CHAPTER 2

THEORY

Tn the analysis of flexibility of ninety degree single
mitered pipe bends, we first determined them as a kind of
lobster back bend but not smooth as the lobster bend. Lane
and Roag15)found that by assuming that the lobster-back bend
was replaced by a smooth bend of the same equivalent radius
R, flexibility factors are obtained from Gross and For&g)
expression for overall defiection of a smooth bend fitted

with equal tangent pipes
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EQUIVALENT SMOOTH BEND.

The flexibility factors obtained are then compared
with the values from the three terms, third approximation

of Von Karman's analysis for equivalent smooth bend
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From the comparisionit is seen that flexibility of
lobster-back bend varied between 75-85% of the smooth bend
value. Since the ninety degree single mitered pipe bend is
not as smooth as the lobster back bend, we must find out at
what equivalent radius R the flexibility factor from Gross
and Ford cxpression will agree with that from the third
approximation of Von Karman's analysis. These will indicate
that at what equivalent radius will the smooth bend corres-

pond to ninety degree single mitered bend.

In the analysis of stress around ninety degree mitered
pipe bend we made the first assumption that the angle between
pipe legs was always ninety degrees. The pipe that had no
internal pressure was taken as the cantilever beam which was
subjected to bending and axial compression by forces or
moments applied at the free endin the plane of the bend.
Only the stresses at the same circular cross-section on the
outer surface of the pipe would be determined and analysed.
The second assumption was that the pipe material was isotropic
material which was the material that had the same properties
in all dircctions. The longitudinal stresses,szfrom experi-
mental method by the use of strain-gage technique and Hooke's

(19)

law for isotropic materia were compared with the values
from combined stress theory due to bending and axial compres-
sion. To make it easy and simple for this theory, it was

assumed that the pipe was not warp or distorted, circular

cross=-sections remain circular after loaded.



The stress,sZ due to bending moment,M and the compres=-

sive force in an axial direction,Fz could be calculated from :
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where positive and negative signs expressed for tension
and compression respectively.
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From the experimental study, by the use of strain
gages and strain-gage technique as will be described in
appendix I, the values of strain in longitudinal,eE and
circumferent:i.al,eo directions could be determined. By assum=-
ing that net strain in radial direction,er was zero, the
stresses in longitudinal,sz. circumferential,sa and radial,sr
directions could be determined from Hooke's law for an iso-

tropic materiai19) as follows:
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Te find sze we made an assumption that the pipe com-
posed of infinite horizontal plane and shear strain,e,
vary from the top to the bottom plane in the form of parabo-
lic curve where e = o at top and bottom plane ( position % 90 )
and nmaximun at the center ( zero degree position ) as shown

in Fig - 2"2-
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Fig. 2=2. VARIATION OF SHE.AR STRAIN ON 2-~e /mwsi;f%
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It is easily seen from Mohr's circle Fig.
e =e,~
ze max. 1

knew that at zero degree
position maximum and minimum

stress, strain made an angle

D
45 degrees with axial direc-
tion. So that if strain

} gages were attached on pipe

Fig. 2-3. MOHR'S CIRCLE, wall at zero degree position

and made an angle 45 degrees

with axial direction as shown in Fig. 2-k. e, and e, at each

load would be measured, then e at each load were
zZe& max.

obtained as shown in table 4-5. and - at each point ' were
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Fig. 2-4. POSITIONS OF STRAIN GAGES FOR THE ME.SURING

OF MAXIMUM AND MINIMUM STRAINS.

obtained too from the expression that was derived in appendix
II’ which showed that
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then, S__could be found.
ze

To nake it easy to find Ser' it was assuned that these
values equal to those of thin tubular cross-section. In Fige.
2-5.,, for uniform stress distribution across the thickness

of the pipe wall, shear stress in e-r plane along section 1=1

could be expressedlzo) by
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where I = 'ﬂrat for thin tubular pipe
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For the known value of load Fy radius r and thickness.
t of the pipe, shear stress Sor at the corresponding angle et

can be determined.
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Fig., 2-5. VARIATION OF SHEAR STRESS ON e-r PLAIL.

The last term to determine was Srz' this shear stress
between adjacent fibers varies with the distance S as shown
in Fig. 2-6., being maximum at the neutral plane and zero
at each free edge. From the requirement for equality of
complementary shear stress, we may now conclude that there
must be the same shear stress distribution in the plane of

the ¢ross-section, so that Sré could be determined.

Fig. 2-6. SHEAR STRESSES IN EACH PLANE.
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