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CHAPTER II S J )

TOPOLOGICAL CONCEPTS

Let S be a given mn-emp;y set of objects called the points
of S. A topology in S is a non-empty collection T of subsets of S
called open sets satisfying the following three axioms
l) ¢ and S are open.
2) The union of any family of open sets is open.
3) The intersection of any finite number of open sets is
open.

The pair (S,J ) is called a topological space. When no

confusion seems possible we may forget to mention the topology and
write "S is a topological space" or simply "S is a space".

Let (S,9) be a given topological space. By a neighborhood

of x € S is meant any subset N of S such that there is UE€ T and

X € UEN. A family B&Tis called a basis for T if each open set
is the union of members ofﬁ . In other words, for every U in 7 and
each point x in U, there is a V€ § such that x € V & U. A subset
"/of T is called a subbase for T if the set of all intersection of
finitely many sets in"Y is a base for 7. A point p in S is called
a limit point of A €& § if every neighborhood N of p contains at
least one point of A - {p}. The set of limit points of the set A
is denoted by A' and is called the derived set of A. Following

from the definition of limit point we have :
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2.1 Theorem. If A and B are subsets in the space (S,7 ), then

(AVB)' =A'UB'. #

2.2 Corollary. If A and B are subsets in the space (S,7") such

that A€ B, then A'e B'. #

Let S be a space. The closure of A £ S, denoted by i,
is defined to be the set A U A'. It is obvious that if A and B
are subsets of S then AU B = AVUB. A€ S is defined to be closed

if A= A. A point p in S is said to be an interior point of A& S

if there exists a neighborhood N of p such that N € A. The interior
of A is defined to be the set of all interior points of A. Now,

the following theorems are easy to prove.

2.3 Theorem. A set G in a space S is open if and only if G con-

sists entirely of interior points. #

2.4 Theorem. A set F in a space S is closed if and only if the

complement of F in S, S - F, is open. .#

By using DeMorgan's Laws and the axioms of open sets, we

have

2.5 Theorem. The closed sets of a space S satisfy the following
three conditions :

1) ¢ and S are closed.

2) The intersection of any family of closed sets is closed,

3) The union of finite number of closed sets is closed. #



A space S is said to be a Tl—sﬁace if for any point p in
s, {p} is a closed subset of S. If any two distinct points p and
q in S belong to disjoint neighborhoods, then S is called a

Tz-space or a Hausdorff space.

A function £ from a space S into a space T is said to be
continuous if for any open set U in T f_l{U), the set of points
of S mapped by f into U, is open in S. Equivalently, f is con-
“tinuous provided f_l(F) is closed whenever F is closed. Let f : s
S + T be a function from a space S into a space T. f is continu-

ous at p € S if for every neighborhood U of f(p) there is a neigh-

borhood V of p such that £(V) & U. And the following theorem is

valid.

2.6 Theorem. Let S and T be topological spaces. Then a function
f from S into T is continuous if and only if it is continuous at

every point ofiS. #

If £ is a bijection from a topological space onto a topo-
y =1 . -
logical space such that both f and £ are continuous, then f is

called a homeomorphism. If a homeomorphism h : S - T exists, then

two spaces S and T are said to be homeomorphic, and each space is

said to be a homeomorph of the other. A property which when pos-
sessed by a space is also possessed by each of its homeomorphs is

called a topological property.

Let £ and g be functions from topological space to topolo-

gical space such that the composition gof is defined. It can be



proved that the following is valid.

2.7 Theorem. If f and g are continuous, so is gof. If £ and g

are homeomorphisms, then f-l, g_l and gof are also homeomorphisms. #

A function f from a space S into a space T is called open
(closed) if the image in T of every open (closed) set in S is open
(closed) in T. It is obvious that if £ is an open (closed), con-
tinuous bijection from a space S onto a space T, then £ is a homeo-
morphism.

Let S be a space with topology 7 and X is a non-empty sub-
set of S. It is obvious the collection {U|U = G N X for some
GET} is a topology for X. This topology is called the relative
topology on X and is denoted by r-7, and X is called a subspace
of S. And we have that a subset F of X is closed in X if and only

if there exists F* a closed set in S such that F = F* N X.

2.8 Theorem. Let X be any subspace of a space S and let A be any
subset of X. Then a point p in X is a limit point of A in X if

and only if p is a limit point of A in S.

Proof. A. Let p in X be a limit point of A in X and let
G be any open set in S containing p. G N\ X is open in X and con-
taining p; therefore, G N X contains at least one point of A dif-
ferent from p. Hence G contains a point of A different from p and

so p is a limit point, in S, of A.



B. If p, in X, is a limit point, in S, of.A con-
taihed in X and G is any open set in X Iwhich contains p, then there
exists G*, open in S, sucl'; that' G*MN X = G. Now G* contains at
least one point of A different from p by hypothesis. Since Ag X,
G*MN X = G must cbni;.'ain at least one point of A different from p.

Hence p is a limit point, in X, of A. #+

2.9 Theorem. If X is any subspace of a space S and A is any sub-
set of X, then Ex = ES N X, where ix and ;‘S denote the closureé of

A in X and in S, respectively.

Proof. L.et A)'{ and Aé denote the derived sets of A in X,
and in S, respectively; then Ex = AV A}'{, by definition ojE closure,
By theorem 2.8, A U A}'{ = AN (Aé NnXxX). A, A;( and X are alll sub-
sets of S; by the distributive law for union and intersection of
sets, AV (A} N X) = AVAY) N (AU X = A, 0 (AU X). since

AS X, AV X = X. Hence, £x=ﬁsﬁ Kup ot

The following theorem-is obvious

2.10 Theorem. If (S,7) is a topological space and if ME X E S,
then the relative topology for M from (X, r-7) is the same as the

relative topology for M from (S,7"). #

2.11 Theorem. If S is any space such that S = FlU F2U el Fk'
where k is a natural number and each Fi is closed in S, if

{fl, f2, ST fk} is a set of functions such that
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T, and if fi'(x) = fj (x) for x € Fiﬂ Fj' then the function h from

o= B 2y , k is a continuous function from Fi into a space

S into T defined by h(x) = fi{x) for x in Fi, is continuous on S,

-1
Proof. Let F* be any closed set in T, then h (F*) =
k
i\._llfil{F*) by definition of h. Since fi is continuous on Fi,
f;l(F*} is closed in S. Hence h_l(F*J is the union of finite num-

ber of closed sets in S. Thus, h is continuous on S. #

By a metric in a non-empty set S, we mean a non-negative
real-valued function p : S% S » R satisfying the following condi-

tions : For all a, b, ¢ €8,

1) p(a, b) 0 if and only if a = b.

2) p(a, b) p(b, a).
3) pla, b) $,pla;, © +plc, b).

The pair (S, p) is called a metric space. If p € S and

€> 0, p(p,€) is defined to be {s € S l p(p, s) <€}. Define a
family J° of subsets of S as follows : For arbitrary subset U of
S, U is in 9’ if and oa;lly if for any point p &€ U, there exists a
positive real number & such that U contains B(p,€). One can
easily verify that the family ¥ is a topology on S. The topology

on S is called the topology determined by the metric p. A given

topological space S is said to be metrizable if there exists a

metric p : S x S +~ R which defines the topology for the space S.
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The following theorem is obvious.

2.12 Theorem. If S is a metrizable space and X is a subspace of

S, then X is metrizable. #

Let h be a homeomorphism from a space (S,7) onto a metri-
zable space (T, o*). Suppose p* is an admissible metric for T

which induces ¥*. For any two points p and g'in S, let p(p, Q) =

p*(h (p), h (q)). It can be shown that p is a metric for S which

induces 9. Thus, (S,7T) is metrizable and we have the following :
2.13 Theorem. Metrizability is a topological property. #

Let (S, p) be a metric space, A a non-empty subset of S

and p is a point in S, then the distance p(p, A) between a point

p and A is defined by p(p, A) inf {p(p, a) l a € Al}.

2.14 Theorem. Let (S, p) be a metric space and let A be a non-

empty subset of S. Then p(t, A) = 0 if and only if t € A. #
From theorem 2.14, we have

2.15 Corollary. If F is a non-empty closed subset of a metrizable
space S with metric p and if x is any point which is not in F,

then p(x, F) is positive. #

It is clear that if the topological space S is metrizable

then it is also a Hausdorff and Tl—space. Let (S, p) be a metric space



and let A be a non-empty subset of S. A is said to be bounded if
there exists a positive real number M such that p(x, y) <M for
all x and y in A.

The most important metric space is the Euclidean n-space

n I
R where R = {(x;, X,

numbers} and the metric p on mn is defined by

ross xn] | xiem and R is the set of real
n
2. %
= (& - 3
PURy s Xyr weer X))o (W0 ¥yn <eos ¥,)) = (& (%= v.) )
Inlparticula.r, if n = 1 the metric p on R is defined as p(x, y) =
|x--{_!y| for x and y inTR. The metric p on IRn as defined above is

called the usual metric.

A topological space (S, ) is connected if S contains no
subset, except S and ¢, which is both open and closed. A space

is called disconnected if it is not connected. It is immediate

from the definition that a space S is connected if and only if S
is not the union of two non-empty, disjoint, open sets. From now
on we use the notation "S = AV B separation" when 1) S = A UB
and 2) ANB = ¢ and 3) A # ¢ # B and 4) A and B are both open

i S

2.16 Theorem. If f is a continuous function from a space (S,7 )
onto a space (T, ¥*) and if (S,9") is connected, then (T, I*) is

connected.

Proof. Let A be any non-empty, proper, open subset in the
; ; = . .
space (T, *). f is continuous; therefore, £ ~(A) is open 1in S.

Since A is non-empty and proper, ¢ # fnl(A) # S. Since S is
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-1
connected, £ ~(A) is not also closed. Thus A can not be closed.

Hence, (T, ¥*) is connected. #
2.17 Corollary. Connectedness is a topological property. #

A subset M of a space (S,7) is called a connected (dis-
connected) subset in (S,9) if (M, r -7 ), where r -7 denotes the

relative topology, is a connected (disconnected) space.

2.18 Theorem. Let (S,97) be a space; let S = AV B separation,

and let C be a connected subset of S. Then CE& A or C& B.

Proof. Since A and B are open in S, CMA A and C A B are
open in the subspace (C, r =7’). Furthermore, (C O A) VU (CN B)
=Cand (CNA) N(CAB) = ¢. Since C is connected, CN A = ¢

or CNB=¢. Hence, CEBor CE A. #

2.19 Lemma. If (S,J) is a space, M &S, M is connected in (S,7")
and (X, r -9*) is a subspace of (S,7T ) such that M & X, then M is
a connected subset of (X, r -J) where r -J denotes the relative

topology.

Proof. By theorem 2.10, the relative topology for M from
(s,7) is the same as the relative topology for M from (X, x =
Thus, there is just one subspace (M, r -7 ) based on M an one re-
lative topology. By hypothesis, this topology contains no proper,

non-empty, open sets. #
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2.20 Theorem. If M is a connected subset of a .space (s,7) and

if ME NE M, then N is a connected subset of (5,7 ).

Proof. By lemma 2.19, M is a connected subset of N. Sup-
pose N = A VU B separation. By theorem 2.18, ME& A, say. A is
closed in N; hence the closure of M in the subsg;ace (N, r =) is
contained in A. By theorem 2.9, the closure of M in (N, r -7")
is M N N, where as usual M denotes the closure of M in (S,7).
However, since N € M by hypothesis, MAN = N.. Hénce, N € A and

B = ¢ which is a contradiction. 'Thus, there is no separation of

N. #
2.21 Corollary. If M is a connected subset of (S,J ), then so
is M. #

A finite sequence {Ml' M

gttt Mk} of distinct sets in_a

set X is called a bridge between Ml and Mk if Miﬁ Mi+l # ¢ for
alli=1, 2, ..., k-1: A collection K of sets in a set X is called

bridged or a bridged system if for any two ;.sets A and B in K, there

is a bridge between A and B whose sets are all in K.

2,22 Theorem. Let (S,9") be a space and let {Cv} be a collection
of connected subsets of S which form a bridged system. Then ‘k‘.; Cv

is connected.

Proof. Suppose L\?’ C, is not connected. Let LVJ Cv = A\ B

separation. Let C_be any set in {CV}. Since C_ is connected, by
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thecorem 2.18, Cvt_'-_ A, say. Let C be any other set in {C\'r}" Then,

there exists a bridge C_ =C, , C, , -+, C, =C_in {C_ }. Let
Y i, T, i o X

P consist of the subset of natural numbers which are greater than

k along with the subset of natural numbers mp such that Ci € A.

m
1 belongs to P since Ci = 'Cv € A. Assume j is in P for S
1
Then C, & A. Hence, since C, N C, = gy B B K TE ] 2R
3ia i, i, i,
J | j+l j+1

j + 1 is in P, by the definition of P. Hence all natural numbers
4 I3 . c
are in P and C & A. since C  was any other set in {Cv}’ ycv_ A

and B = ¢. This contradicts the definition of AU B separation.

Hence UCV‘ is connected. #
v

2.23 Theorem. Let {C } be a collection of connected subsets in a

space (S,T) such that M\C_ # ¢. Then VC is connected.
v Vv v

Proof. Let C. and C. be any two sets in {c_}. {c_, c }
—_— o v o B

B

is a bridge from C_to T Hence, {Cv} is a bridged system of con-

g

nected sets, and so by the previous theorem, \J Cv is connected. #
v

2.24 Theorem. Let (S,J) be a space such that each pair of points

in S is contained in a connected subset of S. Then (S, ) is con-

nected.

Proof. Let s be a given point of S and let x be any point
of S. There exists a connected subset Zx containing s and x.
S = \:.g Zx' f;\ Zx i ¢_ and =2ach’ Zx is connected. Hence,

{S,g‘) is connected by the previous theorem.
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2.25 Theorem. The closed interval [a, b] = {x | a < x < b where

a < b} is connected infR, the space of real numbers.

Proof. Sul;pose [a, b] = AV B where A and B are closed
subsets of [a, b]. Let b be in B. Since A is a bounded subset
of real numbers, if A is not empty, then A has a least upper bound
Y, and a < y < b. Since A is cloged, y is in A. If Yy = b, then ¥
is in Band ANB # ¢. If y < b, then {x | Y < x <b} €B by de-
finition of ¥, _a.nd since B is closed, Yy is in B Thus, y is in

A N B and hence no separation of [a, b] exists. #

2.26 Theorem. The open interval (a, b) = {x | a < x < b, for

a < b} is connected inmR.

Proof. Let p and g be any two distinct points in (a, b)
and let p < q. -Then [p, q] € (a, b). Since [p, g] is connected

by theorem 2.25, (a, b) is connected by theorem 2.24. #

2.27 Corollary. The "half-open" interval [a, b) = {x | &< =<8}

and (a, b] = {x | a < x < b} are connected inTR.

Proof. The sets [a, b) and (a, b] lie between (a, b) and

its closure [a, b], and so, by theorem 2.20, are connected. #

2.28 Theorem. Let M be any connected subset of R. If a and b

belong to M such that a < b, then {x | a < x < b}l is a subset of M.

Proof. Let a < y < b. Assume y is not in M. The sets
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A={x| x<y} and B = {x 1 x > Y} are open subsets ofTR. Hence,
MN A and MA B are open in the subspace M and M = (M A A) V (M A B)
separation. This is a contradiction since M is connected. It

-

follows that Yy belongs to M and hence {x | a<x<blEM #

Let (S,T) be a topological space. A subset C of S is a
component of S; provided that C is connected, but is not a proper
subset of another connected subset of S. It i$ obvious that if S

is connected, then S itself is the only component of S.
2.29 Theorem. In any topological space S, components are closed.

Proof. Let S be a topological spaée and let C be a compo-
nent of S. Since C is connected, by corollary 2.21, C is connected,

Since C is a component, C = C and hence C is closed. #.

2.30 Theorem. In a topological space S, any non-empty connected

subset which is both open and closed is a compgnent.

Proof. Let A be a non—empt? connected subset of S which

~is both open and closed. Furthermore, assume AQ B. By the defi-

nition of relative topology, A is both open and closed in B, Hence,
B is not connected unless A = B. #
Let S be a connected space. If p is a point of S such that

s-{p} is disconnected, then p is called a cut point of S; otherwise,

p is a non-cut point. If A is a subset of a connected space S such

that S-A is not connected A is said to seéaraté S. It is obvious
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that the property of being either a cut point or a non-cut point

is a topological property.

2.31 Theorem. Let (S,‘I;') be a connected space and let M be a con-
nected subset of S such that M separates S, i.e., S -M=AUB

separation. Then AV M and B U M are both connected.

Proof. Suppose AU M is not connected; let AU M = Alu A,

separation. M is connected; therefore, M & Al, say. Thus, AZ is
(AU M) U B = A2U (Alu B).

Il

contained in A. Now, consider S
112 N Al = ¢ and since Az'_::-_ Aand AN B = ¢, Kzn B = ¢. Hence

izﬂ (AlU B) = ¢. Furthermore, ilﬁ A = ¢ and since BN A = ¢,

B f"\Az = ¢. Hence, Azﬁ (ﬁlU B) = A, n (AITB) = ¢. Therefore,
S = Az U {Alu B) separation which is a contxafiiction. Thus, AU M

is connected. The same proof is valid for B U M. #

2.32 Corollary. If p is a cut point of a connected space S such
that S-{p} = A U B separation, then A U {p} and B VU {p} are con-

nected. # 0 (j 5 1 3 3

A family G of sets is a cover of a set X if each point of
X belongs to some member of G. The family is an open cover of X
if each member of G is an open set. A subcover of G is a subfamily
which is also a cover. A topological space S is said to be compact
if every open cover of S has a finite subcow'rer. A subset X of a

topological space S is said to be compact if, with the relative

1 17631541
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topclogy, the subspace X is compact. A topological space S is

called countably compact if every countable opé'n covering of S

contains a finite subcovering. A collection of closed sets in a

topological space is said to have the finite intersection property

if the intersection of any finite number of sets in the collection

is not empty.

2.33 Theorem. A spece S is compact if and only if every family
of closed sets with the finite intersection property has a non-

empty intersection.

Proof. A. Let S be compact; let‘f ='.{Fv | v &€ I where I
is an index set} denote a family of closed sets in S with the fi-
nite intersection property. Consider the collection
G = {~FV | v € 1} of all complements of sets in 9%, Each -F, is
open in S. Assume QFV = ¢. Then ~9Fv = 5. However, ~QFV = H SE. .

Hence, the collection G is an open covering of S. Since S is com-

pact, a finite number, say ~E‘v " NFV B ateiay «-Fv of sets in G cover

k 1 2 k k
S. Th .~ = ' ~ N = s.
er;:fore, i1 Fw:.L S and so, by De Morgan's law, i=lFVi
Hence, iQZLFv = .8 = ¢. This is a contradiction since the family
i

Fwas supposed to have the finite intersection:property. Thus the

assumption that Q Fv = ¢ is false.

B. Let S have the property that any family ‘31
= {Fv | v € I} of closed sets with the finite intersection pro-

perty has a non-empty intersection. Then, let G = {GV | v e 1}
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be an open covering of S. Assume that no finite subset of G covers

S. Then, if {6 , G , ..., G } is any finite subset of G,

¥ Wi Vi k

k :
\v} : ~\ . n . X

i=lei # S. Hence, -file, # ¢. Therefore, A Gvi # ¢. Hence,
if R denotes the family {~Gv_| v € I} of complements of sets in G,
Psatisfies the finite intersection'property. .Hence,.(?~Gv is not
empty; therefore, ~¥;G # ¢. Thus, &)(;_ is not equal to S. This

-V v
is a contradiction since {Gv |v € I} was a.covering of S. Hence,

the assumption that no finite subset of G covers S is false and so

S is compact. #

The proof of the following theorem is an analogue of the

proof of theorem 2.33.

2.34 Theorem. A space-S is countably compact if and only if every
countable family of closed sets with the finite intersection pro-

perty has a non-empty intersection. #

2,35 Theorem. If a space S is countably compact, then every infi-

nite subset of S has a limit point in S.

Proof. Let A be any infinite subset of S and let

{xl, X4 ....} denote any countable infinite subset of A, Let

..-«} has no limit

Bes Ak

2!
point in S. Then, by corollary 2.2, no subset of {xl, X

x, o xj for i # j. Assume that the set {xl, x

2'
has a limit point in S. In particular, the sets F_ = {xn, xn+l""}

are all closed sets in S. Furthermore, the countably family

{Fn | n is a natural number} has the finite intersection property
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oo

since {xl, X., .++.} is infinite. However, A:an is empty which

2|f
contradicts theorem 2.34. Thus, the assumption that {xl, Xy .

has no limit point is false. Hence A has a limit point in S. #

2.36 Theorem. If f is a continuous function from a compact space

S onto a space T, then T is compact.

Proof. Let G = {qv} be any open covering of T. The col-
=7 4
lection {£ (%,)} constitutes an open covering of S. Since S is
, -1, -1
compact, a finite number of these sets, say £ (G ), £ (G_v Yi
1 NN L K 2
., £ (G ) cover S. Then s = U f & ) = ¢ (.\V G, )-and
v i=1 =]V,
k “k i i
hence fgle is a cover of T; so T is compact. #

2.37 Corollary. Compactness is a topological property. #

Let P be a set and let < be a binary relation in P such
that for any x, y and z in P the following conditions hold

‘,!.} # <--*, and If_-.:

2 . S

A

g.and y < x imply x y, and

3) x

I A

y and y < z imply X < z.

Then < is called a partial ordering for P and the pair (P, <) is

said to be a partially ordered set. Let Y be a subset of (P, <),

Y is simply ordered by < if for every x and y in ¥, x <yory <x.

Hausdorff's Maximum Principle. Every partially ordered set P con-

tains a maximal (relative to inclusion) simply ordered subset L,

i.e., & is not contained properly in any other simply ordered subset
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of P. We use Hausdorff_'s Maximum Principle to prove the next

theorem.

2.38 Theorem. A compact, connected Tl—.space S with more than one

point contains at least two non-cut points.

Proof. A. Let N denote the set of non-cut points of S.
Assume N = ¢ or N = {s}. Then, since S contains more than one
point, there exists a cut point c in S. Let s={c} = AU B separa-
tion. Let s € B, then N€ B and so NA A = ¢. This means that
every point of A is a cut point of S. For each x in A, let Axu Bx
denote a separation of S-{x}. Let c € B . By corollary 2.32, 4
AxU {x} is connected in §. Now, since c € B, and X # c,
AV {x} & s-{c} =AWV B. Also,.’g'.'sit}ce AxU {x} is connected .aﬁd
x € A, AxU {x} €& A, by theorem 2.18. Thus, the set P = {AKU {x}

such that x € A}l is a set of subsets of A partially ordered by

inclusion.

B. The Hausdorff's Maximum Principle will be in-
voked on the partially ordered set P, but first it must be shown
that if ¢ € A and p € Aq, as defined above, then APU it & Aq
and q¢ Apu {p}. so, let g € A; g is then a cut point of S and
s-{g} = Aqu.]aq separation. Now let p € hq. .
(APU {p}) N (BP\J {p}) = {p}. Hence, q¢ Apb {p} or .
a¢ Bpu {p}. Now, p ¢ Bq since p € Aq. Therefore, ApU {p} ¢ B(‘I

and ]_3PU pt & B . Since c €B_andc ¢ Ay B,V () $ A
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Furthermore, since BPU {p} $ Aq and BPU {p} $ Bq, and since
B]:_J V {p} is connected, BP Vv {p}$ Aqu Bq. Therefore, gqé& BPU {p}.

Since p € A , . Hence, A U 15 andsoAl  {p}E A .
PEA,P#q 1 §A Vo >V e %

C.. Now by the Hausdorff's maximum principle, there
exists a maximal simply order subset& of the set P = {M l

l-—spac_e, AxU Bx bs opén

M=2a VU {x} for x € A}. Since s is a T
in S and so is B_. Thus, AxU {x} is closed in S for every x in A.
Since & is simply ordered and AxU {x} # ¢ for all x in 3, L satis-
fies the finite intersection property. Since S is compact, NnL # ¢
by theorem 2.33. Let ¢ €M & , Then o € A. Hence, by the original
assumption, o is 4 Gut point of S. Let S-{a} = A, \ B separation.
As in part A above, A,V {a} € A, Let y €& A . By part B,

A,V y}S a  and o g AyU {y}. Thus, Ayu yvle A,V {a}. since

a € AxU {x} for every Axu {x} in L, if x #a, o € A- Therefore,
by part B, A, v e} & Ax for x # a. Hence AyU {y} is properly
contained in every Axu {x} in £. Therefore, ol = _LU{AY UV {y}}
and £ U {Ay\.) {y}} is simply ordered by inclusion. This contradicts
the maximality pfa. Thus, the existente of the set Aa 1e_ads to a
contradiction. This means that o can not be é. cut point. However,

o € A and, .by the original assumption that N = ¢ or N = {s}, every

point of A is a cut point. Thus N # ¢ and N # {s}. #

If S is a connected space and M is a subset of S, -"E_hen s
L

is said to be irreducibly connected about M if no proper connected

subset of S contains M.
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2.39 Lemma. Every closed subset of a compact space is compact.

Proof. Let F be a closed subset of a compact space S. Let
G be any open covering of F. G\ {~F} is an open covering of S.
G

Hence, a finite subcovering {~F, G -k Gk} covers S where

: A

G, € G; i=1;, 2,...+, k¢ Hence, {Gl. B, sy Gk} covers F. #

2’
2.40 Theorem. A compact, connected Tl—space is irreducibly con-

nected about its set of non-cut points.

Proof. Let N be the set of non-cut points of fl;xe co‘mpa-ct,
connected Tl—space S. Assume m;t S is not irreducibly connected
about N. Then, there exists a proper, connected subspace X ofl s
such that N€ X. ,Let a € S - X. Then a is a cut point of S and
S - {a} = AU B separation. Since X is connected, X& A ;3r X< B,
by theorem 2.18. Let X & A. Ng}w, B U {a} is connected by coro-
llary 2.32. Furthermiore, since S is a T,-space, S - {a} is open
in S and hence A is open in S. Thus BV {a} is closed in S; ‘Iso
B U {a} is compact by lemma 2.39. ‘Therefore, B U {a} is then a
compact, -connected 'I'l-space._ Furthermore, since B # ¢ and o ¢ B,
B U {a} contains more than one point. Thus, byhthe theorem 2.38,
. B U {a} contains at least two non-cut points. Let B be a non-cut
point of B VU {a} éuch_that B # ag Thus S & B and B U {a} - {B} is
connected. Since A W {a} is connected and (A U {a}) O\ (B VU {a}

- {BH) # ¢, AV {aH) W BV {a} - {B}) = s - {B} is also connected

by theorem 2.23 and hence B is a non-cut point of S. . However,
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B € B'and N € A, where N is the set of non-cut points of S. Thus,
the existence of the proper connected subset X of S containing N
leads to a contradiction. Hence, S is irreducibly connected about

N. #

2.41 Corollary. If S is a compact, connected Tl-space and if N
is the set of non-cut points of S and if S - {a} = A U B separation,

then NOA # ¢ # NN B.

Proof. .If NOA = ¢, then N€ B. Since by corollary 24 32
B VU {o} is connected, S would not be irreducibly connected about N. .
This contradicts the previous theorem. That is N A # ¢. The
same proof is valid for NN B # ¢. #

Now we will state a very important theorem which charact-
erizes compact sets in \'Rn, Euclidean n-space. The proof of this

theorem can be found in [1] pp. 284-285.

2.42 Theorem. A subset A of Euclidean n-space,mn, is compact if

and only if A is closed and bounded. #
2.43 Theorem. Any compact subset of a Hausdorff space is closed.

Proof. Let F be a compact subset of a Hausdorff space S.
Let p be any point in S - F. Since S is Hausdorff, for each x in
F, there exists an open neighborhood Ux of x and Vx of P such that
an v, * ¢. The collection {Ux | x € F} form an open covering of

F. F isi compact; hence, a finite number of the sets, say
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U ,U , «.., U , cover F. The corresponding neighborhoods of p

are V. , V , «o., V. and U A'V. =¢ fori'=1, 2, ..., k.
b4 X X X X,
1 2 i i
Hence, iélvx is a neighborhood of p which contains no point of F.
i ~

Then, p is an interior point ofe~F; so ~F is .;-?Pen and hence F is

closed. #

2.44 Theorem. If f is a continuous function from a compact space

S into a Hausdorff space T, then f is closed.

Proof. Let F be any closed set in a compact space S. Then
F is compact by lemma, 2.39; hence, by theorem 2.36, f£(F) is compact

in T. Since T is Hausdorff, by theorem 2.43, f(F) is closed. #

2.45 Corollary. Any one-one continuous function from a compact

space S onto a Hausdorff space T is a homeomorphism. #

2.46 Theorem. Let (S,7") be a compact space and let (S, T*) be a

Hausdor ff space. If J*c T , then o* =7.

Proof. Let £ : (S,T) > (S, I*) be a function defined by
f(x) = x. It is obvious that f is one-one Iand onto. Since 'J'*Q? i
f is continuous and hence is a homeomorphism by corollary 2.45; so
o =T. #

It follows from the theorem 2.46 that a compact, Hausdorff
topology on a set S is a minimal element (éy inclusion) in the set

of Hausdorff topologies for S.
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2.47 Theorem. If (S,7) is a compact, Hausdorff space and if

g"c_ T then (S, ¥*) is compact but not Hausdorff.

Proof. .The case (S, J*) is compact is obvious since 7+ T,

The case (S, 9**) is not Hausdorff follows from the theorem 2.46. #

A subset M of a space S is called i@g in S if M = S and
a space S is called seg_arable if it contains a countable dense sub-
set. A finite subset y of a metric space (S, p) is called an
€-dense set if for every point p of S, there exists at least one
point pie Y such that p(p, pi) < €. A metric space (S,p) is called

' totally bounded if for every positive real number 6, (S, p) has an

€-dense set.

2.48 Theorem. If a metric space (S, p) is countably compact, ¢then

it is totally bounded.

Proof. Assume that there exists a positive real number €
such that (S, p) has no €-dense subset. Let Py be any point in
(S, p). Then there is a P, ir} .S such that p(pl, pZJ * €. Simi-
larly, there exists P, in S such that p(pz, p3} >€. Assume that
for.any natural number k the set {pl. P,- o e pk} of S has been
defined such that p(pi, pj) > & for 3 # .3 ar.ld 1<i, j <k. Since,
by assumption, (S, p) is not totally bounded, there_. exists a point

in S such that p{pi, P ) >€ for § < 1. < k. Thus, a counta- -’

Prs1
bly infinite set {pl, Py ...} is defined ﬁitﬂ?the properi!__;y that

k+1

p(pi, pj) > ¢ for i # j. Since S is countably compact, {pl, Pyr sk
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has a limit point g in S by theorem 2.35. Then there exists a Pj
such that pje B(g, e/2:). Let § = p(q_,pj)_. Then & < ‘-72. Simi=-
larly, there exists pi # pj such that pi € B(g, §). Hence

¢

pyr By S Py, ) + p(a Py < /2 % €2 =€. This is a con-

tradiction since p(pi, pj) >€. Hence (S, p) is totally bounded. #
2.49 Theorem. If (S, p) is totally bounded, then S is separable.

Proof. For any natural number n, let An denote a 1l/n-dense
set for the totally bounded space (S, p). Let D = LI{An. D, as
the union of a countable set of finite sets, is countable. Let p
be any point in S. By the archimedean order on the reals, if € is
any positive real, there exists a positive integer n such that

1/n <& ., Hence, there exists n, in the l1/n-dense An such that

plp, ny) < 1/n, i.e., B(p, €) A D # ¢. Hence p € D. Thus S = D, #
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