## CHAPTER II



## TOPOLOGICAL CONCEPTS

Let S be a given non-empty set of objects called the <u>points</u> of S. A <u>topology</u> in S is a non-empty collection **7** of subsets of S called open sets satisfying the following three axioms:

- 1) \$\phi\$ and S are open.
- 2) The union of any family of open sets is open.
- 3) The intersection of any finite number of open sets is open.

The pair (S, 7) is called a topological space. When no confusion seems possible we may forget to mention the topology and write "S is a topological space" or simply "S is a space".

Let  $(S, \mathcal{T})$  be a given topological space. By a <u>neighborhood</u> of  $x \in S$  is meant any subset N of S such that there is  $U \in \mathcal{T}$  and  $x \in U \subseteq N$ . A family  $\mathcal{T} \subseteq \mathcal{T}$  is called a <u>basis</u> for  $\mathcal{T}$  if each open set is the union of members of  $\mathcal{T}$ . In other words, for every U in  $\mathcal{T}$  and each point x in U, there is a  $V \in \mathcal{T}$  such that  $x \in V \subseteq U$ . A subset V of  $\mathcal{T}$  is called a <u>subbase</u> for  $\mathcal{T}$  if the set of all intersection of finitely many sets in  $\mathcal{T}$  is a base for  $\mathcal{T}$ . A point p in S is called a <u>limit point</u> of  $A \subseteq S$  if every neighborhood N of p contains at least one point of  $A - \{p\}$ . The set of limit points of the set A is denoted by A' and is called the <u>derived set</u> of A. Following from the definition of limit point we have:

- 2.1 Theorem. If A and B are subsets in the space  $(S, \mathcal{T})$ , then  $(A \cup B)' = A' \cup B'$ . #
- 2.2 Corollary. If A and B are subsets in the space  $(S, \mathcal{T})$  such that  $A \subseteq B$ , then  $A' \subseteq B'$ . #

Let S be a space. The <u>closure</u> of  $A \subseteq S$ , denoted by  $\overline{A}$ , is defined to be the set  $A \cup A'$ . It is obvious that if A and B are subsets of S then  $\overline{A \cup B} = \overline{A} \cup \overline{B}$ .  $A \subseteq S$  is defined to be <u>closed</u> if  $A = \overline{A}$ . A point p in S is said to be an <u>interior point</u> of  $A \subseteq S$  if there exists a neighborhood N of p such that  $N \subseteq A$ . The <u>interior</u> of A is defined to be the set of all interior points of A. Now, the following theorems are easy to prove.

- 2.3 Theorem. A set G in a space S is open if and only if G consists entirely of interior points. #
- 2.4 Theorem. A set F in a space S is closed if and only if the complement of F in S, S F, is open. #

By using DeMorgan's Laws and the axioms of open sets, we have :

- 2.5 Theorem. The closed sets of a space S satisfy the following three conditions:
  - 1) \$\phi\$ and S are closed.
  - 2) The intersection of any family of closed sets is closed.
  - 3) The union of finite number of closed sets is closed. #

A space S is said to be a T<sub>1</sub>-space if for any point p in S, {p} is a closed subset of S. If any two distinct points p and q in S belong to disjoint neighborhoods, then S is called a T<sub>2</sub>-space or a <u>Hausdorff space</u>.

A function f from a space S into a space T is said to be continuous if for any open set U in T  $f^{-1}(U)$ , the set of points of S mapped by f into U, is open in S. Equivalently, f is continuous provided  $f^{-1}(F)$  is closed whenever F is closed. Let  $f: S \to T$  be a function from a space S into a space T. f is continuous at  $p \in S$  if for every neighborhood U of f(p) there is a neighborhood V of p such that  $f(V) \subseteq U$ . And the following theorem is valid.

2.6 Theorem. Let S and T be topological spaces. Then a function f from S into T is continuous if and only if it is continuous at every point of S. #

If f is a bijection from a topological space onto a topological space such that both f and  $f^{-1}$  are continuous, then f is called a homeomorphism. If a homeomorphism  $h: S \rightarrow T$  exists, then two spaces S and T are said to be homeomorphic, and each space is said to be a homeomorph of the other. A property which when possessed by a space is also possessed by each of its homeomorphs is called a topological property.

Let f and g be functions from topological space to topological space such that the composition gof is defined. It can be

proved that the following is valid.

2.7 Theorem. If f and g are continuous, so is gof. If f and g are homeomorphisms, then  $f^{-1}$ ,  $g^{-1}$  and gof are also homeomorphisms. #

A function f from a space S into a space T is called open (closed) if the image in T of every open (closed) set in S is open (closed) in T. It is obvious that if f is an open (closed), continuous bijection from a space S onto a space T, then f is a homeomorphism.

Let S be a space with topology  $\tau$  and X is a non-empty subset of S. It is obvious the collection  $\{U \mid U = G \cap X \text{ for some } G \in T\}$  is a topology for X. This topology is called the <u>relative topology</u> on X and is denoted by r-T, and X is called a <u>subspace</u> of S. And we have that a subset F of X is closed in X if and only if there exists  $F^*$  a closed set in S such that  $F = F^* \cap X$ .

2.8 Theorem. Let X be any subspace of a space S and let A be any subset of X. Then a point p in X is a limit point of A in X if and only if p is a limit point of A in S.

<u>Proof.</u> A. Let p in X be a limit point of A in X and let G be any open set in S containing p. G \(\Omega\) X is open in X and containing p; therefore, G \(\Omega\) X contains at least one point of A different from p. Hence G contains a point of A different from p and so p is a limit point, in S, of A.

B. If p, in X, is a limit point, in S, of A contained in X and G is any open set in X which contains p, then there exists  $G^*$ , open in S, such that  $G^* \cap X = G$ . Now  $G^*$  contains at least one point of A different from p by hypothesis. Since  $A \subseteq X$ ,  $G^* \cap X = G$  must contain at least one point of A different from p. Hence p is a limit point, in X, of A. #

2.9 Theorem. If X is any subspace of a space S and A is any subset of X, then  $\bar{A}_X = \bar{A}_S \cap X$ , where  $\bar{A}_X$  and  $\bar{A}_S$  denote the closures of A in X and in S, respectively.

<u>Proof.</u> Let  $A_X'$  and  $A_S'$  denote the derived sets of A in X and in S, respectively; then  $\overline{A}_X = A \cup A_X'$ , by definition of closure. By theorem 2.8,  $A \cup A_X' = A \cup (A_S' \cap X)$ . A,  $A_X'$  and X are all subsets of S; by the distributive law for union and intersection of sets,  $A \cup (A_X' \cap X) = (A \cup A_S') \cap (A \cup X) = \overline{A}_S \cap (A \cup X)$ . Since  $A \subseteq X$ ,  $A \cup X = X$ . Hence,  $\overline{A}_X = \overline{A}_S \cap X$ . #

The following theorem is obvious :

- 2.10 Theorem. If  $(S, \mathcal{T})$  is a topological space and if  $M \subseteq X \subseteq S$ , then the relative topology for M from  $(X, r-\mathcal{T})$  is the same as the relative topology for M from  $(S, \mathcal{T})$ . #
- 2.11 Theorem. If S is any space such that  $S = F_1 \cup F_2 \cup \ldots \cup F_k$ , where k is a natural number and each  $F_i$  is closed in S, if  $\{f_1, f_2, \ldots, f_k\}$  is a set of functions such that

 $f_i$ ; i = 1, 2, ..., k is a continuous function from  $F_i$  into a space T, and if  $f_i(x) = f_j(x)$  for  $x \in F_i \cap F_j$ , then the function h from S into T defined by  $h(x) = f_i(x)$  for x in  $F_i$ , is continuous on S.

<u>Proof.</u> Let  $F^*$  be any closed set in T, then  $h^{-1}(F^*) = k$   $\lim_{i=1}^{k} f_i^{-1}(F^*)$  by definition of h. Since  $f_i$  is continuous on  $F_i$ ,  $f_i^{-1}(F^*)$  is closed in S. Hence  $h^{-1}(F^*)$  is the union of finite number of closed sets in S. Thus, h is continuous on S. #

By a <u>metric</u> in a non-empty set S, we mean a non-negative real-valued function  $\rho: S \times S \to \mathbb{R}$  satisfying the following conditions: For all a, b, c  $\in S$ ,

- 1)  $\rho(a, b) = 0$  if and only if a = b.
- 2)  $\rho(a, b) = \rho(b, a)$ .
- 3)  $\rho(a, b) \leq \rho(a, c) + \rho(c, b)$ .

The pair  $(S, \rho)$  is called a <u>metric space</u>. If  $p \in S$  and  $(S, \rho)$  is defined to be  $\{S \in S \mid \rho(p, s) < \epsilon\}$ . Define a family  $(T, \rho)$  of subsets of S as follows: For arbitrary subset  $(T, \rho)$  of  $(S, \rho)$  if and only if for any point  $(S, \rho)$  there exists a positive real number  $(S, \rho)$  such that  $(T, \rho)$  contains  $(S, \rho)$  one can easily verify that the family  $(T, \rho)$  is a topology on  $(S, \rho)$ . The topology  $(T, \rho)$  on  $(S, \rho)$  is called the <u>topology determined</u> by the metric  $(S, \rho)$ . A given topological space  $(S, \rho)$  is said to be <u>metricable</u> if there exists a metric  $(S, \rho)$  which defines the topology for the space  $(S, \rho)$ .

The following theorem is obvious.

2.12 <u>Theorem</u>. If S is a metrizable space and X is a subspace of S, then X is metrizable. #

Let h be a homeomorphism from a space  $(S, \mathcal{T})$  onto a metrizable space  $(T, \mathcal{T}^*)$ . Suppose  $\rho^*$  is an admissible metric for T which induces  $\mathcal{T}^*$ . For any two points p and q in S, let  $\rho(p, q) = \rho^*(h(p), h(q))$ . It can be shown that  $\rho$  is a metric for S which induces  $\mathcal{T}$ . Thus,  $(S, \mathcal{T})$  is metrizable and we have the following:

2.13 Theorem. Metrizability is a topological property. #

Let  $(S, \rho)$  be a metric space, A a non-empty subset of S and p is a point in S, then the <u>distance</u>  $\rho(p, A)$  between a point p and A is defined by  $\rho(p, A) = \inf \{ \rho(p, a) \mid a \in A \}.$ 

2.14 Theorem. Let  $(S, \rho)$  be a metric space and let A be a non-empty subset of S. Then  $\rho(t, A) = 0$  if and only if  $t \in \overline{A}$ . #

2.15 Corollary. If F is a non-empty closed subset of a metrizable space S with metric  $\rho$  and if x is any point which is not in F, then  $\rho(x, F)$  is positive. #

. It is clear that if the topological space S is metrizable then it is also a Hausdorff and  $T_1$ -space. Let (S,  $\rho$ ) be a metric space

and let A be a non-empty subset of S. A is said to be <u>bounded</u> if there exists a positive real number M such that  $\rho(\mathbf{x}, \mathbf{y}) \leq M$  for all  $\mathbf{x}$  and  $\mathbf{y}$  in A.

The most important metric space is the <u>Euclidean n-space</u>  $\mathbf{R}^n \text{ where } \mathbf{R}^n = \{(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \mid \mathbf{x}_i \in \mathbf{R} \text{ and } \mathbf{R} \text{ is the set of real numbers}\} \text{ and the metric } \rho \text{ on } \mathbf{R}^n \text{ is defined by}$ 

 $\rho((\mathbf{x}_1,\ \mathbf{x}_2,\ \ldots,\ \mathbf{x}_n),\ (\mathbf{y}_1,\ \mathbf{y}_2,\ \ldots,\ \mathbf{y}_n)) = (\sum_{i=1}^n (\mathbf{x}_i - \mathbf{y}_i)^2)^{\frac{1}{2}}.$  In particular, if n=1 the metric  $\rho$  on  $\mathbb{R}$  is defined as  $\rho(\mathbf{x},\ \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$  for  $\mathbf{x}$  and  $\mathbf{y}$  in  $\mathbb{R}$ . The metric  $\rho$  on  $\mathbb{R}^n$  as defined above is called the <u>usual metric</u>.

A topological space  $(S, \Upsilon)$  is <u>connected</u> if S contains no subset, except S and  $\phi$ , which is both open and closed. A space is called <u>disconnected</u> if it is not connected. It is immediate from the definition that a space S is connected if and only if S is not the union of two non-empty, disjoint, open sets. From now on we use the notation "S = A U B separation" when 1) S = A U B and 2) A  $\cap$  B =  $\phi$  and 3) A  $\neq$   $\phi$   $\neq$  B and 4) A and B are both open in S.

2.16 Theorem. If f is a continuous function from a space  $(S, \Upsilon)$  onto a space  $(T, \Upsilon^*)$  and if  $(S, \Upsilon)$  is connected, then  $(T, \Upsilon^*)$  is connected.

<u>Proof.</u> Let A be any non-empty, proper, open subset in the space  $(T, \boldsymbol{\mathcal{T}}^*)$ . f is continuous; therefore,  $f^{-1}(A)$  is open in S. Since A is non-empty and proper,  $\phi \neq f^{-1}(A) \neq S$ . Since S is

connected,  $f^{-1}(A)$  is not also closed. Thus A can not be closed. Hence,  $(T, \mathcal{T}^*)$  is connected. #

2.17 Corollary. Connectedness is a topological property. #

A subset M of a space  $(S, \mathcal{T})$  is called a connected (disconnected) subset in  $(S, \mathcal{T})$  if  $(M, r - \mathcal{T})$ , where  $r - \mathcal{T}$  denotes the relative topology, is a connected (disconnected) space.

2.18 Theorem. Let (S, ?) be a space; let  $S = A \cup B$  separation, and let C be a connected subset of S. Then  $C \subseteq A$  or  $C \subseteq B$ .

<u>Proof.</u> Since A and B are open in S, C  $\cap$  A and C  $\cap$  B are open in the subspace (C, r -  $\Upsilon$ ). Furthermore, (C  $\cap$  A)  $\cup$  (C  $\cap$  B) = C and (C  $\cap$  A)  $\cap$  (C  $\cap$  B) =  $\phi$ . Since C is connected, C  $\cap$  A =  $\phi$  or C  $\cap$  B =  $\phi$ . Hence, C  $\subseteq$  B or C  $\subseteq$  A. #

2.19 Lemma. If  $(S, \mathcal{T})$  is a space,  $M \subseteq S$ , M is connected in  $(S, \mathcal{T})$  and  $(X, r - \mathcal{T})$  is a subspace of  $(S, \mathcal{T})$  such that  $M \subseteq X$ , then M is a connected subset of  $(X, r - \mathcal{T})$  where  $r - \mathcal{T}$  denotes the relative topology.

<u>Proof.</u> By theorem 2.10, the relative topology for M from  $(S, \mathcal{T})$  is the same as the relative topology for M from  $(X, r - \mathcal{T})$ . Thus, there is just one subspace  $(M, r - \mathcal{T})$  based on M an one relative topology. By hypothesis, this topology contains no proper, non-empty, open sets. #

2.20 Theorem. If M is a connected subset of a space  $(S, \mathcal{T})$  and if M  $\subseteq$  N  $\subseteq$   $\overline{M}$ , then N is a connected subset of  $(S, \mathcal{T})$ .

<u>Proof.</u> By lemma 2.19, M is a connected subset of N. Suppose N = A U B separation. By theorem 2.18, M  $\subseteq$  A, say. A is closed in N; hence the closure of M in the subspace (N, r - $\mathcal{T}$ ) is contained in A. By theorem 2.9, the closure of M in (N, r - $\mathcal{T}$ ) is  $\overline{M} \cap N$ , where as usual  $\overline{M}$  denotes the closure of M in (S, $\mathcal{T}$ ). However, since N  $\subseteq$   $\overline{M}$  by hypothesis,  $\overline{M} \cap N = N$ . Hence, N  $\subseteq$  A and B =  $\emptyset$  which is a contradiction. Thus, there is no separation of N. #

2.21 Corollary. If M is a connected subset of (S, 7), then so is M. #

A finite sequence  $\{M_1, M_2, \ldots, M_k\}$  of distinct sets in a set X is called a <u>bridge</u> between  $M_1$  and  $M_k$  if  $M_i \cap M_{i+1} \neq \emptyset$  for all  $i=1,2,\ldots,k-1$ . A collection K of sets in a set X is called <u>bridged</u> or a <u>bridged system</u> if for any two sets A and B in K, there is a bridge between A and B whose sets are all in K.

2.22 Theorem. Let  $(S, \mathcal{T})$  be a space and let  $\{C_{V}\}$  be a collection of connected subsets of S which form a bridged system. Then  $V_{V}$   $C_{V}$  is connected.

<u>Proof.</u> Suppose  $\bigvee_{v} C_{v}$  is not connected. Let  $\bigvee_{v} C_{v} = A \cup B$  separation. Let  $C_{v}$  be any set in  $\{C_{v}\}$ . Since  $C_{v}$  is connected, by

theorem 2.18,  $C_v \subseteq A$ , say. Let  $C_\alpha$  be any other set in  $\{C_v\}$ . Then, there exists a bridge  $C_v = C_{i_1}$ ,  $C_{i_2}$ , ...,  $C_{i_k} = C_\alpha$  in  $\{C_v\}$ . Let P consist of the subset of natural numbers which are greater than k along with the subset of natural numbers  $m_v$  such that  $C_i \subseteq A$ . I belongs to P since  $C_i = C_v \subseteq A$ . Assume j is in P for j < k. Then  $C_i \subseteq A$ . Hence, since  $C_i \cap C_i = \emptyset$ ,  $C_i \subseteq A$ . If j > k, j+1 is in P, by the definition of P. Hence all natural numbers are in P and  $C_\alpha \subseteq A$ . Since  $C_\alpha$  was any other set in  $\{C_v\}$ ,  $\bigvee_v C_v \subseteq A$  and  $B = \emptyset$ . This contradicts the definition of  $A \cup B$  separation. Hence  $\bigvee_v C_v$  is connected. #

2.23 Theorem. Let  $\{C_v\}$  be a collection of connected subsets in a space (S, 7) such that  $\bigcap_{v} C_v \neq \phi$ . Then  $\bigvee_{v} C_v$  is connected.

Proof. Let  $C_{\alpha}$  and  $C_{\beta}$  be any two sets in  $\{C_{\mathbf{v}}\}$ .  $\{C_{\alpha}, C_{\beta}\}$  is a bridge from  $C_{\alpha}$  to  $C_{\beta}$ . Hence,  $\{C_{\mathbf{v}}\}$  is a bridged system of connected sets, and so by the previous theorem,  $\mathbf{v}_{\mathbf{v}}$   $\mathbf{v}_{\mathbf{v}}$  is connected. # 2.24 Theorem. Let  $(S, \mathbf{T})$  be a space such that each pair of points in S is contained in a connected subset of S. Then  $(S, \mathbf{T})$  is connected.

<u>Proof.</u> Let s be a given point of S and let x be any point of S. There exists a connected subset  $Z_{\mathbf{x}}$  containing s and x.  $S = \bigvee_{\mathbf{x}} Z_{\mathbf{x}}, \bigcap_{\mathbf{x}} Z_{\mathbf{x}} \neq \emptyset \quad \text{and each} \quad Z_{\mathbf{x}} \text{ is connected. Hence,}$   $(S, \mathbf{f})$  is connected by the previous theorem.

Typings See close Laborate in the fig. A. II.

2.25 Theorem. The closed interval  $[a, b] = \{x \mid a \le x \le b \text{ where } a \le b\}$  is connected in  $\mathbb{R}$ , the space of real numbers.

<u>Proof.</u> Suppose  $[a, b] = A \cup B$  where A and B are closed subsets of [a, b]. Let b be in B. Since A is a bounded subset of real numbers, if A is not empty, then A has a least upper bound  $\gamma$ , and  $a \le \gamma \le b$ . Since A is closed,  $\gamma$  is in A. If  $\gamma = b$ , then  $\gamma$  is in B and A \(\Omega B \neq \phi\). If  $\gamma < b$ , then  $\{x \mid \gamma < x \le b\} \subseteq B$  by definition of  $\gamma$ , and since B is closed,  $\gamma$  is in B. Thus,  $\gamma$  is in A \(\Omega B \) and hence no separation of [a, b] exists. #

2.26 Theorem. The open interval  $(a, b) = \{x \mid a < x < b, for a < b\}$  is connected in  $\mathbb{R}$ .

<u>Proof.</u> Let p and q be any two distinct points in (a, b) and let p < q. Then [p, q]  $\subseteq$  (a, b). Since [p, q] is connected by theorem 2.25, (a, b) is connected by theorem 2.24. #

2.27 Corollary. The "half-open" interval  $[a, b] = \{x \mid a \le x \le b\}$  and  $(a, b] = \{x \mid a \le x \le b\}$  are connected in  $\mathbb{R}$ .

Proof. The sets [a, b) and (a, b] lie between (a, b) and
its closure [a, b], and so, by theorem 2.20, are connected. #

2.28 Theorem. Let M be any connected subset of  $\mathbb{R}$ . If a and b belong to M such that a < b, then  $\{x \mid a \leq x \leq b\}$  is a subset of M.

<u>Proof.</u> Let a <  $\gamma$  < b. Assume  $\gamma$  is not in M. The sets

 $A = \{x \mid x < \gamma\}$  and  $B = \{x \mid x > \gamma\}$  are open subsets of  $\mathbb{R}$ . Hence,  $M \cap A$  and  $M \cap B$  are open in the subspace M and  $M = (M \cap A) \cup (M \cap B)$  separation. This is a contradiction since M is connected. It follows that  $\gamma$  belongs to M and hence  $\{x \mid a \le x \le b\} \subseteq M$ . #

Let (S, 7) be a topological space. A subset C of S is a component of S; provided that C is connected, but is not a proper subset of another connected subset of S. It is obvious that if S is connected, then S itself is the only component of S.

2.29 Theorem. In any topological space S, components are closed.

<u>Proof.</u> Let S be a topological space and let C be a component of S. Since C is connected, by corollary 2.21,  $\bar{C}$  is connected. Since C is a component,  $C = \bar{C}$  and hence C is closed. #

2.30 Theorem. In a topological space S, any non-empty connected subset which is both open and closed is a component.

<u>Proof.</u> Let A be a non-empty connected subset of S which is both open and closed. Furthermore, assume  $A \subseteq B$ . By the definition of relative topology, A is both open and closed in B. Hence, B is not connected unless A = B. #

Let S be a connected space. If p is a point of S such that S-{p} is disconnected, then p is called a <u>cut point</u> of S; otherwise, p is a <u>non-cut point</u>. If A is a subset of a connected space S such that S-A is not connected A is said to <u>separate</u> S. It is obvious

that the property of being either a cut point or a non-cut point is a topological property.

2.31 Theorem. Let  $(S, \gamma)$  be a connected space and let M be a connected subset of S such that M separates S, i.e.,  $S - M = A \cup B$  separation. Then  $A \cup M$  and  $B \cup M$  are both connected.

Proof. Suppose A U M is not connected; let A U M =  $A_1$  U  $A_2$  separation. M is connected; therefore, M  $\subseteq$   $A_1$ , say. Thus,  $A_2$  is contained in A. Now, consider S = (A U M) U B =  $A_2$  U ( $A_1$  U B).  $\overline{A}_2$   $\cap$   $A_1$  =  $\phi$  and since  $A_2$   $\subseteq$  A and  $\overline{A}$   $\cap$  B =  $\phi$ ,  $\overline{A}_2$   $\cap$  B =  $\phi$ . Hence  $\overline{A}_2$   $\cap$  ( $A_1$  U B) =  $\phi$ . Furthermore,  $\overline{A}_1$   $\cap$   $A_2$  =  $\phi$  and since  $\overline{B}$   $\cap$  A =  $\phi$ ,  $\overline{B}$   $\cap$   $A_2$  =  $\phi$ . Hence,  $A_2$   $\cap$  ( $\overline{A}_1$  U B) =  $A_2$   $\cap$  ( $\overline{A}_1$  U B) =  $A_3$   $\cap$  ( $\overline{A}_1$  U B) =  $A_4$   $\cap$  ( $\overline{A}_1$  U B) separation which is a contradiction. Thus,  $\overline{A}$  U M is connected. The same proof is valid for B U M. #

2.32 Corollary. If p is a cut point of a connected space S such that S-{p} = A  $\cup$  B separation, then A  $\cup$  {p} and B  $\cup$  {p} are connected. #

A family G of sets is a <u>cover</u> of a set X if each point of X belongs to some member of G. The family is an <u>open cover</u> of X if each member of G is an open set. A <u>subcover</u> of G is a subfamily which is also a cover. A topological space S is said to be <u>compact</u> if every open cover of S has a finite subcover. A subset X of a topological space S is said to be compact if, with the relative

topology, the subspace X is compact. A topological space S is called countably compact if every countable open covering of S contains a finite subcovering. A collection of closed sets in a topological space is said to have the <u>finite intersection property</u> if the intersection of any finite number of sets in the collection is not empty.

2.33 Theorem. A space S is compact if and only if every family of closed sets with the finite intersection property has a non-empty intersection.

Proof. A. Let S be compact; let  $\P = \{F_v \mid v \in I \text{ where } I \text{ is an index set} \}$  denote a family of closed sets in S with the finite intersection property. Consider the collection  $G = \{ \sim F_v \mid v \in I \}$  of all complements of sets in  $\P$ . Each  $\sim F_v$  is open in S. Assume  $\bigcap_{V} F_V = \emptyset$ . Then  $\sim \bigcap_{V} F_V = S$ . However,  $\sim \bigcap_{V} F_V = \bigcup_{V} F_V$ . Hence, the collection G is an open covering of S. Since S is compact, a finite number, say  $\sim F_v$ ,  $\sim F_v$ ,  $\sim F_v$ , of sets in G cover S. Therefore,  $\bigvee_{i=1}^{k} \sim F_v = S$  and so, by De Morgan's law,  $\sim \bigcap_{i=1}^{k} F_v = S$ . Hence,  $\bigcap_{i=1}^{k} F_v = \sim S = \emptyset$ . This is a contradiction since the family  $\P$  was supposed to have the finite intersection property. Thus the assumption that  $\bigcap_{V} F_v = \emptyset$  is false.

B. Let S have the property that any family  $\mathfrak{F}$  =  $\{F_v \mid v \in I\}$  of closed sets with the finite intersection property has a non-empty intersection. Then, let  $G = \{G_v \mid v \in I\}$ 

be an open covering of S. Assume that no finite subset of G covers S. Then, if  $\{G_{v_1}, G_{v_2}, \ldots, G_{v_k}\}$  is any finite subset of G, k  $V_1$   $V_2$  k  $V_k$   $V_k$ 

The proof of the following theorem is an analogue of the proof of theorem 2.33.

- 2.34 Theorem. A space S is countably compact if and only if every countable family of closed sets with the finite intersection property has a non-empty intersection. #
- 2.35 Theorem. If a space S is countably compact, then every infinite subset of S has a limit point in S.

<u>Proof.</u> Let A be any infinite subset of S and let  $\{x_1, x_2, \ldots\}$  denote any countable infinite subset of A. Let  $x_i \neq x_j$  for  $i \neq j$ . Assume that the set  $\{x_1, x_2, \ldots\}$  has no limit point in S. Then, by corollary 2.2, no subset of  $\{x_1, x_2, \ldots\}$  has a limit point in S. In particular, the sets  $F_n = \{x_n, x_{n+1}, \ldots\}$  are all closed sets in S. Furthermore, the countably family  $\{F_n \mid n \text{ is a natural number}\}$  has the finite intersection property

since  $\{x_1, x_2, \ldots\}$  is infinite. However,  $\bigcap_{n=1}^\infty F_n$  is empty which contradicts theorem 2.34. Thus, the assumption that  $\{x_1, x_2, \ldots\}$  has no limit point is false. Hence A has a limit point in S. #

2.36 Theorem. If f is a continuous function from a compact space S onto a space T, then T is compact.

Proof. Let  $G = \{G_v\}$  be any open covering of T. The collection  $\{f^{-1}(G_v)\}$  constitutes an open covering of S. Since S is compact, a finite number of these sets, say  $f^{-1}(G_v)$ ,  $f^{-1}(G_v)$ , ...,  $f^{-1}(G_v)$  cover S. Then  $S = \bigcup_{i=1}^k f^{-1}(G_v) = f^{-1}(\bigcup_{i=1}^k G_v)$  and hence  $\bigcup_{i=1}^k G_v$  is a cover of T; so T is compact. #

2.37 Corollary. Compactness is a topological property. #

Let P be a set and let  $\leq$  be a binary relation in P such that for any x, y and z in P the following conditions hold:

- 1)  $\vec{x} \leq \hat{x}$ , and
- 2)  $x \le y$  and  $y \le x$  imply x = y, and
  - 3)  $x \le y$  and  $y \le z$  imply  $x \le z$ .

Then  $\leq$  is called a <u>partial ordering</u> for P and the pair (P,  $\leq$ ) is said to be a <u>partially ordered set</u>. Let Y be a subset of (P,  $\leq$ ), Y is <u>simply ordered</u> by  $\leq$  if for every x and y in Y, x  $\leq$  y or y  $\leq$  x.

Hausdorff's Maximum Principle. Every partially ordered set P contains a maximal (relative to inclusion) simply ordered subset £,

i.e., £ is not contained properly in any other simply ordered subset

of P. We use Hausdorff's Maximum Principle to prove the next theorem.

2.38 Theorem. A compact, connected T<sub>1</sub>-space S with more than one point contains at least two non-cut points.

Proof. A. Let N denote the set of non-cut points of S. Assume N =  $\phi$  or N =  $\{s\}$ . Then, since S contains more than one point, there exists a cut point c in S. Let S= $\{c\}$  = AUB separation. Let  $s \in B$ , then N  $\subseteq$  B and so N  $\cap$  A =  $\phi$ . This means that every point of A is a cut point of S. For each x in A, let  $A_x \cup B_x$  denote a separation of S- $\{x\}$ . Let  $c \in B_x$ . By corollary 2.32,  $A_x \cup \{x\}$  is connected in S. Now, since  $c \in B_x$  and  $c \neq c$ ,  $c \in A_x \cup \{x\} \subseteq S-\{c\} = A \cup B$ . Also, since  $c \in B_x \cup \{x\}$  is connected and  $c \in A_x \cup \{x\} \subseteq A_x \cup$ 

B. The Hausdorff's Maximum Principle will be invoked on the partially ordered set P, but first it must be shown that if  $q \in A$  and  $p \in A_q$ , as defined above, then  $A_p \cup \{p\} \subseteq A_q$  and  $q \notin A_p \cup \{p\}$ . So, let  $q \in A$ ; q is then a cut point of S and  $S-\{q\}=A_q \cup B_q$  separation. Now let  $p \in A_q$ .  $(A_p \cup \{p\}) \cap (B_p \cup \{p\})=\{p\}. \text{ Hence, } q \notin A_p \cup \{p\} \text{ or } q \notin B_p \cup \{p\}. \text{ Now, } p \notin B_q \text{ since } p \in A_q. \text{ Therefore, } A_p \cup \{p\} \notin B_q \text{ and } B_p \cup \{p\} \notin B_q. \text{ Since } c \notin B_p \text{ and } c \notin A_q, B_p \cup \{p\} \notin A_q.$ 

Furthermore, since  $B_p \cup \{p\} \not\triangleq A_q$  and  $B_p \cup \{p\} \not\triangleq B_q$ , and since  $B_p \cup \{p\}$  is connected,  $B_p \cup \{p\} \not\triangleq A_q \cup B_q$ . Therefore,  $q \in B_p \cup \{p\}$ . Since  $p \in A_q$ ,  $p \neq q$ . Hence,  $q \notin A_p \cup \{p\}$ , and so  $A_p \cup \{p\} \subseteq A_q$ .

C. Now by the Hausdorff's maximum principle, there exists a maximal simply order subset & of the set P = {M |  $M = A_x \cup \{x\}$  for  $x \in A\}$ . Since S is a  $T_1$ -space,  $A_x \cup B_x$  is open in S and so is  $B_x$ . Thus,  $A_x \cup \{x\}$  is closed in S for every x in A. Since  $\mathcal{L}$  is simply ordered and A, U  $\{x\} \neq \emptyset$  for all x in A,  $\mathcal{L}$  satisfies the finite intersection property. Since S is compact,  $\bigcap \mathcal{L} \neq \emptyset$ by theorem 2.33. Let  $\alpha \in \cap \mathcal{L}$ . Then  $\alpha \in A$ . Hence, by the original assumption,  $\alpha$  is a cut point of S. Let  $S-\{\alpha\}=A_{\alpha}\cup B_{\alpha}$  separation. As in part A above,  $A_{\alpha} \cup \{\alpha\} \subseteq A$ . Let  $y \in A_{\alpha}$ . By part B,  $\mathbf{A}_{\mathbf{v}} \ \mathbf{U} \ \{\mathbf{y}\} \subseteq \ \mathbf{A}_{\alpha} \ \text{and} \ \alpha \notin \ \mathbf{A}_{\mathbf{v}} \ \mathbf{U} \ \{\mathbf{y}\}. \quad \text{Thus, } \mathbf{A}_{\mathbf{v}} \ \mathbf{U} \ \{\mathbf{y}\} \subseteq \ \mathbf{A}_{\alpha} \ \mathbf{U} \ \{\alpha\}. \quad \text{Since } \mathbf{A}_{\alpha} \ \mathbf{U} \ \{\alpha\} = \mathbf{A}_{$  $\alpha \in A_{x} \cup \{x\}$  for every  $A_{x} \cup \{x\}$  in  $\mathcal{L}$ , if  $x \neq \alpha$ ,  $\alpha \in A_{x}$ . Therefore, by part B,  $A_{\alpha} \cup \{\alpha\} \subseteq A_{\mathbf{x}}$  for  $\mathbf{x} \neq \alpha$ . Hence  $A_{\mathbf{y}} \cup \{y\}$  is properly contained in every  $A_x \cup \{x\}$  in  $\mathcal{L}$ . Therefore,  $\mathcal{L} \subset \mathcal{L} \cup \{A_y \cup \{y\}\}$ and  $\mathcal{L}$   $\mathsf{U}$   $\{\mathtt{A}_{\mathsf{V}} \mathsf{U}$   $\{\mathtt{y}\}\}$  is simply ordered by inclusion. This contradicts the maximality of  $\boldsymbol{\mathcal{L}}$ . Thus, the existence of the set  $\mathbf{A}_{\alpha}$  leads to a contradiction. This means that a can not be a cut point. However,  $\alpha \in A$  and, by the original assumption that  $N = \phi$  or  $N = \{s\}$ , every point of A is a cut point. Thus  $N \neq \emptyset$  and  $N \neq \{s\}$ . #

If S is a connected space and M is a subset of S, then S is said to be irreducibly connected about M if no proper connected subset of S contains M.

2.39 Lemma. Every closed subset of a compact space is compact.

Proof. Let F be a closed subset of a compact space S. Let G be any open covering of F. G  $\cup$  { $\sim$ F} is an open covering of S. Hence, a finite subcovering { $\sim$ F,  $G_1$ ,  $G_2$ , ...,  $G_k$ } covers S where  $G_i \in G$ ; i = 1, 2, ..., k. Hence,  $\{G_1, G_2, ..., G_k\}$  covers F. # 2.40 Theorem. A compact, connected  $T_1$ -space is irreducibly connected about its set of non-cut points.

Proof. Let N be the set of non-cut points of the compact, connected Ti-space S. Assume that S is not irreducibly connected about N. Then, there exists a proper, connected subspace X of S such that N S X. Let α S - X. Then α is a cut point of S and  $S - \{\alpha\} = A \cup B$  separation. Since X is connected, X  $\subseteq$  A or X  $\subseteq$  B, by theorem 2.18. Let X  $\subseteq$  A. Now, B  $\cup$  { $\alpha$ } is connected by corollary 2.32. Furthermore, since S is a  $T_1$ -space, S -  $\{\alpha\}$  is open in S and hence A is open in S. Thus B U { $\alpha$ } is closed in S; so B  $U\{\alpha\}$  is compact by lemma 2.39. Therefore, B  $U\{\alpha\}$  is then a compact, connected  $T_1$ -space. Furthermore, since  $B \neq \phi$  and  $\alpha \notin B$ , B U { $\alpha$ } contains more than one point. Thus, by the theorem 2.38, B U  $\{\alpha\}$  contains at least two non-cut points. Let  $\beta$  be a non-cut point of B  $\cup$  { $\alpha$ } such that  $\beta \neq \alpha$ . Thus  $\beta \in B$  and B  $\cup$  { $\alpha$ } - { $\beta$ } is connected. Since A  $\cup$  { $\alpha$ } is connected and (A  $\cup$  { $\alpha$ })  $\cap$  (B  $\cup$  { $\alpha$ } -  $\{\beta\}$ )  $\neq \phi$ , (A  $\cup$   $\{\alpha\}$ )  $\mid$ U (B  $\cup$   $\{\alpha\}$  -  $\{\beta\}$ ) = S -  $\{\beta\}$  is also connected by theorem 2.23 and hence  $\beta$  is a non-cut point of S. However,

 $\beta$  & B and N  $\subseteq$  A, where N is the set of non-cut points of S. Thus, the existence of the proper connected subset X of S containing N leads to a contradiction. Hence, S is irreducibly connected about N. #

2.41 <u>Corollary</u>. If S is a compact, connected  $T_1$ -space and if N is the set of non-cut points of S and if S -  $\{\alpha\}$  = A  $\cup$  B separation, then N  $\cap$  A  $\neq$   $\phi$   $\neq$  N  $\cap$  B.

Proof. If N  $\cap$  A =  $\phi$ , then N  $\subseteq$  B. Since by corollary 2.32, B  $\cup$  { $\alpha$ } is connected, S would not be irreducibly connected about N. This contradicts the previous theorem. That is N  $\cap$  A  $\neq$   $\phi$ . The same proof is valid for N  $\cap$  B  $\neq$   $\phi$ . #

Now we will state a very important theorem which characterizes compact sets in  $\mathbb{R}^n$ , Euclidean n-space. The proof of this theorem can be found in [1] pp. 284-285.

- 2.42 Theorem. A subset A of Euclidean n-space, R, is compact if and only if A is closed and bounded. #
- 2.43 Theorem. Any compact subset of a Hausdorff space is closed.

Proof. Let F be a compact subset of a Hausdorff space S. Let p be any point in S - F. Since S is Hausdorff, for each x in F, there exists an open neighborhood  $U_{\mathbf{x}}$  of x and  $V_{\mathbf{x}}$  of P such that  $U_{\mathbf{x}} \cap V_{\mathbf{x}} = \emptyset$ . The collection  $\{U_{\mathbf{x}} \mid \mathbf{x} \in F\}$  form an open covering of F. F is compact; hence, a finite number of the sets, say

U , U , ..., U , cover F. The corresponding neighborhoods of p  $x_1$   $x_2$   $x_k$  and U  $x_1$   $x_2$   $x_k$  and U  $x_1$   $x_2$   $x_k$   $x_1$   $x_2$   $x_1$   $x_2$   $x_2$   $x_3$   $x_4$   $x_5$   $x_5$  x

2.44 Theorem. If f is a continuous function from a compact space S into a Hausdorff space T, then f is closed.

Proof. Let F be any closed set in a compact space S. Then
F is compact by lemma 2.39; hence, by theorem 2.36, f(F) is compact
in T. Since T is Hausdorff, by theorem 2.43, f(F) is closed. #

- 2.45 Corollary. Any one-one continuous function from a compact space S onto a Hausdorff space T is a homeomorphism. #
- 2.46 Theorem. Let (S, T) be a compact space and let  $(S, T^*)$  be a Hausdorff space. If  $T \subset T$ , then  $T^* = T$ .

<u>Proof.</u> Let  $f: (S, \Upsilon) \to (S, \Upsilon^*)$  be a function defined by f(x) = x. It is obvious that f is one-one and onto. Since  $\Upsilon^* \subseteq \Upsilon$ , f is continuous and hence is a homeomorphism by corollary 2.45; so  $\Upsilon^* = \Upsilon$ . #

It follows from the theorem 2.46 that a compact, Hausdorff topology on a set S is a minimal element (by inclusion) in the set of Hausdorff topologies for S.

2.47 Theorem. If  $(S, \mathcal{T})$  is a compact, Hausdorff space and if  $\mathcal{T}$ , then  $(S, \mathcal{T}^*)$  is compact but not Hausdorff.

Proof. The case  $(S, \mathcal{T}^*)$  is compact is obvious since  $\mathcal{T}^* \subset \mathcal{T}$ . The case  $(S, \mathcal{T}^*)$  is not Hausdorff follows from the theorem 2.46. #

A subset M of a space S is called <u>dense</u> in S if  $\overline{M} = S$  and a space S is called <u>separable</u> if it contains a countable dense subset. A finite subset  $\gamma$  of a metric space  $(S, \rho)$  is called an <u>6-dense set</u> if for every point p of S, there exists at least one point  $p_i \in \gamma$  such that  $\rho(p, p_i) < f$ . A metric space  $(S, \rho)$  is called totally bounded if for every positive real number f,  $(S, \rho)$  has an f-dense set.

2.48 Theorem. If a metric space (S,  $\rho$ ) is countably compact, when it is totally bounded.

<u>Proof.</u> Assume that there exists a positive real number  $\boldsymbol{\xi}$  such that  $(S, \rho)$  has no  $\boldsymbol{\xi}$ -dense subset. Let  $p_1$  be any point in  $(S, \rho)$ . Then there is a  $p_2$  in S such that  $\rho(p_1, p_2) \geq \boldsymbol{\xi}$ . Similarly, there exists  $p_3$  in S such that  $\rho(p_2, p_3) \geq \boldsymbol{\xi}$ . Assume that for any natural number k the set  $\{p_1, p_2, \ldots, p_k\}$  of S has been defined such that  $\rho(p_i, p_j) \geq \boldsymbol{\xi}$  for  $i \neq j$  and  $1 \leq i, j \leq k$ . Since, by assumption,  $\{S, \rho\}$  is not totally bounded, there exists a point  $p_{k+1}$  in S such that  $\rho(p_i, p_{k+1}) \geq \boldsymbol{\xi}$  for  $1 \leq i \leq k$ . Thus, a countably infinite set  $\{p_1, p_2, \ldots\}$  is defined with the property that  $\rho(p_i, p_j) \geq \boldsymbol{\xi}$  for  $i \neq j$ . Since S is countably compact,  $\{p_1, p_2, \ldots\}$ 

has a limit point q in S by theorem 2.35. Then there exists a  $p_j$  such that  $p_j \in B(q, \frac{\epsilon}{2})$ . Let  $\delta = \rho(q, p_j)$ . Then  $\delta < \frac{\epsilon}{2}$ . Similarly, there exists  $p_i \neq p_j$  such that  $p_i \in B(q, \delta)$ . Hence  $\rho(p_i, p_j) \leq \rho(p_i, q) + \rho(q, p_j) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ . This is a contradiction since  $\rho(p_i, p_j) \geq \epsilon$ . Hence  $(S, \rho)$  is totally bounded. #

2.49 Theorem. If  $(S, \rho)$  is totally bounded, then S is separable.

<u>Proof.</u> For any natural number n, let  $A_n$  denote a 1/n-dense set for the totally bounded space  $(S, \rho)$ . Let  $D = \bigcup_{n=1}^{\infty} A_n$ . D, as the union of a countable set of finite sets, is countable. Let p be any point in S. By the archimedean order on the reals, if f is any positive real, there exists a positive integer n such that 1/n < f. Hence, there exists f in the f in the f such that f in f