Q PaU {al & PbU - As above, since PaU {a}

. e :

is connected and p € P N (Pau {al), P_V {a} B Since a & P,

PaC Pb. it

3.3 Corollary.. If a and b are any two distinct points of E(p, q)
- {p, q}, then Pac. P_ is equivalent to a € P, where P_ and P

are as defined in the lemma 3.2.

. Proof. 1In the proof of lemma 3.2, it was established that



‘b & r implied that a € Q- * It follows from. this then that if

a ¢ Q. , then b‘¢ P'a'. Hence, i_f a ¢ Qb' b € Qa' It was also shown

that b € Q_ implied that P_C P,. Thus it follows that if a € B,

b

then a & Q.+ and so PC P . - Conversely, let PCEP Then

b’ b’
?bQ'F P_. From the proof lemma 3.2, this means that b Q P_. Thus,

b & Qa., This was proved to imply that a € Pb' #

By a linearly ordered set we mean a pai:fr (L, <*), where L
is a set, and <* is an order r:elation. on L which is (1) x <* x for

no x in L, (2) x <* y implies y $* x, (3) x <*'y and y <* z.

implies x <* z, and (4) x <* y or y <* x for any two distinct points

x and y in L. Wewritexf*yifx=yorx<'*y. Let S be a con-
nected space. Let p and g ’be dis.l'l:inct.points of S. A relation <*
on E(p, q) is definedas follow‘s. <% = (%, ') l (x =pand y # .p)
or (y = q and x # q) or _foC Py', for p #.x ;6 qandp#y # @}
where of course P_U Q_ is any separation of S - {x} such that

p&P _andqge€Q and P-YU Qy is any separation of s - {yl} such

that p. P and & .
Péy q Qy

The following lemma follows from lemma 3.2 and the defini-

tion of <* on E(p, 4).

3.4 Lemma. . <* is a linear order relation on E(p, q) in the con-

nected space S. #

Thus, in any connected space S, each two-point set {p, q}

determines a linearly ordered s_ubs_et (E(p, @), <*).

28
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3.5 Lemma. .Let S be a compact, connected Tl-spaqe with exactly

twe non-cut points, p and q. Then, S = E(p, g).

Proof. LethSandxéE(p, q). Then p # x # . Hence
X is a cut point of S. Since x does not separate p and g in S,
there exists a separation AWM B of § - x such that ; and g are
both in A. Since S has no non-cut points but p and q, it is a con-

tradiction by corollary 2.41l. Thus, every point of S - {p, g}

separates p and q in S, and so S = E(p, q). #

The lemma 3.5 established then that any Eoﬁpaﬁt, connected
?1fspace with exactly two:non-cut points is linearly ordered by <¥*.
Let S be a set and < any linear order relation on S. Let
the topology on S be the topology having as a subbase {A | ae s)
ana (A= {x | x <blor A=1{x | a<x} for a and b in §)}. This

topology is called the ordér tbpologyrfor S determined by <.

The following lemma is clear.

3.6 Lemma. Let S be any non-empty set and < any linear order re-

lation on S. The order topology determined by < is Hausdorff. #

3.7 Theorem. Let (S,?) be a compact, connected, Hausdorff space
with exactly two non-cut points. Then the original topology T on

S is an order topology for S.

Proof. By lemma 3.4 and 3.5, S can be linearly ordered by

the relation <*. S = E(p, q), where p and g arxe the two non-cut
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points of S. Let 0 - T  denote the order topology for E(p, q) de-
termined by <*. Let B be a basé element determined by the defining
subbase for the order topology. B & S = E(p, q), B = {x | x <* b
for b& 8}, B= {x | a <* x for a& S} or B = {x | a <* x.ﬁ* b for
a, besS}. Now S€Y. If p.;é a#gand p #b # r:_:[,l then bj;' the
definition of <* and by corollary 3.3;_{x | x <* b} = P

{x | a <* x <* b} = Pbr\Qa-and {x | a <* x} = Q. If s €s such
that p # s # q, S - {s} g P_UQ_ separation. Since (S,7) is a

T -space, P_ and Q_ are open 5 (Se ). It follows now that if
a=poras=gqor b = poxr'b = g, B_eﬁ'. Thus, each B in the base
for the order topology, determined by the defining subbasef is open
in (S,9°). Thus 0 -7€7 . Since (S,7) is a compact, Hausdorff

space, by hypothesis, and since, by lemma 3.6, 0 - J is Hausdorff,

0 -7 =7 by theorem 2.47. #

3.8 Theorem. If (D, <*) is a countablé, linearly ordered éet and
if <* has.the following two properties : (1) <* determines no first
and no last element in D, and (2) for any ﬁwo distinct elements a
and bt in D such that a <* b, there is at least one other element

c such that a <* ¢ <* b; then there exists a one-one order-preserv-
ing function from D onto the rational numbers in the open interval

(0, 1).

Proof. Since both D and the set Q of rational in (0, 1)

are countable, D can be represented as {dl, d., ...},.where d; g dj

2]
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for i # j, and Q can be represented as {rl, Y ...}, where r, # rj

. for i # j. The given linear ordering on D will be denoted, as in
the hypothesis, by <*. The natural ordering on the set of all na-
tural numbers and on Ehe set Q of rational numbers in (0, 1) will

both be qenoted by <.

A. A one-one function £ from D into Q is defined. Let

f(dll =r Let f(dz).= X, s where i2 is the smallest natural num-

g >
; < 3 < % . < 3 <* d_}.
ber in the set {n I r < I if d2 dl' and £y <E if dl 2}

This set is not empty since the natural ordering on Q does not
determine a first or a last element. Thus, if dl <¥ dz, f{dl) <

f(dz); and if 4, <* 4 f(dz} < f(dl}. Assume, now, that f(dl),

2 n B4

f(dz), derss” Bl ), where kX > 3, have all been defined in Q so

Gy
that £(d,) < £(d,), if d, <* 4, for 1 < i, j < k-1. Consider dg.
i j i 5 [ - -

Since D is linearly oxdered by <*, the subset {dl, Ayriienns dk—l}

is also linearly ordered by <*. Let d, <*d, <* ...<*d, be
R D Ik-1

the linear ordering on {dl, ASUUN dk_l}"iﬁéﬁhed by <* on D. If

20
dk <* dj for all i =1, 2, ..., k-1; then, since Q has no first
i

element, there is a rational number r in (0, 1) such that r

r<£(d ) <E(@, ) < .o.. < £(d, ). Hence, if A = {t | r < £, )},
43 32 g 1
then A # ¢. Let q be the smallest natural number in A. Define

Eld. ) = ¥ . SEmilarl if d. <* 4 , then 4, <* for i =1

dk q Y Got o K’ 9 dk '

2, ..., k=1. Since Q has no last number, {s:| f{dj ) < r # ¢,
_ é k-1

Let m be the smallest natural number in this set. Define f{dk)

=y . Then £f(d. ) < ... < f(d, ). Lastly, for some one
m 55 k
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] . A
: i+l
two rationals lies a third rational, {n | f(dj) R £(@, )} # ¢.
i i+l

T A 2 iy kr2: let dj <*_dk <% 4, . Since between any
s 1 -

Let p be the smallest natural number in -this set. Define
f(dk) s Thus £ has been’defined by induction on all of D in
such way that (1) if ds <* dt' then f(ds) < f(dt); and (2) for

every natural number s, is (where f(ds) = ri') is the smallest sub-
: . o
script in the given listing {rl, Ty, ...}, such that f preserves

oxrder.

B. Next it is shown that £ is onto. r, is in the range

et rin - Xhly -

of £ since f(dl) = rl. 1 2 A rk-l

be in the range of

£ for some natural number k > 2. Then {m l {rl, Lo eeey rk_1}55

{f(dl] P (@) aes f{dm)}};# $. TLet g be the smallest natural

number in this set. {r., r.y ++sr xr, .} & {f(c’ll}Ir £(a) s oo f(dq)}-

1" 23 k=1" =
If rke {f(dl), f(dz). ,..,‘f{dq)} then, of course, r, is in the
range of f. Assume, then, that rk¢{f(dl), 'f(dz), caile f(dq)}..
There are three cases to conmsider : (1) rg < f{qj) for all
g =iy, 2 mean G5 2N T, > f(dj) fortaldPi=f, 2, ..., g; and
(3) f(di) < rk < f(dj) for some i, j such that ;l < £ 3 < q.

Case (1) : Let r, < f(dj) for all 3 =1, 2, ..s;y 9+ Since

D has no first element, {m | ddﬁ“ <% dj for all 3. = X, 2, « e ql

# 6. Let m* be the smallest natural number in this set. Then d

dq+m* < dj for all § = 1, 2, «2er Q- IE m* =1, then it is Iclear
t d. - i i . e e R
hat £( q+m*) r, and rk is in the range of £ Assume m X

Then for each natural number t such that 1 < t < m¥, there is at
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léast one natural number j such that dj<* dq+t for 1 € . < Q.

_By assumption, f(dj) # rk for .all J = Ly 25 ewnp Lo Fuithermore,
f{dé+t) # rk for 1<t < since f preserves order. Now, the
domain of £ is D; hence, f(dq+m*) is defined as a rational number.
Let f(dqﬁn*l = rP. Since f is order-preserving, £ is a one-one

function. Furthermore, by the definition of q, {rl, Y rk-l}

S{f(d), «--y f(dq)}. Hence, k-1 < p. If k < p, then the defi-

.

nition of f is contradicted. -Hence, f(d ) =¥, and so r. is in
g+m* k k

. the range of f.

The proof of case (2) is exactly analogous but depends on
the fact that D has no last element instead of the fact that D has

no first element.

Sr e d } and k be as defined in
q
the proof of case (1l). Let f(di) < rk < f{dj] for some natural

Case (3) : Let {dl, d

numbers i and j such that 1 < i, j < g. Let {pl, Pyt wenr pq}

< e 2
1 p2 pq_

There is then a smallest naturai number t* # 1 such that Ik <p

: -1
< < T i <* <*

Hence p , . < T, < P, "By hypothe31s, {n| £ (R a

=3

£ (pt*]} # ¢. Let n* be the smallest natural number in this set.

denote the set {f(dl), f(dz), ey f(dq)}, where p

LA

H

since r, € {£(a)), £@), ..., £@)}, if§ < q then £(d) # 1.

Furthermore, by the definition of n*, if q < j < n¥, f(dj) b .

since f preserves order. Now f(dn*) is defined since the domain

1 2 “w oy rk_l}E{f(dl);

f(dzj, St f(dq)}, p > k. If p >k, then the definition of f - is.

of £ is D.. Let £(d_,) = r_. Since el I
n P
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again contradicted ds it was in the proof of case (1). Thus, if

X o rk~1 are in the range of £, rk is also. Hence the
range of £ is Q. Thus a one-one order preserving function from D

onto Q has been established. #

In any linearly ordered set (L, <), cuts are defined: A
cut is an order pair (A, B) of subsets of L sdch that (1) L = AUB,
(25 A f ¢ # B, and (3) for any x in A and any y in B, X < y. There
are three types of cuts. A cut (A, B) is jump if A has a last ele-
ment and B has a first element. A cut is called a gap if A has no
last element and B has no first element, A cut is called a filled
cut if A has a last element and B has no first element, or A has
no last element and B has a fiﬁst element. A linearly ordered éet

(L, <) with no jumps is called order-dense in itself, and a linear-

ly ordered set with neither jumps nor gaps is called order-connected.

The following lemma follows immediately from the definition.

3.9 Lemma. A linearly ordered set (L, <) is order-dense in itself
if and only if for each two elements a and B in L, -there exists at

least one element y in L such that o < y < B. #

Let (L, <) be a linearly ordered set and let D be a subset
of L. D is called order-dense in (L, <) if for each two elements
o and B in L, there exists at least one element 8§ in D such that

G T <



35

3,10 Theorem. Let (L, <) be a linearly ordered set and let 0 -7
be the order topology for L. If (L, 0 -J) is a connected space,

then (L, <) is orBler-connected.

Proof. Let (L, 0 =7 ) be connected and let (A, B) be a
cut in (L, <). Assume first (A, B) is a gap. By the definition
of the order topology, {x | x < z for z in L} is open in (L, 0 -7,
Let o &€ A. Since A has no ;ast element, then there exists a z in
A such tha; o & z. Hence, every point of A is an interior point
of A and A is open. A similar procedure establishes that B is open.
Hence (L, 0 - 7) is not connected. This is a contradiction, so L
has no gap. El%nme next that (A, B) is a jump. Let y be the last
point in A and B be the first péint in B. By the definition of
the order topology, {x | x < 8} and {x | a < x} are both open in
(L, 0 =¥ ). Since A= {x l x < BYand B = {x l a < x}, (L, 0-=-7)
is not connected. This is a contradiction; hence, (L, <) has no

jumps. #

3.11 Theorem. Any compact, connected, metrizable space (S,0)
with exactly two non-cut points is an order-connected set relative
to the ordering which determines the topology. Furthermore, there

exists a denumerable subset D which is order-dense in S.

Proof. By lemma 3.5, (S,T) is an E(p, q) where p and q
are the two non-cut points. Hence 9 is the order topology defined

from the linear order relation <%, By lemma 3.10, (S, <¥*) is
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order-connected. Furthermore, by theorem 2.48 and 2.49, (S, 7) is
separable. Hence, (S, %) has a countable subset D which is dense
in the space (S,7). Since (S, <*) is order-connected, there are
nc jumps. Hence, by the definition of the order topology, between
any two distinct points of S lies a point of D. D is then order-

dense in (S, <*). #

3.12 Theorem. If (L, <*) is a non-empty linearly ordered set with
the following properties : (1) <* determines no first and no last
element on L, (2) (L, <*) is order-connected, and (3) there exists
a countable subset D which is order-dense in (L, <*); then (L, <¥%)
is order-isomorphic to {x | x is a real and 0 < x < 1}, i.e., to

(0, 1), with the usual ordering.

Proof. A. First a function £* from (L, <*) into (0, 1) is
defined. By lemma 3.8, there is a one-one, order-preserving func-
tion f from the order-dense subset (D, <*) of (L, <*) onto the set
Q0 of rational numbers in (0, 1), with the usual ordering. (Note: <k
will be used ambiguously to denote the given order relation on L
and also its restriction to D.) Thus, for every element d in D,

f(d) is a unique rational number in (0, 1). Now, let o € L - D,

I

let B! ={yinL | a <*y}. Let #* = {t in (0, 1) | r € £(8! N D)
implies t < r} and let M = (0, 1) = 5%, Since f is order-preserv-

" 3 o o a o.
ing and D is order-dense, H # ¢ # M. Now, let tl € H and tze M.
Since t, ¢ I-IC", there exists r* such that r* € f{B&r\ D) and r* < t,-

Since'gle Ha, tl < r* and hence tl < t2. Also for any t in (0, 1),
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t & 1 or t € M® and so {Ha, Ma) is a cut in (0, 1). Since (0, 1)
is order—connecfed, Ha ﬁas a last element or M* has a first element.
Now, let m be any element in M%, By the definition of Ma, there
exists an r such that r € f(B&f\ D) and r < m. Consider f-l(r] in
B&f? D. By the definition of B& 5 Tk f-l(r)._ Since D is order-
dense in (L, <*), there exists a d in D such that o <* 4 <* f_l(r).
By the definition of B& , d & Béf\ D. Hence f(d).E—f(B&f\ D) and
f£(d) < r, by the definition of f. This meansdthat £(d) < m.

Since £(a) € £(8)N D), £(d) ¢ H . Hence, £(d) € M* and m is not
the first element of M, Thus #* has a last element B and

B = {t in (0, 1) | t < BY. Define f*(a) = g and for d in D let

£*(d) = £(4).

B. Secondly, it is shown that f* is order-preserv-
ing, and hence it is one=-one. First, let d & D and leta gL - D
be such that a <* d. ﬂ.e B&l\ D by the above definition of B&.
Hence f(d) € f(B(’xﬂ D), and so f£(d) & M® which was defined above
in part A. Now by definition of f*, f*(a) is the last element of
5®. Hence, f*(a) < £(d) = £f*(d). Similarly, if d €D, « € L = D
and d <* o, then £(d) < r for all r in f(B&f\ D) by definition of
B! and f. Hence, £(d) € 5%, by definition of H . Since f*(a) is
the last element in Ha, f*(d) = £(d) < £*(0). Lastly, let al, uz
be both in L - D and let o, <% g_, Since D is order-dense in

2

(L, <*), there exists d € D such that @y <k g <* ey Thus, by what

was just proved above, f*(ulj < fx(q) < f*(az). Therefore,
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f*(al) < f*(uzj and f* is order-preserving and hence it is one-one.

C. Lastly, it is shown that f* is onto. Let t*
be any real number in (0, 1). If t* is rational, then t* is in
the range of f and hence in the range of f*. If t* is irrational,

let A, = {x in (0, 1) | x < t*} and let B_, = {x in (0, 1)[t* < x}.

t*
Then Q = (At*ﬁ Q) U (Bt*n Q), where Q is the set of rationals in

-1 -1 .
(0, 1). Hence D=f "(A ,N QU £ (B,MNQ) in L. Let G = {y

t*

Y
D is order-dense and f is order-preserving, FY o # GY. If yle FY'

inL }aeet®a,N 0 implies d <* y} and let F =1L -G . Since

then y1¢ G@'—g ‘Hence, .there exists 'a d in D such that 4 € f_l(ht*nQJ
and Y, <* d. Now, let Yy (= GY. By th_e:. definition of GY' da <* Yye

" Hence Yy <k Yoo and (Fy, GY) is a cut in.(Ly<¢¥*). Since (L, <*) is
order-connected, FY has a la;t element, or GY has a first element
but not both. Denote this element by Y. Assume first that

f£*(y) < t*. Since Q is order-dense in (0, 1), there exists an r

in Q such that £*(y) < ¥ < t*, Hence r € At*ﬂ 0 and f_l(r) ¢

_l —
£, 00 andy < £t

r). Therefor G , and so * B,
(r) efore, Y ¢ G YEer,

; =1 -1 ; -1
Furthermore, since f “(r) € £ {At*n o) € ) ¢ GY and so
fﬂl{_r) < FY. Thus, Y is not the last element of FY. This contra-
dicts the definition of y. Hence, t¥* < £*(y). Assume, next, that
t* < f*(y). Again, since Q is order-dense in (0, 1), there exists
an r in Q such that t* < r < £*(y). This means that if -

de f-l(At*n D), £(d) € At*' and hence f(d) < t*. Thus, £(d) < r

< f*(y), and so 4 <* f_l(r) <* y. This means that f_l(r) and y are
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both in GY. Thus Y is in GY but is not the first element of‘GT.

This is a contradiction. Hence, f£*(y) = t* and f* is onto. #

3.13 Theorem. Any compact, connected metrizable space (S,J)

with exactly two non-cut points is an arc.

ProGf. By lemﬁa 3.4 hnd 3. 5; é is E(p, q) where p and q
are the two non-cut pointf. The natural linear ordering <* on
E(p, q) determines the topology U for S by theorem 3.7, and déter-
mines p as the first element and g as tﬁe last element. Further-
more, by theorem 3.11, (S, <*) is order-connected and,there exists
a countable order-dense subset D in (S, <¥*). Now, le£ x € S and
X # p. Since D is order-dense (S, <¥*), there exists d € D such
that p <* d <* x. Hence S - {p} = ﬁ(p, g) - {p} has no first ele-
ment. Similarly S - {q} = E(p;ﬁq} - {g} has no last element.
Hence, S - {p, g} is linearly ordered by the restriction <* to
s - {p, q} and <* determines no first elemént and no last element
on S - {p, g}. Let L =58 - {p,.q}. Then (L, <*) is a linearly
ordered set with no first and no last element. Furthermore, D N L
is denumerable and order-dense in (L, <*) since D is order-dense
in (S, <*). Also, (L, <*) is order-connected because any jump oxr
gap in (L, <*) would yield a jump or gap in (S, <*) which is impos-
sible. Thus, (L, <*) is a linearly ordered, order-connected set
with no first element, no last element and with a denumerable order-
dense subset. Hence, by theorem 3.12, (L, <*) is oxder-isomorphic

to the open interval (0, 1) with the usual ordering. Let h be a
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one-one function from (L, <%¥%) onto'(o, 1) which preserves order.
Define h* : (s, <*) =2, [0, 1] as follows

h*(p) = 0, h*(g) = 1 and h*(x) = h(x) for p # x # g. By definition
of the ordering on (S, <*) and [0, 1], h* is an order-isomorphism
from (S, <*) onto [0, 1]. By definition of the order topoloéy, h*

is a homeomorphism from (S, J") onto [0, 1],,and (S,J) is, then,

an arc. #
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