CHAPTER II ## TOPOLOGICAL CONCEPTS Let S be a given non-empty set of objects called the <u>points</u> of S. A <u>topology</u> in S is a non-empty collection **7** of subsets of S called open sets satisfying the following three axioms: - 1) \$\phi\$ and S are open. - 2) The union of any family of open sets is open. - 3) The intersection of any finite number of open sets is open. The pair (S, 7) is called a topological space. When no confusion seems possible we may forget to mention the topology and write "S is a topological space" or simply "S is a space". Let (S, \mathcal{T}) be a given topological space. By a <u>neighborhood</u> of $x \in S$ is meant any subset N of S such that there is $U \in \mathcal{T}$ and $x \in U \subseteq N$. A family $\mathcal{T} \subseteq \mathcal{T}$ is called a <u>basis</u> for \mathcal{T} if each open set is the union of members of \mathcal{T} . In other words, for every U in \mathcal{T} and each point x in U, there is a $V \in \mathcal{T}$ such that $x \in V \subseteq U$. A subset V of \mathcal{T} is called a <u>subbase</u> for \mathcal{T} if the set of all intersection of finitely many sets in \mathcal{T} is a base for \mathcal{T} . A point p in S is called a <u>limit point</u> of $A \subseteq S$ if every neighborhood N of p contains at least one point of $A - \{p\}$. The set of limit points of the set A is denoted by A' and is called the <u>derived set</u> of A. Following from the definition of limit point we have: - 2.1 Theorem. If A and B are subsets in the space (S, \mathcal{T}) , then $(A \cup B)' = A' \cup B'$. # - 2.2 Corollary. If A and B are subsets in the space (S, \mathcal{T}) such that $A \subseteq B$, then $A' \subseteq B'$. # Let S be a space. The <u>closure</u> of $A \subseteq S$, denoted by \overline{A} , is defined to be the set $A \cup A'$. It is obvious that if A and B are subsets of S then $\overline{A \cup B} = \overline{A} \cup \overline{B}$. $A \subseteq S$ is defined to be <u>closed</u> if $A = \overline{A}$. A point p in S is said to be an <u>interior point</u> of $A \subseteq S$ if there exists a neighborhood N of p such that $N \subseteq A$. The <u>interior</u> of A is defined to be the set of all interior points of A. Now, the following theorems are easy to prove. - 2.3 Theorem. A set G in a space S is open if and only if G consists entirely of interior points. # - 2.4 Theorem. A set F in a space S is closed if and only if the complement of F in S, S F, is open. # By using DeMorgan's Laws and the axioms of open sets, we have : - 2.5 Theorem. The closed sets of a space S satisfy the following three conditions: - 1) \$\phi\$ and S are closed. - 2) The intersection of any family of closed sets is closed. - 3) The union of finite number of closed sets is closed. # A space S is said to be a T₁-space if for any point p in S, {p} is a closed subset of S. If any two distinct points p and q in S belong to disjoint neighborhoods, then S is called a T₂-space or a <u>Hausdorff space</u>. A function f from a space S into a space T is said to be continuous if for any open set U in T $f^{-1}(U)$, the set of points of S mapped by f into U, is open in S. Equivalently, f is continuous provided $f^{-1}(F)$ is closed whenever F is closed. Let $f: S \to T$ be a function from a space S into a space T. f is continuous at $p \in S$ if for every neighborhood U of f(p) there is a neighborhood V of p such that $f(V) \subseteq U$. And the following theorem is valid. 2.6 Theorem. Let S and T be topological spaces. Then a function f from S into T is continuous if and only if it is continuous at every point of S. # If f is a bijection from a topological space onto a topological space such that both f and f^{-1} are continuous, then f is called a homeomorphism. If a homeomorphism $h: S \rightarrow T$ exists, then two spaces S and T are said to be homeomorphic, and each space is said to be a homeomorph of the other. A property which when possessed by a space is also possessed by each of its homeomorphs is called a topological property. Let f and g be functions from topological space to topological space such that the composition gof is defined. It can be proved that the following is valid. 2.7 Theorem. If f and g are continuous, so is gof. If f and g are homeomorphisms, then f^{-1} , g^{-1} and gof are also homeomorphisms. # A function f from a space S into a space T is called open (closed) if the image in T of every open (closed) set in S is open (closed) in T. It is obvious that if f is an open (closed), continuous bijection from a space S onto a space T, then f is a homeomorphism. Let S be a space with topology τ and X is a non-empty subset of S. It is obvious the collection $\{U \mid U = G \cap X \text{ for some } G \in T\}$ is a topology for X. This topology is called the <u>relative topology</u> on X and is denoted by r-T, and X is called a <u>subspace</u> of S. And we have that a subset F of X is closed in X if and only if there exists F^* a closed set in S such that $F = F^* \cap X$. 2.8 Theorem. Let X be any subspace of a space S and let A be any subset of X. Then a point p in X is a limit point of A in X if and only if p is a limit point of A in S. <u>Proof.</u> A. Let p in X be a limit point of A in X and let G be any open set in S containing p. G \(\Omega\) X is open in X and containing p; therefore, G \(\Omega\) X contains at least one point of A different from p. Hence G contains a point of A different from p and so p is a limit point, in S, of A. B. If p, in X, is a limit point, in S, of A contained in X and G is any open set in X which contains p, then there exists G^* , open in S, such that $G^* \cap X = G$. Now G^* contains at least one point of A different from p by hypothesis. Since $A \subseteq X$, $G^* \cap X = G$ must contain at least one point of A different from p. Hence p is a limit point, in X, of A. # 2.9 Theorem. If X is any subspace of a space S and A is any subset of X, then $\bar{A}_X = \bar{A}_S \cap X$, where \bar{A}_X and \bar{A}_S denote the closures of A in X and in S, respectively. <u>Proof.</u> Let A_X' and A_S' denote the derived sets of A in X and in S, respectively; then $\overline{A}_X = A \cup A_X'$, by definition of closure. By theorem 2.8, $A \cup A_X' = A \cup (A_S' \cap X)$. A, A_X' and X are all subsets of S; by the distributive law for union and intersection of sets, $A \cup (A_X' \cap X) = (A \cup A_S') \cap (A \cup X) = \overline{A}_S \cap (A \cup X)$. Since $A \subseteq X$, $A \cup X = X$. Hence, $\overline{A}_X = \overline{A}_S \cap X$. # The following theorem is obvious : - 2.10 Theorem. If (S, \mathcal{T}) is a topological space and if $M \subseteq X \subseteq S$, then the relative topology for M from $(X, r-\mathcal{T})$ is the same as the relative topology for M from (S, \mathcal{T}) . # - 2.11 Theorem. If S is any space such that $S = F_1 \cup F_2 \cup \ldots \cup F_k$, where k is a natural number and each F_i is closed in S, if $\{f_1, f_2, \ldots, f_k\}$ is a set of functions such that f_i ; i = 1, 2, ..., k is a continuous function from F_i into a space T, and if $f_i(x) = f_j(x)$ for $x \in F_i \cap F_j$, then the function h from S into T defined by $h(x) = f_i(x)$ for x in F_i , is continuous on S. <u>Proof.</u> Let F^* be any closed set in T, then $h^{-1}(F^*) = k$ $\lim_{i=1}^{k} f_i^{-1}(F^*)$ by definition of h. Since f_i is continuous on F_i , $f_i^{-1}(F^*)$ is closed in S. Hence $h^{-1}(F^*)$ is the union of finite number of closed sets in S. Thus, h is continuous on S. # By a <u>metric</u> in a non-empty set S, we mean a non-negative real-valued function $\rho: S \times S \to \mathbb{R}$ satisfying the following conditions: For all a, b, c $\in S$, - 1) $\rho(a, b) = 0$ if and only if a = b. - 2) $\rho(a, b) = \rho(b, a)$. - 3) $\rho(a, b) \leq \rho(a, c) + \rho(c, b)$. The pair (S, ρ) is called a <u>metric space</u>. If $p \in S$ and (S, ρ) is defined to be $\{S \in S \mid \rho(p, s) < \epsilon\}$. Define a family (T, ρ) of subsets of S as follows: For arbitrary subset (T, ρ) of (S, ρ) if and only if for any point (S, ρ) there exists a positive real number (S, ρ) such that (T, ρ) contains (S, ρ) one can easily verify that the family (T, ρ) is a topology on (S, ρ) . The topology (T, ρ) on (S, ρ) is called the <u>topology determined</u> by the metric (S, ρ) . A given topological space (S, ρ) is said to be <u>metricable</u> if there exists a metric (S, ρ) which defines the topology for the space (S, ρ) . The following theorem is obvious. 2.12 <u>Theorem</u>. If S is a metrizable space and X is a subspace of S, then X is metrizable. # Let h be a homeomorphism from a space (S, \mathcal{T}) onto a metrizable space (T, \mathcal{T}^*) . Suppose ρ^* is an admissible metric for T which induces \mathcal{T}^* . For any two points p and q in S, let $\rho(p, q) = \rho^*(h(p), h(q))$. It can be shown that ρ is a metric for S which induces \mathcal{T} . Thus, (S, \mathcal{T}) is metrizable and we have the following: 2.13 Theorem. Metrizability is a topological property. # Let (S, ρ) be a metric space, A a non-empty subset of S and p is a point in S, then the <u>distance</u> $\rho(p, A)$ between a point p and A is defined by $\rho(p, A) = \inf \{ \rho(p, a) \mid a \in A \}.$ 2.14 Theorem. Let (S, ρ) be a metric space and let A be a non-empty subset of S. Then $\rho(t, A) = 0$ if and only if $t \in \overline{A}$. # 2.15 Corollary. If F is a non-empty closed subset of a metrizable space S with metric ρ and if x is any point which is not in F, then $\rho(x, F)$ is positive. # . It is clear that if the topological space S is metrizable then it is also a Hausdorff and T_1 -space. Let (S, ρ) be a metric space and let A be a non-empty subset of S. A is said to be <u>bounded</u> if there exists a positive real number M such that $\rho(\mathbf{x}, \mathbf{y}) \leq M$ for all \mathbf{x} and \mathbf{y} in A. The most important metric space is the <u>Euclidean n-space</u> $\mathbf{R}^n \text{ where } \mathbf{R}^n = \{(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \mid \mathbf{x}_i \in \mathbf{R} \text{ and } \mathbf{R} \text{ is the set of real numbers}\} \text{ and the metric } \rho \text{ on } \mathbf{R}^n \text{ is defined by}$ $\rho((\mathbf{x}_1,\ \mathbf{x}_2,\ \ldots,\ \mathbf{x}_n),\ (\mathbf{y}_1,\ \mathbf{y}_2,\ \ldots,\ \mathbf{y}_n)) = (\sum_{i=1}^n (\mathbf{x}_i - \mathbf{y}_i)^2)^{\frac{1}{2}}.$ In particular, if n=1 the metric ρ on \mathbb{R} is defined as $\rho(\mathbf{x},\ \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$ for \mathbf{x} and \mathbf{y} in \mathbb{R} . The metric ρ on \mathbb{R}^n as defined above is called the <u>usual metric</u>. A topological space (S, Υ) is <u>connected</u> if S contains no subset, except S and ϕ , which is both open and closed. A space is called <u>disconnected</u> if it is not connected. It is immediate from the definition that a space S is connected if and only if S is not the union of two non-empty, disjoint, open sets. From now on we use the notation "S = A U B separation" when 1) S = A U B and 2) A \cap B = ϕ and 3) A \neq ϕ \neq B and 4) A and B are both open in S. 2.16 Theorem. If f is a continuous function from a space (S, Υ) onto a space (T, Υ^*) and if (S, Υ) is connected, then (T, Υ^*) is connected. <u>Proof.</u> Let A be any non-empty, proper, open subset in the space $(T, \boldsymbol{\mathcal{T}}^*)$. f is continuous; therefore, $f^{-1}(A)$ is open in S. Since A is non-empty and proper, $\phi \neq f^{-1}(A) \neq S$. Since S is connected, $f^{-1}(A)$ is not also closed. Thus A can not be closed. Hence, (T, \mathcal{T}^*) is connected. # 2.17 Corollary. Connectedness is a topological property. # A subset M of a space (S, \mathcal{T}) is called a connected (disconnected) subset in (S, \mathcal{T}) if $(M, r - \mathcal{T})$, where $r - \mathcal{T}$ denotes the relative topology, is a connected (disconnected) space. 2.18 Theorem. Let (S, ?) be a space; let $S = A \cup B$ separation, and let C be a connected subset of S. Then $C \subseteq A$ or $C \subseteq B$. <u>Proof.</u> Since A and B are open in S, C \cap A and C \cap B are open in the subspace (C, r - Υ). Furthermore, (C \cap A) \cup (C \cap B) = C and (C \cap A) \cap (C \cap B) = ϕ . Since C is connected, C \cap A = ϕ or C \cap B = ϕ . Hence, C \subseteq B or C \subseteq A. # 2.19 Lemma. If (S, \mathcal{T}) is a space, $M \subseteq S$, M is connected in (S, \mathcal{T}) and $(X, r - \mathcal{T})$ is a subspace of (S, \mathcal{T}) such that $M \subseteq X$, then M is a connected subset of $(X, r - \mathcal{T})$ where $r - \mathcal{T}$ denotes the relative topology. <u>Proof.</u> By theorem 2.10, the relative topology for M from (S, \mathcal{T}) is the same as the relative topology for M from $(X, r - \mathcal{T})$. Thus, there is just one subspace $(M, r - \mathcal{T})$ based on M an one relative topology. By hypothesis, this topology contains no proper, non-empty, open sets. # 2.20 Theorem. If M is a connected subset of a space (S, \mathcal{T}) and if M \subseteq N \subseteq \overline{M} , then N is a connected subset of (S, \mathcal{T}) . <u>Proof.</u> By lemma 2.19, M is a connected subset of N. Suppose N = A U B separation. By theorem 2.18, M \subseteq A, say. A is closed in N; hence the closure of M in the subspace (N, r - \mathcal{T}) is contained in A. By theorem 2.9, the closure of M in (N, r - \mathcal{T}) is $\overline{M} \cap N$, where as usual \overline{M} denotes the closure of M in (S, \mathcal{T}). However, since N \subseteq \overline{M} by hypothesis, $\overline{M} \cap N = N$. Hence, N \subseteq A and B = \emptyset which is a contradiction. Thus, there is no separation of N. # 2.21 Corollary. If M is a connected subset of (S, 7), then so is M. # A finite sequence $\{M_1, M_2, \ldots, M_k\}$ of distinct sets in a set X is called a <u>bridge</u> between M_1 and M_k if $M_i \cap M_{i+1} \neq \emptyset$ for all $i=1,2,\ldots,k-1$. A collection K of sets in a set X is called <u>bridged</u> or a <u>bridged system</u> if for any two sets A and B in K, there is a bridge between A and B whose sets are all in K. 2.22 Theorem. Let (S, \mathcal{T}) be a space and let $\{C_{V}\}$ be a collection of connected subsets of S which form a bridged system. Then V_{V} C_{V} is connected. <u>Proof.</u> Suppose $\bigvee_{v} C_{v}$ is not connected. Let $\bigvee_{v} C_{v} = A \cup B$ separation. Let C_{v} be any set in $\{C_{v}\}$. Since C_{v} is connected, by theorem 2.18, $C_v \subseteq A$, say. Let C_α be any other set in $\{C_v\}$. Then, there exists a bridge $C_v = C_{i_1}$, C_{i_2} , ..., $C_{i_k} = C_\alpha$ in $\{C_v\}$. Let P consist of the subset of natural numbers which are greater than k along with the subset of natural numbers m_v such that $C_i \subseteq A$. I belongs to P since $C_i = C_v \subseteq A$. Assume j is in P for j < k. Then $C_i \subseteq A$. Hence, since $C_i \cap C_i = \emptyset$, $C_i \subseteq A$. If j > k, j+1 is in P, by the definition of P. Hence all natural numbers are in P and $C_\alpha \subseteq A$. Since C_α was any other set in $\{C_v\}$, $\bigvee_v C_v \subseteq A$ and $B = \emptyset$. This contradicts the definition of $A \cup B$ separation. Hence $\bigvee_v C_v$ is connected. # 2.23 Theorem. Let $\{C_v\}$ be a collection of connected subsets in a space (S, 7) such that $\bigcap_{v} C_v \neq \phi$. Then $\bigvee_{v} C_v$ is connected. Proof. Let C_{α} and C_{β} be any two sets in $\{C_{\mathbf{v}}\}$. $\{C_{\alpha}, C_{\beta}\}$ is a bridge from C_{α} to C_{β} . Hence, $\{C_{\mathbf{v}}\}$ is a bridged system of connected sets, and so by the previous theorem, $\mathbf{v}_{\mathbf{v}}$ $\mathbf{v}_{\mathbf{v}}$ is connected. # 2.24 Theorem. Let (S, \mathbf{T}) be a space such that each pair of points in S is contained in a connected subset of S. Then (S, \mathbf{T}) is connected. <u>Proof.</u> Let s be a given point of S and let x be any point of S. There exists a connected subset $Z_{\mathbf{x}}$ containing s and x. $S = \bigvee_{\mathbf{x}} Z_{\mathbf{x}}, \bigcap_{\mathbf{x}} Z_{\mathbf{x}} \neq \emptyset \quad \text{and each} \quad Z_{\mathbf{x}} \text{ is connected. Hence,}$ (S, \mathbf{f}) is connected by the previous theorem. Typings See close Laborate in the fig. A. II. 2.25 Theorem. The closed interval $[a, b] = \{x \mid a \le x \le b \text{ where } a \le b\}$ is connected in \mathbb{R} , the space of real numbers. <u>Proof.</u> Suppose $[a, b] = A \cup B$ where A and B are closed subsets of [a, b]. Let b be in B. Since A is a bounded subset of real numbers, if A is not empty, then A has a least upper bound γ , and $a \le \gamma \le b$. Since A is closed, γ is in A. If $\gamma = b$, then γ is in B and A \(\Omega B \neq \phi\). If $\gamma < b$, then $\{x \mid \gamma < x \le b\} \subseteq B$ by definition of γ , and since B is closed, γ is in B. Thus, γ is in A \(\Omega B \) and hence no separation of [a, b] exists. # 2.26 Theorem. The open interval $(a, b) = \{x \mid a < x < b, for a < b\}$ is connected in \mathbb{R} . <u>Proof.</u> Let p and q be any two distinct points in (a, b) and let p < q. Then [p, q] \subseteq (a, b). Since [p, q] is connected by theorem 2.25, (a, b) is connected by theorem 2.24. # 2.27 Corollary. The "half-open" interval $[a, b] = \{x \mid a \le x \le b\}$ and $(a, b] = \{x \mid a \le x \le b\}$ are connected in \mathbb{R} . Proof. The sets [a, b) and (a, b] lie between (a, b) and its closure [a, b], and so, by theorem 2.20, are connected. # 2.28 Theorem. Let M be any connected subset of \mathbb{R} . If a and b belong to M such that a < b, then $\{x \mid a \leq x \leq b\}$ is a subset of M. <u>Proof.</u> Let a < γ < b. Assume γ is not in M. The sets $A = \{x \mid x < \gamma\}$ and $B = \{x \mid x > \gamma\}$ are open subsets of \mathbb{R} . Hence, $M \cap A$ and $M \cap B$ are open in the subspace M and $M = (M \cap A) \cup (M \cap B)$ separation. This is a contradiction since M is connected. It follows that γ belongs to M and hence $\{x \mid a \le x \le b\} \subseteq M$. # Let (S, 7) be a topological space. A subset C of S is a component of S; provided that C is connected, but is not a proper subset of another connected subset of S. It is obvious that if S is connected, then S itself is the only component of S. 2.29 Theorem. In any topological space S, components are closed. <u>Proof.</u> Let S be a topological space and let C be a component of S. Since C is connected, by corollary 2.21, \bar{C} is connected. Since C is a component, $C = \bar{C}$ and hence C is closed. # 2.30 Theorem. In a topological space S, any non-empty connected subset which is both open and closed is a component. <u>Proof.</u> Let A be a non-empty connected subset of S which is both open and closed. Furthermore, assume $A \subseteq B$. By the definition of relative topology, A is both open and closed in B. Hence, B is not connected unless A = B. # Let S be a connected space. If p is a point of S such that S-{p} is disconnected, then p is called a <u>cut point</u> of S; otherwise, p is a <u>non-cut point</u>. If A is a subset of a connected space S such that S-A is not connected A is said to <u>separate</u> S. It is obvious that the property of being either a cut point or a non-cut point is a topological property. 2.31 Theorem. Let (S, γ) be a connected space and let M be a connected subset of S such that M separates S, i.e., $S - M = A \cup B$ separation. Then $A \cup M$ and $B \cup M$ are both connected. Proof. Suppose A U M is not connected; let A U M = A_1 U A_2 separation. M is connected; therefore, M \subseteq A_1 , say. Thus, A_2 is contained in A. Now, consider S = (A U M) U B = A_2 U (A_1 U B). \overline{A}_2 \cap A_1 = ϕ and since A_2 \subseteq A and \overline{A} \cap B = ϕ , \overline{A}_2 \cap B = ϕ . Hence \overline{A}_2 \cap (A_1 U B) = ϕ . Furthermore, \overline{A}_1 \cap A_2 = ϕ and since \overline{B} \cap A = ϕ , \overline{B} \cap A_2 = ϕ . Hence, A_2 \cap (\overline{A}_1 U B) = A_2 \cap (\overline{A}_1 U B) = A_3 \cap (\overline{A}_1 U B) = A_4 separation which is a contradiction. Thus, \overline{A} U M is connected. The same proof is valid for B U M. # 2.32 Corollary. If p is a cut point of a connected space S such that S-{p} = A \cup B separation, then A \cup {p} and B \cup {p} are connected. # A family G of sets is a <u>cover</u> of a set X if each point of X belongs to some member of G. The family is an <u>open cover</u> of X if each member of G is an open set. A <u>subcover</u> of G is a subfamily which is also a cover. A topological space S is said to be <u>compact</u> if every open cover of S has a finite subcover. A subset X of a topological space S is said to be compact if, with the relative topology, the subspace X is compact. A topological space S is called countably compact if every countable open covering of S contains a finite subcovering. A collection of closed sets in a topological space is said to have the <u>finite intersection property</u> if the intersection of any finite number of sets in the collection is not empty. 2.33 Theorem. A space S is compact if and only if every family of closed sets with the finite intersection property has a non-empty intersection. Proof. A. Let S be compact; let $\P = \{F_v \mid v \in I \text{ where } I \text{ is an index set} \}$ denote a family of closed sets in S with the finite intersection property. Consider the collection $G = \{ \sim F_v \mid v \in I \}$ of all complements of sets in \P . Each $\sim F_v$ is open in S. Assume $\bigcap_{V} F_V = \emptyset$. Then $\sim \bigcap_{V} F_V = S$. However, $\sim \bigcap_{V} F_V = \bigcup_{V} F_V$. Hence, the collection G is an open covering of S. Since S is compact, a finite number, say $\sim F_v$, $\sim F_v$, $\sim F_v$, of sets in G cover S. Therefore, $\bigvee_{i=1}^{k} \sim F_v = S$ and so, by De Morgan's law, $\sim \bigcap_{i=1}^{k} F_v = S$. Hence, $\bigcap_{i=1}^{k} F_v = \sim S = \emptyset$. This is a contradiction since the family \P was supposed to have the finite intersection property. Thus the assumption that $\bigcap_{V} F_v = \emptyset$ is false. B. Let S have the property that any family \mathfrak{F} = $\{F_v \mid v \in I\}$ of closed sets with the finite intersection property has a non-empty intersection. Then, let $G = \{G_v \mid v \in I\}$ be an open covering of S. Assume that no finite subset of G covers S. Then, if $\{G_{v_1}, G_{v_2}, \ldots, G_{v_k}\}$ is any finite subset of G, k V_1 V_2 k V_k The proof of the following theorem is an analogue of the proof of theorem 2.33. - 2.34 Theorem. A space S is countably compact if and only if every countable family of closed sets with the finite intersection property has a non-empty intersection. # - 2.35 Theorem. If a space S is countably compact, then every infinite subset of S has a limit point in S. <u>Proof.</u> Let A be any infinite subset of S and let $\{x_1, x_2, \ldots\}$ denote any countable infinite subset of A. Let $x_i \neq x_j$ for $i \neq j$. Assume that the set $\{x_1, x_2, \ldots\}$ has no limit point in S. Then, by corollary 2.2, no subset of $\{x_1, x_2, \ldots\}$ has a limit point in S. In particular, the sets $F_n = \{x_n, x_{n+1}, \ldots\}$ are all closed sets in S. Furthermore, the countably family $\{F_n \mid n \text{ is a natural number}\}$ has the finite intersection property since $\{x_1, x_2, \ldots\}$ is infinite. However, $\bigcap_{n=1}^\infty F_n$ is empty which contradicts theorem 2.34. Thus, the assumption that $\{x_1, x_2, \ldots\}$ has no limit point is false. Hence A has a limit point in S. # 2.36 Theorem. If f is a continuous function from a compact space S onto a space T, then T is compact. Proof. Let $G = \{G_v\}$ be any open covering of T. The collection $\{f^{-1}(G_v)\}$ constitutes an open covering of S. Since S is compact, a finite number of these sets, say $f^{-1}(G_v)$, $f^{-1}(G_v)$, ..., $f^{-1}(G_v)$ cover S. Then $S = \bigcup_{i=1}^k f^{-1}(G_v) = f^{-1}(\bigcup_{i=1}^k G_v)$ and hence $\bigcup_{i=1}^k G_v$ is a cover of T; so T is compact. # 2.37 Corollary. Compactness is a topological property. # Let P be a set and let \leq be a binary relation in P such that for any x, y and z in P the following conditions hold: - 1) $\vec{x} \leq \hat{x}$, and - 2) $x \le y$ and $y \le x$ imply x = y, and - 3) $x \le y$ and $y \le z$ imply $x \le z$. Then \leq is called a <u>partial ordering</u> for P and the pair (P, \leq) is said to be a <u>partially ordered set</u>. Let Y be a subset of (P, \leq), Y is <u>simply ordered</u> by \leq if for every x and y in Y, x \leq y or y \leq x. Hausdorff's Maximum Principle. Every partially ordered set P contains a maximal (relative to inclusion) simply ordered subset £, i.e., £ is not contained properly in any other simply ordered subset of P. We use Hausdorff's Maximum Principle to prove the next theorem. 2.38 Theorem. A compact, connected T₁-space S with more than one point contains at least two non-cut points. Proof. A. Let N denote the set of non-cut points of S. Assume N = ϕ or N = $\{s\}$. Then, since S contains more than one point, there exists a cut point c in S. Let S= $\{c\}$ = AUB separation. Let $s \in B$, then N \subseteq B and so N \cap A = ϕ . This means that every point of A is a cut point of S. For each x in A, let $A_x \cup B_x$ denote a separation of S- $\{x\}$. Let $c \in B_x$. By corollary 2.32, $A_x \cup \{x\}$ is connected in S. Now, since $c \in B_x$ and $c \neq c$, $c \in A_x \cup \{x\} \subseteq S-\{c\} = A \cup B$. Also, since $c \in B_x \cup \{x\}$ is connected and $c \in A_x \cup \{x\} \subseteq \cup$ B. The Hausdorff's Maximum Principle will be invoked on the partially ordered set P, but first it must be shown that if $q \in A$ and $p \in A_q$, as defined above, then $A_p \cup \{p\} \subseteq A_q$ and $q \notin A_p \cup \{p\}$. So, let $q \in A$; q is then a cut point of S and $S-\{q\}=A_q \cup B_q$ separation. Now let $p \in A_q$. $(A_p \cup \{p\}) \cap (B_p \cup \{p\})=\{p\}. \text{ Hence, } q \notin A_p \cup \{p\} \text{ or } q \notin B_p \cup \{p\}. \text{ Now, } p \notin B_q \text{ since } p \in A_q. \text{ Therefore, } A_p \cup \{p\} \notin B_q \text{ and } B_p \cup \{p\} \notin B_q. \text{ Since } c \notin B_p \text{ and } c \notin A_q, B_p \cup \{p\} \notin A_q.$ Furthermore, since $B_p \cup \{p\} \not\triangleq A_q$ and $B_p \cup \{p\} \not\triangleq B_q$, and since $B_p \cup \{p\}$ is connected, $B_p \cup \{p\} \not\triangleq A_q \cup B_q$. Therefore, $q \in B_p \cup \{p\}$. Since $p \in A_q$, $p \neq q$. Hence, $q \notin A_p \cup \{p\}$, and so $A_p \cup \{p\} \subseteq A_q$. C. Now by the Hausdorff's maximum principle, there exists a maximal simply order subset & of the set P = {M | $M = A_x \cup \{x\}$ for $x \in A\}$. Since S is a T_1 -space, $A_x \cup B_x$ is open in S and so is B_x . Thus, $A_x \cup \{x\}$ is closed in S for every x in A. Since \mathcal{L} is simply ordered and A, U $\{x\} \neq \emptyset$ for all x in A, \mathcal{L} satisfies the finite intersection property. Since S is compact, $\bigcap \mathcal{L} \neq \emptyset$ by theorem 2.33. Let $\alpha \in \cap \mathcal{L}$. Then $\alpha \in A$. Hence, by the original assumption, α is a cut point of S. Let $S-\{\alpha\}=A_{\alpha}\cup B_{\alpha}$ separation. As in part A above, $A_{\alpha} \cup \{\alpha\} \subseteq A$. Let $y \in A_{\alpha}$. By part B, $\mathbf{A}_{\mathbf{v}} \ \mathbf{U} \ \{\mathbf{y}\} \subseteq \ \mathbf{A}_{\alpha} \ \text{and} \ \alpha \notin \ \mathbf{A}_{\mathbf{v}} \ \mathbf{U} \ \{\mathbf{y}\}. \quad \text{Thus, } \mathbf{A}_{\mathbf{v}} \ \mathbf{U} \ \{\mathbf{y}\} \subseteq \ \mathbf{A}_{\alpha} \ \mathbf{U} \ \{\alpha\}. \quad \text{Since } \mathbf{A}_{\alpha} \ \mathbf{U} \ \{\alpha\} = \mathbf{A}_{$ $\alpha \in A_{x} \cup \{x\}$ for every $A_{x} \cup \{x\}$ in \mathcal{L} , if $x \neq \alpha$, $\alpha \in A_{x}$. Therefore, by part B, $A_{\alpha} \cup \{\alpha\} \subseteq A_{\mathbf{x}}$ for $\mathbf{x} \neq \alpha$. Hence $A_{\mathbf{y}} \cup \{y\}$ is properly contained in every $A_x \cup \{x\}$ in \mathcal{L} . Therefore, $\mathcal{L} \subset \mathcal{L} \cup \{A_y \cup \{y\}\}$ and \mathcal{L} U $\{\mathtt{A}_{\mathsf{V}} \mathsf{U}$ $\{\mathtt{y}\}\}$ is simply ordered by inclusion. This contradicts the maximality of $\boldsymbol{\mathcal{L}}$. Thus, the existence of the set \mathbf{A}_{α} leads to a contradiction. This means that a can not be a cut point. However, $\alpha \in A$ and, by the original assumption that $N = \phi$ or $N = \{s\}$, every point of A is a cut point. Thus $N \neq \emptyset$ and $N \neq \{s\}$. # If S is a connected space and M is a subset of S, then S is said to be irreducibly connected about M if no proper connected subset of S contains M. 2.39 Lemma. Every closed subset of a compact space is compact. Proof. Let F be a closed subset of a compact space S. Let G be any open covering of F. G \cup { \sim F} is an open covering of S. Hence, a finite subcovering { \sim F, G_1 , G_2 , ..., G_k } covers S where $G_i \in G$; i = 1, 2, ..., k. Hence, $\{G_1, G_2, ..., G_k\}$ covers F. # 2.40 Theorem. A compact, connected T_1 -space is irreducibly connected about its set of non-cut points. Proof. Let N be the set of non-cut points of the compact, connected Ti-space S. Assume that S is not irreducibly connected about N. Then, there exists a proper, connected subspace X of S such that N S X. Let α S - X. Then α is a cut point of S and $S - \{\alpha\} = A \cup B$ separation. Since X is connected, X \subseteq A or X \subseteq B, by theorem 2.18. Let X \subseteq A. Now, B \cup { α } is connected by corollary 2.32. Furthermore, since S is a T_1 -space, S - $\{\alpha\}$ is open in S and hence A is open in S. Thus B U { α } is closed in S; so B $U\{\alpha\}$ is compact by lemma 2.39. Therefore, B $U\{\alpha\}$ is then a compact, connected T_1 -space. Furthermore, since $B \neq \phi$ and $\alpha \notin B$, B U { α } contains more than one point. Thus, by the theorem 2.38, B U $\{\alpha\}$ contains at least two non-cut points. Let β be a non-cut point of B \cup { α } such that $\beta \neq \alpha$. Thus $\beta \in B$ and B \cup { α } - { β } is connected. Since A \cup { α } is connected and (A \cup { α }) \cap (B \cup { α } - $\{\beta\}$) $\neq \phi$, (A \cup $\{\alpha\}$) \mid U (B \cup $\{\alpha\}$ - $\{\beta\}$) = S - $\{\beta\}$ is also connected by theorem 2.23 and hence β is a non-cut point of S. However, β & B and N \subseteq A, where N is the set of non-cut points of S. Thus, the existence of the proper connected subset X of S containing N leads to a contradiction. Hence, S is irreducibly connected about N. # 2.41 <u>Corollary</u>. If S is a compact, connected T_1 -space and if N is the set of non-cut points of S and if S - $\{\alpha\}$ = A \cup B separation, then N \cap A \neq ϕ \neq N \cap B. Proof. If N \cap A = ϕ , then N \subseteq B. Since by corollary 2.32, B \cup { α } is connected, S would not be irreducibly connected about N. This contradicts the previous theorem. That is N \cap A \neq ϕ . The same proof is valid for N \cap B \neq ϕ . # Now we will state a very important theorem which characterizes compact sets in \mathbb{R}^n , Euclidean n-space. The proof of this theorem can be found in [1] pp. 284-285. - 2.42 Theorem. A subset A of Euclidean n-space, R, is compact if and only if A is closed and bounded. # - 2.43 Theorem. Any compact subset of a Hausdorff space is closed. Proof. Let F be a compact subset of a Hausdorff space S. Let p be any point in S - F. Since S is Hausdorff, for each x in F, there exists an open neighborhood $U_{\mathbf{x}}$ of x and $V_{\mathbf{x}}$ of P such that $U_{\mathbf{x}} \cap V_{\mathbf{x}} = \emptyset$. The collection $\{U_{\mathbf{x}} \mid \mathbf{x} \in F\}$ form an open covering of F. F is compact; hence, a finite number of the sets, say U , U , ..., U , cover F. The corresponding neighborhoods of p x_1 x_2 x_k and U x_1 x_2 x_k and U x_1 x_2 x_k x_1 x_2 x_1 x_2 x_2 x_3 x_4 x_5 x 2.44 Theorem. If f is a continuous function from a compact space S into a Hausdorff space T, then f is closed. Proof. Let F be any closed set in a compact space S. Then F is compact by lemma 2.39; hence, by theorem 2.36, f(F) is compact in T. Since T is Hausdorff, by theorem 2.43, f(F) is closed. # - 2.45 Corollary. Any one-one continuous function from a compact space S onto a Hausdorff space T is a homeomorphism. # - 2.46 Theorem. Let (S, T) be a compact space and let (S, T^*) be a Hausdorff space. If $T \subset T$, then $T^* = T$. <u>Proof.</u> Let $f: (S, \Upsilon) \to (S, \Upsilon^*)$ be a function defined by f(x) = x. It is obvious that f is one-one and onto. Since $\Upsilon^* \subseteq \Upsilon$, f is continuous and hence is a homeomorphism by corollary 2.45; so $\Upsilon^* = \Upsilon$. # It follows from the theorem 2.46 that a compact, Hausdorff topology on a set S is a minimal element (by inclusion) in the set of Hausdorff topologies for S. 2.47 Theorem. If (S, \mathcal{T}) is a compact, Hausdorff space and if \mathcal{T} , then (S, \mathcal{T}^*) is compact but not Hausdorff. Proof. The case (S, \mathcal{T}^*) is compact is obvious since $\mathcal{T}^* \subset \mathcal{T}$. The case (S, \mathcal{T}^*) is not Hausdorff follows from the theorem 2.46. # A subset M of a space S is called <u>dense</u> in S if $\overline{M} = S$ and a space S is called <u>separable</u> if it contains a countable dense subset. A finite subset γ of a metric space (S, ρ) is called an <u>6-dense set</u> if for every point p of S, there exists at least one point $p_i \in \gamma$ such that $\rho(p, p_i) < f$. A metric space (S, ρ) is called totally bounded if for every positive real number f, (S, ρ) has an f-dense set. 2.48 Theorem. If a metric space (S, ρ) is countably compact, when it is totally bounded. <u>Proof.</u> Assume that there exists a positive real number $\boldsymbol{\xi}$ such that (S, ρ) has no $\boldsymbol{\xi}$ -dense subset. Let p_1 be any point in (S, ρ) . Then there is a p_2 in S such that $\rho(p_1, p_2) \geq \boldsymbol{\xi}$. Similarly, there exists p_3 in S such that $\rho(p_2, p_3) \geq \boldsymbol{\xi}$. Assume that for any natural number k the set $\{p_1, p_2, \ldots, p_k\}$ of S has been defined such that $\rho(p_i, p_j) \geq \boldsymbol{\xi}$ for $i \neq j$ and $1 \leq i, j \leq k$. Since, by assumption, $\{S, \rho\}$ is not totally bounded, there exists a point p_{k+1} in S such that $\rho(p_i, p_{k+1}) \geq \boldsymbol{\xi}$ for $1 \leq i \leq k$. Thus, a countably infinite set $\{p_1, p_2, \ldots\}$ is defined with the property that $\rho(p_i, p_j) \geq \boldsymbol{\xi}$ for $i \neq j$. Since S is countably compact, $\{p_1, p_2, \ldots\}$ has a limit point q in S by theorem 2.35. Then there exists a p_j such that $p_j \in B(q, \frac{\epsilon}{2})$. Let $\delta = \rho(q, p_j)$. Then $\delta < \frac{\epsilon}{2}$. Similarly, there exists $p_i \neq p_j$ such that $p_i \in B(q, \delta)$. Hence $\rho(p_i, p_j) \leq \rho(p_i, q) + \rho(q, p_j) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. This is a contradiction since $\rho(p_i, p_j) \geq \epsilon$. Hence (S, ρ) is totally bounded. # 2.49 Theorem. If (S, ρ) is totally bounded, then S is separable. <u>Proof.</u> For any natural number n, let A_n denote a 1/n-dense set for the totally bounded space (S, ρ) . Let $D = \bigcup_{n=1}^{\infty} A_n$. D, as the union of a countable set of finite sets, is countable. Let p be any point in S. By the archimedean order on the reals, if f is any positive real, there exists a positive integer n such that 1/n < f. Hence, there exists f in the f in the f such that f in