CHAPTER IV

RUNGE'S THEOPREM

Runge’s Theorem is corncerned with the approximation of
an analytic function on an open set by a rational function on a
compact subset. In this last chapter we apply the results that
we have obtained so far to the proof of this theorem. The
material of this chapter can be found in references [1] . The
first section gives Zudin's proof of Runpe's Theorem. Then we

will discuss two other ways of the provinpg this theorem.

4.1 Runge's Theorem

2
Suppose K is a compact set in the extended complex plane § and

{aj} is a set which rontairs one point in each component of S2 - K.

If Q 4s open, Q D K, f € H(Q), and £ > C, there exists a
rational function R, all of whose poles 1lie in the prescribed set

{0,} , such that

i

|£¢&) ~2(E)} < € for every £ £ K.

2
Note that § - K has at most countably many components.
llote also that the preassigned point in the unbounded component

of S2 - K may very well be <« |

Proof : Consider the Banach space ((X) whose members are the continuous

complex-valued functions on K, with the supremum norm i.e.

el = sup |8 .
X E X
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Let M be the subspace of C(K) which consists of the restriction to K

of those rational functions which have all tiheir poles in {uj} .

The thecrem asserts that £ is in the closure of ¥. 1i.e.
f ¢ ¥ iff for every € > 0, there exists an R € ¥ such that

|£CE) - R(E)| < € for every £ € K.

By Theorem 2.55, this is equivalent to saying that every bounded
linear functional on C(¥) whie¢l: vinishes on ¥ alsc vanishes at f
and hence the Riesz Penrcsentation Theorem 3.7 shows that we must

prove the following assertion

If u is a complex Eorel measure on K such that f R dy = 0C for
K

every rationmal function 2 with poles only in the set {aj} , and if

£ € H(R), then we also have [ £ dp = 0.
K

So we assume that | satisfies S F dy = O v op.
K
Define h(z) = [ du_(E) (z € 52 - K) .
K E~=z
From Theorem 2.%80 with X = ¥, if(ﬁ) = £, Q = 82 - K we see

that h is representable by 2 power series in g% - K, so by Theorem 2.78

-

E ¢ H(S2 - K). ©lairm that n(z) = 0 for every z € §° = K,

~

let V, be the compcnent of s‘ - ¥ which contains aj .

3
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i

Case 1 If o
Suppose that r, > (0 is sufficiently small so that

™(a, » 2r,) C V. and fix z in D(a1 5 rl)

k|
. 1
E-= (£ -ap + Ca, - 2)
e | 1
€ - aj N z - a]
E - o
h|
1 zZ - O z - 2
= T 1+ E—:—ai-+ L‘g - i T
i i i
o (z = o))"
o ]
=00 )
z2 -0 ': - ail rl 1
Since . | < - < = = =+ for every
£ - aj 2r1 Zrl 2

zZ € I)(ct1 s rl) and forevery £ € ¥, the geometric series

b (2 - )n 1
z ——r = E converges uniformly on K, for every
n=C (£ - ¢)) T
i
fixed z € D(aj " r]) .
h(z) - ! du (E)
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r2 (z-a)" ,
= J = - dp )
K n=0 (% DLj)n+1 7
Lo o] 1
= % Z - o(,)n ! d“ (%) TS| (By Theorem 2.30)
n=0 E. - % - Dtj)
= O
Hence h(z) = O for all z g D( Dtj 5 rl).
This implies that h(z) = 0 T g ¢ vj by Theorem 2.88.
Case 2 If o(j - /

Let r, > 0 and Dr be the set of all complex no. % such that

2 s
! ,;l ,5 I‘Z and DI‘ 3 Xa
2
{
Let DI: be the set of all complex numbers % such that
2
z 2 2 r, .
1 - 1
¢ -z z(1 - =)

T
= ——é('l"' —Z-'**(-'Z-) ¥ uot 3
'n
) 'E
= -2 T o



72

: . i
Since |§1 < —%%l— £ 2r2 = %- for every 2z € Dr
2 2 2

and every £ € K , the geometric series

© n

3

- I S IS T converges uniformly on ¥ ,
=0 zn+! E -z

for every fixed z € D -

]
Wz) = S E"“
¥ -z
} ® En
vl (- z n+1 ) du
¥ n=0 2 y
- 1
= - I S E' dp (By Theorem
n+l
n=C 2 ¥
2.30)
=0
]
which implies again that h(z) = 0 in Dr_ and By Theorer. 2.88
2

h(z) = 0 1in VJ d

Now choose the oricnted line intervals LSRRI A in & -K

as in Theorem 2.92 such that the Cauchy formula

1oem Y3 W7

£(6) -

hi™MB

i

holds for every f £ H({) and for every £ €& K.
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n
Then [ fduy = [ ( E ,.1 f £ dw) du
c =

¥ K - M Yy w-£§
' i
n
1 f(w)
= & = ) e —— dw 4
j‘:l 21 K Y w - E, w

We shall apply Futini’s Theorem 2.74 (lepitimate, since we are dealing

with Borel measures and continucue functions on compact space).

First we must show that

10,1 Vel el @ < =

3

Since Yj is compact , f €& H(R)

n
v %
3 m>0 5 dew] <M Yow e U s (pef. 2.81),
j=1

n :
1 a real number « > © v - E] > 0 Ywve U Y. .
7T Z =1 i
rr, L EE ) fawl alul s s s, 2wl alul ®
Y LA h g Y ¢
S 3
¥
= — a q
“éf" law| alul (&)

1 24
= 3(; L [ul ®)  (where L, = length of

the line sepment vy j)
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fedi o= T S Taw® r 294
s 2m L Yy ¥ E "

=

e
L}

—

1 £(w)
, 7 fyi dw i e dy (&)

]
h ™9

3

(application of Fubini's theorem)

- ;E'I 2i171 ij f(w)dw:: d‘; SE)'
= o g 41 i) £(w) hw) dw

§=1 2w Yj
= 0.

The last equality depends on the fact that each Yj is an interval

in S2 - ¥ , where L wanishes. 1.e. f € ¥,

Then for every € >0 . 3 an R & M
| £(8) - =(B)| < YE £ K.

This proof of Runge's Theorem uses the Riesz Representaticn Theorem
for a bounded linesr functional on the Banach space C(K) (Theorem 3.2)

as the main theorem.

Ve can see from chapter III that this Riesz Representation Theorem
is thus very difficult to prove in its entirety. We can prove Punge's
Theorem by avoiding th:is Piesz Representation Theorem. Ve use the

Theorem 3.3 in the first new proof of Runge's 'Theorem and use the
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Riesz Representation Theorem for Hilbert space (Thm. 3.10) in the other
new proof of Punge’s Theorem instead of Riesz Representation Thecrem
3.2, These two proofs are muck easier than the one just given. So we

have simplified the proof of Runpe's Theorem. The proof is as follows.

4.2 Punpe's Theoren

The same hypothesis as Theerem 4.1,
2
Note that S - ¥ htas n” most countably many components,
Hote also that the preassigned point in the imbounded component of

52 - K may very well Le o«

Proof : Consider the Banach space C(¥) whese members are the continuous
corplex functions on ¥, with the supremum norm.
Let M be the subspacc of 2(K) whichk consists of the restriction to K of

those rational funccion which have all their peles ir {uj} )
Then the theorem wiil be proved if we can show that £ ¢ M .

Suppose on the contrary that § ¢ ¥ .

By Theorem 2.55 there exists a bounded linear functional -\ on C(¥K)

such that A § # [ tut AR = 0 Voroe M.
Given z ¢ 82 - K, let u, be the function defined by
1
uw, (8) ~ £~z (£ € P).
Since z ¢ K ) u, € c(r).
Define h(z) = -A 4 {(z. | & S2 - K).

")
Claim that h & ¥(S™ - K).
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Civen z, € SZ - ¥ , choose r with 0 < r < dist. (zo s K).
z -2, r
If |Z - zo | < r ,_’Lhen ; ' E, = E,o l < m ) < 1

for all £ € K avd every z ¢ D(zo, r)

1
u(£)= .-.-.—':.-.-.—_: -
Z E -z _ .
€-2) (~2)
— !
77 o '~
L E = Zg
1 zZ -z z -z 2
= 1+F—Z+ AT + uea
g =z . ¢ 2 (o)
o
oo o
= 5 (z—zo} .
n=0 n+l
(E~2)
zZ -z

Since | Fo zo |GKULA for every £ € K and every z € I‘-(zo= r),

o« )"
the peometric series I 5= %8 converges ‘miformly on K and

n= =% )n+1

for every fixed z ¢ T(zo s T) .

Z . 3 2
WE = u O +u @ (z-z)+u @G-2)"+...
o o o
= iim 2 ug:l(g) (z - zo)n uni formly
T - n=0C

VE € K.



Since A is a boundes linear functicnal on c(X),
lim N n+l n
R L
W
=0 n+1 n N
lim | = “20 (z - 20) - h(z)l = 0
H+o p=C
Hence 2.0 3, 2
n h(Z) = A "l'/' +_A.uz (la - o ZO) +-J\ uZ (I_- s Zo) : oa
‘© o o

This shows that L is representable by power series in 52

lim

N> e

Then by Theorer 2.79 h e H(s“ =K),

Let V1 be the component of 52 -~ K which contains g

F -~
(E c!j)

Cage 1 If ”j # «.
Let p > 0 , suppose ﬂ{aj 0 C ¥
1 o (z - )"
e B et
E~-z w0 U = uj)“+1
z - @, lz - o,
Since | L] < . LI
E - o, o P
]
and every z ¢ ‘i‘-(aj 0 )
© (z - o )"
. the peometric series L  ~———a—
=0 n+1

= 1

g -

(see page 76)

0

- i’-t

Yze D(z_,x)

and z is fixed in D(o,,p)

3

77

for every £, € K

converges uniformly on K.



N n
lin L ghtaliie . o
N> ‘?"- zZ n= (”}; - d,)n+1
J
lim N (z - o)t
qu-Qn! = 0 whereQ (%) = 5 —___J°
N o N n+1
=0 (§ -

Note that Qu(¢) & M.
By the continuity of -A

lim ’ '

Au, ~AQ J

N-»o pA N = 0

o | nez) e

N~ N

hi(z) =" 3imf A Qy
N->o
= 0 (for z ¢ D(cxj,p)).

By Theorem 2.88 h = 0 in Vj.
CaSe 2 If &3 = AR ”

Let Dy be the set of all complex numbere € . 1%]|< f, and
. .

!
D P K. Let D, be the set of all complex numbers z ., | zhfj

A P

1 % =

- X
% -z n=0 221

(see page 71) .

78

1.
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0,
—s K d e z 1
Since |§1 ¢ |§J £ 3 1 for every £ ¢ and every n
z pl 1
i e n
D ) .+ the geometric scries -~ [ ~—§-T- converges uniformly
Py n=0 2
on K,
M n
lim I b & ,
B > |uz - PN' C where e EO zn+1 and F, £ ¥,
By the continuity of _A_ 7
i lAuw, - AR /)/),= 0
A N
N> w
lim
5 & % |h(-.*;)-_ﬁ?1€| = 0
Thus n(z) =48/ A%
s = S
V b
= Z £ T,
)
Similarly as befcre by Theorem 2.88, h(z) =. 0 in Vj :
We conclude that
Au, = Wz} = 0 ¥V z in $° - K,

Now choose the oriented line intervals Yy oo co0 Y in @ - K as in

n
Theorem 2.93 such that tte Cauchy formula f(£) = I
J=1

1 r f(w)

27wi Yj w-£ i

holds for every f € FKH(Q) 2nd every £ € K,

This topether with Thecrem 3.3 gives that for any € > C we can find

N
complex numbers ﬁl e s an and points Zys wee s 20 in ;:iyj

such that



n Bk v
|£(8) - 1 wpan -l L Ve e
k=1 |
e ~Bk t
|[f(e) ~ % || = &
k=1 £ - 2y
£® - | |
E(E) - E ("B ) u < € .
k=1 F 7
n *
Since z, € jl::,l Y5 z, € g2
h(zk) = (0.
1-2- .Au = (0 Vk = lglc-m'
z
L
o
Consider |Af] = |Af - A( I (-B,) u )[
k=] k

A

m
AT - = 8) w ||
=l K 7

HALL €.

/A

¥
Since € > 0 4is arbitrary;, |Af] = 0.

Therefore -Af = 0.

But we have Af # 0,

anc
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Thug ¢ ¢ M .

i.e. for every ¢ > € , there exists an R ¢ ¥ >

l£¢e) ~ 2(®)| < ¢ Ve e E.

This proof is different from the proof of Theorem 4.1. We
do not use
the Riesz Representation Theorem 3.2, Besides thore theorems which we
used in Theorem 4.1 , we only use Theorem 3.3, Instead of using the

difficult Riesz Representation Theorem 3.2 , wc use Theorem 3.3 which

we can see is much easier.

The next method of proof of Punge's Theorem is a specail case and
similar to the first
proof in Theorem 4.1 but we do not use the Theorem 3.Z2. PRefore we

show the proof, we will discuss the space Lz.

4.3 refinition If f is a complex measurable function on ¥, define

||f||2 = { J|£|?* afi }% where ¥ is an arbitrary measure space and

s

u is a positive measure, and let Ld(u) congist of all f for which

Hell, < =

& 2
4.L. Pemark If £ ¢ 7L7(p) and o is a complex number then of ¢ L7 (p)

an || asll, = lelllel], .

f € Lz(u), 7E Lz(u) then f + g ¢ Lz(u) and

N

€+ e il, el + [lsll, PRGNSR ;) |

this shows that Lz(u) ie a complex vector space.
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Suppose f, g and h ezre in Lz(p). Peplacing f by f - p and

g by g-h in (1) , we obtain

le-nll, « le-ell,+ lle-nll, ...... N ¢))|

'his suggests that a metric may be introduced in Lz(u) by defining

the distance between f ané g to be ||f - g||2 . Cell this distance
d(f£,g). Then 0 & d(f,g) < « , d(f,f) = 0, d(f,p) = d(g,f)
end (2) shows that the triangle imequality d{(f,h) & d(£f,g) + d(g,h)
is satisfied. 7The only other property whicn ¢ shOuid have to define

a metric space is that d(f,g) = 0 should imply that f = p. In our
present situation this need not be so : we have d(f,p) = O precisely

when f(x) = g(x) for almost all x.

Let us write f _ g if and only if d(f,g) = ¢C. This is
an equivalence relition which partition Lz(u) into equivalence
classes : each class consists of all functions which are equivalent to
each other. If F and G are two equivalence classes, choose f € F

and g € G and define
d(F,G) = d(f,g) : note that £ £, ‘and g ~ £

implies d(f,g) = d(fl, gl) , so that d(¥, G) is well defined.
With this definiticu, the set of eculvalence classes is now a metric

space. Note that it is also a vector space, since f . fl and

g o~ 8 implies f + ¢ . f1 + 21 and of -~ dfl



When Lz(u) ig regarded as a metric space, then the space
which is reslly under consideration is therefore not a space whose
elements are functione, but a space whose elements are equivalence
classes of functions. Then we centinue to spcak of Lz(u) as a

space of functions.

2 2
If {fn} is a sequence in L' (1), if £ ¢ L7 (p), and

n g l!

1lim

n-> o

||fn - f|]2 = 0, we say that {f } couverges to f in Lz(u)
2
(or that {fn} is L~ convergent to f).

If to every ¢ > U there corresponds an integer ' such that
[1£ - £ [ < € assoonas n > N, m > Wande > C
n m''2

¥

2
we call {fn} 2 Cauchy scquence in L (u). These definitions are
2
exactly as in any metric space. By Thoorem 2.43, we have L™ (u) is
a complete metric spsace,  Then Lz(u) is a Hilbert space. Ve define

the inner product (f,9) = [ f g du where £, g € Lz(u) and
}l‘

E' is the complex coriucate of g.

Z
So far we have considered?.”(u) on any measure space.
How let X be a locally compact Hausdorff space and let u be a
measure on a § - alecbra m in X, with the proporties stated in

Theorem 3.1,

4.5 Lemma If £ : K& -+ @ where ¥ isacompact subset of ¥ and f

p B
is measurable, belongs to tz(u) Then f & L (u).

83



Proof : Consider (|f| - Igl)2 > 2
|€£]% - z|£llel + lgl* 2
|£l] el <
Then i |£]]2] au g

The two integrals on the ripht exist so

exist
; 1
thus |Ellel € ¥/(0) .
- 2
Let lel = 7 £ /1@,
i
Hence I R A -
£L.,6 Lemma Suppose u is

wz) = — JJ u dx dy where
mr WMz _,r)
Proof : By Cauchy'’s Integral Formula,

I U(E) d
n & - s i

Zri

open set and z, € ¥

%

~

Suppose “(zo,p C D(zo,r) , then

84

where f and g ¢ Lz(u),
¢
1 2 2
Q'(lfl + |2|%) .
%— SolE|Pau+ 5 lel?dy .
K X

that the integral on the left

an analytic function in a region §)

Then

o (zo._.r) R €

and 2z
o

where C is a closed path in an

is arbitrary .

s 1 Zm u(zn + peie) ip eiG
u(z = o= [ - de
(4} 2mi 9 0 eiﬂ

1 20 ie

- g { u (zo +pe J 16 .
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Since —li- Ir v(E) dxdy = —15- I u(zo+ oeie)pdpdﬁ
mr D(zo,p) mr n
X 2w 10
= =~ J[pdoJS u(z +pe ) db
“ 0 0 c
r
2
= —12--5— Znu(zo)
nr
= 7).
o

4.7 A. Special Case O0f Rungé'!s Theorem.

2
Suppose ¥ 1s a compact set in the extended complex plane §  and

2
{a.} 18 a set which contains one point in each component of S = K.

]
If O dsopen, © 2 ¥, f € H(Q) , and € > 0, there exists
a rational function R, all of whose poles lie in the prescribed set
{oj} , such that |f(£) =~ R(E)| < e for every £ & K.

2
Assume .. s° - K hac at most countably many components. Hote also

2
that the preassignes point in the unbounded compement of S - ¥ may

very well be <« .

Proof :

e

: : el
{0.} is the set which contains one pcint in each comporent of § = K.

3

Let r: = dist (¢, , K) > O
J 3:];..1‘1- i

s = dist (v, §° KXY = X O
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Then take & = nin { %ﬁ, %-3
Let Kg = {z | dist (z,¥) < & }.
Then KG is a compact set which docs not contain aj "j and

K C X 5 C 0.

Consider the I'ilbert space LZ(KG) whose members are complex

measurable functions on KG with an integrable square,
i.e. LZ(KG) = {f| £ K. » €, fis measurable and

Jr |£|? axdy /<),

Let ¥ be the subspace cf LZ(KG) which consists of the restriction to

KG of those rationai functions which have all their poles in {aj} s

Since P 1is a rationa? function which bas all its poles in

5

{aj} C 8° - K then R is continuous on K¢

R 1is continuous on the compact set Kﬁ implies that R is bounded

and is also integrable,

1
i.e. * is bounded snd R € 1L (KG) , also since Rz is bounded ,

2
R e L (KG)‘
2
Also since the given f €& FH(p) , f is continuous on KG fe L (KG)'

Ve first show that 7 € 1 " (eclosure with respect to Lz-norm).
By Theorem 2.52 § ¢ ¥ if and only if for 211 bounded linear

2
functionaly -\ on L (Fé) such that

A = ¢ VR e B M (F) = O,
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Theorem 2.9 shows that we must prove that if -~ £ € L'(Ké) 8.t
(R, fo) = 0 for every rational function 7 with poles only in the set

{aj} then (£, £) = 0.

©
Define h(z) = [JJ ———
g, ©TE
i)

dvdy (E=x+ 1y € KG ; T E 52 B Ké)

We will show thet h(z) is analytic in 52 - KG .

Suppose D(a, 2 pl) R S2 - K. where Py > 0 and a € §° - K

[ s’

Fix z in D(a, pl)

1 >/ ez =B
a I 7 /A% (see page 76)
E - +
z 20 (E7 a)n 1
P
z-a |z - al 1 .1
Since | Fea | RS 291 < b Z for every

z € D{a, pl) and every £ € Key

© n
the geometric serie L £EL:*EAE+1 converges uniformly on
n=0 (£ Sle)
KG .
?O(E) 2 (z - )n
h(Z) = ff -E—T;—dxdy = ff o s | f (E)dxdy.
Y Kﬁ n=0 (& - 2)
Let ap = ?; (£) dxdy . i N MR R AR R )
G - - (z - a)"
hgy = ' B ———r—ap d(jv

Kg 2=0 (£ - a)

= I (z - a)” f -———-——jL——— (by Theorer 2.30)
n=0 5 (E - a)"
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® £ ()
= I -a)" [ 20—, d&x
n=0 KG (§ - a) ~
el - | o |
Consider c = i) dx dy
n 1(6 (E_; _aJTH'].
| £ (8]
< Ir dx dy
S : +1
1"'6 ]E"ain
@ | £,@] -
< —_—— dx dy
Kﬁ 291) wkl
- wets e A RACTIE TS
(204) Ke
Since l{f i'f”o(g)l dx dy =M <&, le | < =
§
h(z) = & c (z - a)™.
n=C -
Claim that I e (2 -~ a)" converges.
n=0 J
T (E)
c(z-a"= (z-2a)" ff —2— dxdy
n . n+l
Ks (€ - a)
| £ ®|
le. (z-a)" | ¢ lz-a|" f5r—2 x dy
n o+l
Rs le - al
| T8 |
< 0 Ty Sy
Ks g - a
< i 5| @] exdy
o+l o) :
(20,) ¥
H
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o
M
Since the peometric series L — o comverges ,
n=0C FH?
oo
I oc. (z - a)~ converses by Welerstrass iZ, Test i.e. h(z) cen be
n=0

representable by a power series in 52 - Ké ‘

By Theorem 2.7 L ¢ I:E(SA—I-{ ) R R SR T e mons e )

)

Claim that h(z) = ¢ sz & 82 - Kﬁ i SRR e e 3

Let Vj be the component of 52 - KG which contain aj .

Case 1 If Czj #F .

Choose Py > 0 such that D(rv._‘, pz) C ‘Ii ’

If z is fixed in D(ai ) _02) then for any £ ¢ !{6 , we consider

1 o (z i E‘:‘]\n h h
- = I & —ie (see page 7¢ ) whie
3 & n=0 (& - 0‘-4)“‘*1
2 2 - o
gonverges unifornly since | ———|< 1 V& e K, and
E i
for every =z € T-(c,j G pz).
£, ®
h(z) = {f —-E—-_—-z-—-— dz dy
2 )
(z - a,) _
; © -—d_  F (&) dx dy .
= Jf T AE = )n+1 c
Kg n=0 . aj
From (1)
o (z - o))"
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(=]
= X (z - o s ——gli—-— (by Pheorem 2.30)
=0 3 K, (E-a )n+1
n ‘.6 - j
m f (&)
- I (- S ——0 dxdy
n=C . Ka (E - aj)
= ¢ Y 2 in P(o, , p,) (Since (R, £) = 0
b 2 o
YR e H.
By Theorem 2.68 h(z) = 0 N\rog v, .
Case 2 aj = o,
let 04 > 0 and :p be the set of all complex number £ such that
3
n B Tt
'El £ Py and lpq B 16
Let T be the sct ¢f all complex number 2 suck that |z| > p3 .
3
o n
Since = -~ I e sl (sec page 71 )
E -z T zn+1

)
|§1 < |§J N 2 & 3 for every &£ din D and

: g ©3 Py
ki
every z in Dp 3
3
n
the geometric seriws - L —EE;T—- converges uniformly
n=0 z

on KG for £ € upq .



£,(8 2 i
he) = [f oy = - D Sy al
;.6 ..\6 n=g Z

a=0 2z Ké
1 n -«
= )
bz ) N fo(g, Ax dy
n=0 =z KrS
t
= ( V 2. €.,

Again by Theorem 2.8& h(z) = C Vze V

tMow chocse the oriented line intervals Yioo o0 Yy inQ - K

as in Theorem 2.%3 such that the Cauchy formula

S £ (w)
£ = ¥y = W) sy Thelds.
(£) NI e raal,
(£, £) = [f £(E) T (&) dx dy
¥
8
a .
1 £ (w) =
= [f ¥ = [ —dy . f (£) dx dy
g j=1 2mi 'Yj w = o
n 1 £(w _
= "):‘ -ZTi ;{f IY 7—:—6—‘ . fO(E) dw dx d}' "
=4 s h|

We will use the application of Fubini's Theorem 2.74. Tirst we show

that

I {

fr'"(f)iy ‘ TO(E) | few] dxdy <« o
K h|
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Sinee y. 1is compact, f € H(Q) ,

3

o
38>0 5 ltwl s 8Vwe U v
J:

£ e Xg and YjﬁK=¢\‘!j

n
2 a real mumber ¢ > 0 v - | 3 -c V"EUY?-
4 j-l‘_
Ios ‘ £(w) l.? © 1] daw| ax ay
K Y_‘) w-~- £ 0
[
< % o IY |?§(E)| |dw| ax dy
e e s
= 'E‘ [ E@T T |aw| ax ay
N - ¥y
[\
- % Ij ég I?L(E)l dx dy (wbere Lj = length of yj)
< @

flw) = .
: yET) f*jdw if —;—:—E-fo(i) dx dy

" i
n ) fo(ﬁ}
= 35:1 = IY.] f(w) dw ]{f W_-de ly
5 1
= - ——— F
= 1 IY1 F(w) h(w) dx dy
= [ since each Yj is an interval in 52 - E’ai where

h vanishes.



i.e. € B H & s veusyssspeveve seweeen wmses
Then for any ¢, >, 9 R & H such that

e -2il, < .

1
i.e. fff € - 3|2 axay < g,
JE
8
Letop, < 6 then M2 = p) E—XK, . For every z, € K.
By lerma 4.€
£z ) = /778 £(£) ax dy
o 2
ﬂﬂz’ 5(20904)
|f(zo)| = : [ Sr £(E) dx dy |
2
ish e

LI fﬁlf(g)l . ud?]” 1% ax ay

2 D- D
id P*
s : fffl f(i)lz dx dy ﬂ‘Pq-
#p? s
4
S

: /@2 ax dy
Ks

|
ie £z j 7 [£(EY]? dx Ay

}\-6

in
g f:l
.°|i, !
~
I~

Apply the above inequality to f - R~

y then
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,
l£¢z ) - R(z)| & — II1£CE) - ®(E)|? dx dy
o c T_,Qz K
4 N 8
< El
n'pa

Then given € > 0O and choose €, be  such that

i.e. |f(&) - 2(€)|  '< €& for every E € K. 7 f{-}_. _'t

e e

“ "Ue ANy
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