CHAPTER III

RIESZ REPRESENTATION THEOREM

In this chapter we are poing to discuss the Riesz

Representation Theorem which we use to prove the Runge's Theorem. .0
.,‘\.{'_

To do this we construct another theorem which is used in provingii,f o

the Riesz Representation Theorem for bounded linear functionals

on the Banach Space cof continuous functions on a compact set.

Next we study the bounded linear functionals on a Hilbert space
and the Riemann sum of the intepral. We will then give the proofs
of the two Riesz Representation theorems. In order to obtain
Runge's Thecrem we can use each of these three thecrems gseparately

in three different proofs. We will now develop the theorems.

3.1 Theorem Let X be a locally cempact Hausdorff space, and let
4\ be a positive linear functicnal on CC(X). Then there exists a
o - algebra m in X which contains all Borel sets in X , and there

exists e unique positive measure y on m which represents A in

the sense that

(a) Af = [ fdu for every £ € Cc(x) and which has
X ‘

the following additional properties :
(b) u(kK) < o for every compact set K ( X.

(c) For every E € m , we have

wWE) = dnf { w(v) : E C V, Vopen }
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(d) The relation
pu(E) = sup {u(K) : K C E , K compact}

holds for every open set E, and for every E € m with w(E) < e,

(¢) IfE € m, A § Ead uE) = 0 then Aemnm.

Note that throughout the proof of this theorem, the letter K will

stand for a compact subset of X and V will denote an cpen set in X.

Proof : We begin with provinp the uniqueness of y.

If y satisfies (¢) and (d) , y 1is determined on m by
its values on ccmpact sets,

It suffices tc prove that pl(KJ = uz(K) for all K,
whenever ) and , are measures for which the thecrem hclds.

Sc, fix K and ¢ > 0.
By (b) and (c) . there exists a V 2 K with

Uy (X)

N

My )

My W) < Hy (K) + ¢
By Urysohn's Lemma 2.38 , there exists an f € CC(X) such that
K < f < V ; hence

ul(K) =

I

X 44y € i fdy = Af = £ £duy,

- v K) +
& ;{')gv‘.du:i ‘uz() < “2() €

Thus WK g My (K) .
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If we interchange the roles cof Hy and Hy s the opposite inequality
is obtaincd. Then ul(K) = uz(K). Then uniqueness of u 1is

proved.

Construction of p and m

For every open set V in ¥ , define
u(v) = sup {Af | £ < V}. T ymp——— 1 1)
1f Vl C V2 , from (1)

u(v,) = sup { NOEFRE =< v, }

wv,) = sup { Af bt e < W, T,

Since {Af |f < Vv, } € {Aflf < v, 1},
cup {RE |f< V; } ¢ Sup {Nf | £ < v, }.
fe. wvy < u(Vz)-
Hence, if Eis open and E ¢ V, () £ u.
If E C X ia erbitrary , we shall define

PE) = dnf {u(W) | E € V, Vopen }. .iiiiinensaa(2)

Note that aithough we have defined u(E) for every E £ X , the
countable additivity of pu will be proved ornly on a certain

0 - algebra m in X.



35

Let m_ be the class of all E € X which satisfy two

conditions :

(1) wE) < =

(11) u(E) = sup {wE) : kK C E,K compact} .....(3)
Finally, let m be the class of allE C X such that E (1 K € m,

for every compact K.

Proof that u and m have the required properties

If A ¢ P then ufA) &  u(@). Thus yu is monotcne.

If w(E) = 0 then (F) < = and

u(E) = sup { pu(® : ¥ € E, K compact } .

Hence g e m
F

Since E N K C E implies p(E M K) £ u(E) = 0
and pE N K = C , -~ ENK ¢ m, .
Hence E €& m.
IfFE e m , A C E and u(E) = 0
ud) ¢ u@® = 0

pa) = 0 =2 A € My = A e m.

Thus (e) holds and sc does (c) , by definition.



Since the proof of the other assertions is rather long, it will be
convenient to devide it into several steps. The positivity of -A
implies that -A. is monotocne.

f £ g implies Af < Ag since

Ag = Af+A(g-f) and g-£f > 0.

The monotonicity will be used in Steps II and X .

Step I 1If El 5 E2 s ... are arbitrary subsets of X , then
L] (=]
O \J E) K z ”(Ei) . Rt e kE)
1=1 i=1

Proof : We first show that

wv,o ) g w4+ uvy) SR o v kD)
if Vl and V, are open.
Choose g < Vl V) V2 .

By Theorem 2.39 there are functions h, and h, such that

hy < vy (1=1,2) and h(x)+hy(x = 1 forallxin

the support Hf g.

Hence hi £ =< Y. e = h1 g + hz g and so

Ag = Alhy g) + Ah, g) < u(v,) + u(v,)  eee. (6)
holds for every g < V] v V2 ;
Since u(Vl v V,) = su {Ag |p < v, v v, })

ulv, v Vz) < u(‘.T]) + ]J(Vz) , (5) follows .

1

36



37

1t p(Ey) = ‘w  for some i,then (4) is true.
Suppose therefere that “(Ei) < w for every i,

Choose € > O . By (2) there are open sets V, O E, such that

uv) < wEY + 27 e € = 1235 o ) swmenssan
oo
Put V = U V, and chcose f < V,
i
i=1
Since f shas compact support , f < Vl Uese U Vn for some n.

Applying induction to (5) , we therefore obtain
MAE g uvy U/ v VN u(vy) + oo+ (v)

o0
< iy (Ei) + €.
i=1

Since this holds for every f < V , and since VU Ei & Vo, 1t

follows that

00 e ]
u( U ﬁj) < u(v < I u (Ei) #E e < (8)
i=1 i=1

which prove (4) , since € was arbitrary.

Step II L contains every compact set.

This implies assertion (b) of the theorem.

Proof : If XK < f , letV = { x| f(x) > %-},

then XK C Vand g & 2f whenever g < V. Hence

WEK) < (W) = sup { Aelg < V} gALf < =,

Since K evidently satisfies (3) , K € M o
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Step IIT  Every cpen set satisfies (3). Hence e contains every

open set V with u(V) < = .

Proof : let o be a real number such that o < u(v). There

exists an f < V with o < NE.

If W 1is any open sct which contains the support K of £, then
f =< W, hence Af £ p(w).
Thus -Af < K.

This exhibits a compect K ¢ V with o < (), so that (3)

holds for V.
o
Step IV  Suppcse E = iil Ey where E1 . E2 X E3 s see @YE
pairwise disjoint members of Mg Then
w(E = L fEi) /. R ¢ )
i=1
1f, in addition , u(E) < e« , then also E € Mg .
Proof : Ve first show that
A =
u(Kl SRSV U(Kl) + u(Kz) RPN oot | )

if K1 and K, are disjoint compact sets.
Choose € > 0., By Thecorem 2.34 (with Kl in place of K and K;

(complement of K2) in place of U ) there are disjecint open sets

Vl and V2 such that Ki ¢ V., . By Step II, there is an open set

i

w D Ky, v X,

ere functions £, < W n Vi, Afy > (W N Vi) - ¢ for i = 1,2,

such that p(w) < u(xl v Kz) + ¢ and there
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Since Ky C W ﬁVi and f1 + f2 < W (it is here that

v, h v, = ¢ is used)} we chtain

1 2
uK,) + uE,) < K@ AV +u (W vy

< A51+M2+25

.A.(f1+ f2)+ 2

A

(W) +2 ¢

< u(x1 U Kz) + 3 €,

Since € > 0 wes arbitrary, (10) follows from step I.

If u(E) = e« , then

Prom step I p( UGB ) < I u(E)
i=1 i=1
(24

® < I u (E).

i=1 *

e o
Thus. 5 p (E,) = o ™ uw(E) = ¢ u (E,) then (9) follows.
g1 L geiTy T

So we can assume that p(E) < =, Choose € > 0, since Ei € My

there are compact sets Hi C Ei such that

WE) > uE) - 27 (Lm 1,28, ver Do cvonaseonnns(I1)
Putting K_ = Hl v Hy, ... VH and using induction on (10) ,
we obtain

n n
u(E) > pK ) = izlu (Hy) > le (E)) - ¢ cerenaea(12)
= i=
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Since (12) holds for every n and every € > 0 , we see that

[+ 4]

H(E) > Ly (Ei) :
i=]

[=4]

From step I, u(E) < L u (Ei)'

i=1]
We have W(E) = LI U (Ei) .
i=1
But if M(E) < «© and € > 0 ; (9) show that
N
u(E) £ A u(Ei)+E: Fof some N coevoonossnnsss(l3)
i=1

By (12) , it follows that
W(E) < u(KH) +.2 €

and this shows that E satisfies (3) , hence E € m

F

Step V IfE € e and € > 0O, there is a compact K and an open

V such that K € E ¢ Vand u(Vv-K < €.

Proof : Our definitions show that there exist X and V

so that

W -5 < B < uK F 3

Since V - K is open , V- K € m, by step III .

F
Hence step IV implies that

v = K v (V=K

W) = u®) + pv =K < u® +e .
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Step VI If A € Ma and B € anthen A-B,A vBand A Nn B

Selong to mF .

Proof : If ¢ > O, step V shows that there arc sets K, and Vi such

that K, ¢ A C V, ., K, € B C V

1 1
i=1,2 .

and u(Vi - K,) < e for

2 2 i

Since A - B L Vl -K C (Vl - Kl) v (K1 - Vz) U (V2 - Kz)

Step I shews that

ua -3B) ¢ e+ wE, - V,) e PR ST, S e L(14)
Since K; -V, is a compact subset of A - 3B, (14) shows that A - B
satisfies (3) , so that A - B ¢ me
Since A VB = (&4 - B)u B, it follows by step IV that
A v I € M
Since A N B = A - (A - B)) ANEB € Mg s

Step VII m 1is a ¢ - algebra in ¥ which contains all Corel sets.

Proof : Let ¥ be an arbitrary compact set in X. If A ¢ m,
then A N K = ¥ - (&4 N K) so that A 0 K is a difference

of two members of m. . Hence A° N K g me and we conclude :

A & m implies AS ¢ m . Hext, suppose A = U Ai » where
i=1

each Ai E M.
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Put By = 4, N K,adR® = (a, 0 K) - (BIU...UBn_l).....(IS)

(= 2,38, <oi )

Then {Sn} is a disjoint sequence of members of M, , by step VI and

[£2]

AN kx = U B .
n=1 =

It follows from step IV that A N K € m .

=

Hence A € m.
Finally, if C is clesed, then C N K is compact, hence C NK € M
or C € m. In particular, ¥ € m .

We have thus proved that m is a & - algebra in X which contains all

closed subsets of ¥. Hence m contains 211 Borel sets in X.

Step VIII m. cougists of precisely those sets E € m for which

-
1S
P

n(E < =,

This implies assertion (d) of the theorem.

Proof : IfE € My, Stepas II and VI imply that L N K ¢ ma
for every compact K, hence E £ m . Conversely, suppose E € m

and p(E) < = , and choocse ¢ > (. There is an open set v D E
with p(V) < o ; by Step ITI and V , there is a compact K CV

with p(Vv -K) < €.
Since E A K ¢ Mo s there is a compact H C E N K with

p(E Nt K) < w(l) + €.
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Since E € (E N K) v (V - ¥), it follows that
wWE) < wE NK+ wv-K < u(H) + 2 €

which implies that ¥ € Mg .

Step IX i ie a measure on m .

Proof : From Step IV , we have
o0 ae]
w( U B = ¢ u(E) with E; are pairwise
i=1 4 i=1 \ 1

disjoint members cof Mige

From Step VIIL , my contains precisely those sets E e m for which

u(E) < =,

[=4] o
Hence u ( W Ei) = T u(Ei) » Eiem
i=1 i=" =

Therefore uy is a measure on m .

Step X For every FLe CC(X) IN WAEIVERSITYE du .
b3

This proves () , and completes the theorem.

Proof : It is enough to prove this for real f.

Alsc, it is encugh to prove the inequality

-A-f ...S ffd].l ooo-.oaovo-o-.o-o.-cn-o-t.(l&)
X

for every real function f € Cc(X). For once (16) is established, the

linearity cf -A- shcws that
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A

-Af = A(-f) < J(-Bap = - J fdu,
¥ X

hence Af > [ fdu
X

this together with (16), shows that equality helds.

Let K be the support of a real f ¢ CC(X), let [a, b] be an interval

which contains the range of f (note tc Theorem 2.36).
Choose ¢ > 0, and chcose ¥y » for 1 = 0,1, ... n, so that

Yi = Yy < ¢ and

Vo < & X 5 /Sew; < y_ = b IR~ i |

Put E; = {x]yi_l < £(x) g ¥4 ITNKRK@E=1, «..n) cevennnns .. (18)
Since f is continuous, f is Borel measurable, and the sets Ei are
therefcre disjoint Berel sets ~hose wnion 1s K,

such that

There are open sets Vi HNNE

2 VENIL n) cveseaees vees (19)

glm He

U(Vi) < u (Fi) +
and such that £(x) < i +¢ forallx e V, .

By Theorem 2.29 there are funictionsa 'ni < Vy such that [ hi = 1

on K. Hence £ = Zhi £

Since hy £ < (yi + €)h; and since y; - € < £(x) on Ej , we have

~

n

o
Af = T AGM H g I (yteAh

gl fe] i

N
ncag

(yy + €) u(‘»’i)
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A

n
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n n

€
L (y4euE) + I (y+eE) -
i=1 i i 1= i n

(ygr ONE*. o+ OUEIH [k e O e] ¢

n
7 T ¢ £
ylu{l.]_)+e:u(t.1)+.. oy BEF el E )+ [ 121 y+ ne %

ylu(El)-eu(E1)+2€u(E1)+...+ynu(En)~€u(En)+26u(En)+(nb+ne)-%

(Yl—e)u(E1)+...(yn-e)u(ﬁn)+2a(u(E1)+...p(En)) + e(b + g)
n

n
b (Yi-E)“(Ei) +/2¢.( E U(Ei)) + e(b + €))
i=1 i=1

n n
z {yihe}u(Ei) +2e(u (U ED)+ e(b + €)
i=1 i=1

n
$ [ £ ap+ 2ep (®)+ (b +€)

f fdu + ... fdon+ ey (E) + b + €)
B

Joxg £+ (s Xg £ du + €(2u (K) + b + €)
¥ 1 ¥ n

i ;
L Xg fdu +€ (20 (X +b +€)

XElu T 4 fau+ e (R) +b +€)

i

fofdu +e(@u (X)) + b + €)

[ fau + €@p K) +b +¢€)
K

J fcdu +€ Qu (K +b+€),
X
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Heénce; Af < [ f du since € > 0 is arbitrary, (16) 1is
X

established , and the proof of the theorem is completed.

3.2 The Riesz Representation Thecrem

To each bounded linear functional ¢ on CO(X), where ¥ is
a locally corpact Hausdorff space, there corresponds a unique

complex regular Porel measure U such that

¢ (£) = | £dp (f € CO(X)). PR ey 5
X

Moreover, if & and p are related as in (1), then

l18l] = K/ (eemmad sssess I NP p— (2)

Proof : We first prove the uniqueness cf u .
Suppose U is a compiex PBorel neasure on % and

f £du = 0!/ for ali £ € C(X) .
% o

By Theorem 2.62, there is a complex Borel measurable function h, with

!hl = 1 such that du = hd lu‘.

Since lul 0 = J dlu| , we have that for any sequence
X

{£} .y 2C,

wl & = snBdlul - £ Ay
X X
= Shhaly - f£ hdlyl

X X

= i@-fghdMI
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IN

LR AR
X

I-ﬁ"""fn] dlp‘ az--4‘-ao.oc.lollo.tln---ol(3)

(]
>4

t 1
and since C_(X) is denmse in L (|p]) with respect to the L - norm
(Theorem 2.50), then we can choose {fn} such that the last expression
in (3) tends to 0 as m =+ = .
Thus lu| ) < 0.
By Theorem 2.5¢ , |p|(X) = €@ then p = 0, 1.e.
If [ffdy = 0 forall f ¢ co(x) and for any complex Borel
X
measure y them u = 0,
Suppose & (f) = [ f£d Hy and alse &(f) = [ fd Uy where
X

z

¥y and u, are complex regular Borel measures on X.

S fdyp, =
X 1

> =

fd uz
ffdy, - [f fdyu, = 0
X 1 X %

i fd( My - uz) = 0
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This shows that at most one |l corresponds to each & .
Now consider a given bounded linear functional ¢ on CO(X).
Assume ||¢|I = 1 , without loss of generality.

We shall construct a positive linear functional A- on CC(X), such

that
o (] < AdE) </ HEl] E e (M) .o (B
where ||f]| denctes the supremum norm.

Once we have this A, we associate with it a positive Dorel
measure ) as in Theorem 3.1. The conclusion of Theorem 3.1 shows
that A is regular if X(x) < = . From the construction of A im

Theorem 3.1.
A(V) = sup LAF | £ <« vV}
for every open set UV in X.
A(X) = sup {Af - 0 < f g1, f real € cc(x)\

el = | reanl < Sl v = A(ED |1€]]
X

Y.
1f ||£]] & 1, then |Af| < 1, we see that actually

A(X) < 1 s
We also deduce from (4) that

| a(e)] ¢ A(ED = S [£]ax = ||f|l1 (f ECC(X)).......(S)
X

1
The last norm refers to thz space L (}).
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Thus & is a linear functional on cc(x) of norm at most 1, with
respect to the Li(k) norm on CC(X). There is a norm-preserving
extension of ® to a linear functional on Lt(l). (By Hahn - Banach
Theorem 2.54). By Theorem 2.64 (the case p = 1) there is a unique

oD
g € L (A) such that

i
o(f) = [ fgd A (f ¢ L), cvennns S ... (6)
X
Moreover  |lol| = Illell, =1
By Definition Z.47 ||g||co is the essential supremum of lgl .

It follows that |g(x)| <« 1 a.e. on X.

Since (6) holds for all £ E Cc(x), we. claim that (6) holds for

all £ € CO(H).

By Hahn - Banach Theorem 2.54, CC(F) & CO(XD and & is a bounded
linear functional on CC(X) (with respect to the supremum norm)
then @ can be extended to a bounded linear functional y on
C,(¥) such that ‘”cc(x) = o and |lol) = [lvl] .
Since CC(X) is dense in CU(X) (with respect to the supremum norm) ,
i
for any £ € Co(ﬂ), there exists sequence {fn} nen € CC(K)
such that
Hfn - f|| - 0 ags n =+ © .,

Then f =+ f uniformly on X and ¥ fn + yYf since ¢ is

continuous on CD(K) .
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UF = lim U f

n
n>®
= lim ffngd}..
n+® X
Let d? = g dA.
vf = lim ffnd‘j
n -+ © A

" £ dy  (By Theorem 2.29)

=y

= [ fgdl YéE e g ™.
7z o

Hence (6) holds for all f € CO(X) and we obtain the representation
(1) with du = gd\ .,

It remains to prove that | is regular.

Since du = g d\ , by Pheorem 2.62, we have du = h d|y|
where h is a measurable function such that |h| = 1.

halu = gadx
d|u| = hgad .
Given E € @ and € > €, there exist closed set F and open set b

> F € E C V and such that A(V-F)< e . i.e.

J dx < €
V-F

L}
-
fa

E.

[}
—
=l

o0
o
P

A
-
=3

&
O
>

lul (v-F)
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Therefore |y| is regular then | is repular by definition.

Since ||®|]] = 1, (6) shows that
lo (B = | S fadr | s/ |fllel ans [I£l] slel o
g ¥ %

£ ||f]] ¢ 1 then | ®(E)| < [ [e]ldr Y e C(0,

X
e < /7 1gldx
X
V/)e\ " ERulthe  covovecrnccecsssnns &)

X

We also know that A(¥) /¢ '1and |g| < 1 a.e. on X.

Since we have dy = g dA ,
S dy = [ gd)
X X
wx) = T gdx.
X

By Theorem 2.63,

lul S |glax
X

Sady=Ax) ¢ 1=|lo}]. ..cunn. (3)
¥

LEA

te. Jul @ < |l8l].

From (7) , we have ||®|| < S lelax .
X

lell < S lglax = |ul ™.

X

Hence |[8]|= |u| (® which proves (2).
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So it all depends on finding a positive linear functional A which
satisfies (4).
If £ € FC + (¥) [the class of all nonnegative real members of

c,(®.] , define
Af = sup {|Jo)] : he c (M, |5 < £ ... (9
Then -Af 3 0 and A satisfies (4) , since
A(ED = swp {Jom} :h ec ® , |n|l < [£}
lece)| < AL £D) (f e CH(X).
o | < lloll” Ml = dInll < llell N B ec.
Thus sup { [8(h)| : e 'C (M, [n] < €] ¥} ¢ |1£]] and hence
Adeh < .
i.e. 6 (O] < A £ < Al

Suppose 0 < f1 ¥ A £

-

5 s §y and fz belong to Cc+(¥)

-~

-J\.afl = gup {|¢> (h)l ch ¢ CC(X) § |h| < fl}
A f, = sup {flo )] : h e € OO, In| ¢ ).
Since {|® (W)| : h € cc(x), |h| < £} € {le(h)|: h Ecc(x),
k| < £, 1},

Afy < Af

2 -
Next we will show that .A.(cf) = c -A.f where c is any positive

real constant and f ¢ cc+(x).
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Acf) = swp {|em| :he c M, |n] g cf}.

Given £ > 0 , arbitrary

Afcf) < e m|+ € for some h with |h] < cf.
Iaen < 2 lem|+ £
= ey + £
Since —-I < £,
1

1 aAef) <Anf+E
c C

A(cf) < ¢ AL+ €

_A-(Cf) -S C"hf. I-Otl..toocll.ll..nl!‘ollli.tll.(lo)

A = sup {| o) :h eC (X, [h| s £}
A(E) 3 o) for a1l h with |h| < £.
cA(f) > e |o(h) |

= | (ch)|.

Given € > ( arbitrary ,

c A (f) < | @ (ch)] + € for some h with |h| < £ -
Since [eh | g ef,
c A (f) <  A(cf) + €
CJ\-..(f) s .—A..(Cf). o-on-tnoo-a-o.o»--o-oa-ao.-c--o(ll)
1.e. A(cf) = cAf,

Next we must show that, for f =2nd g € CC_F(X)
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A(f+pg) = ME+ANg, okese sesenspenaeeenesessss(l2)

If €& > 0, there exist hl and h2 £ CC(K) such that

byl < £, Inl < g and
Af < lempl +e , A < loh) | + e, onnnna(13)
There are complex aumbers o |ai| = 1 such that
o oCh) = | ah)| , 1 = 1,2.
Then - Af+Ag < |¢(h1)| + Q(h2)| +'2 €
= oy ¥(h) + o, o(h,) + 2 ¢
= ¢(a1 hl) ¥ Q(az h2) + 2 €
= ¢(a1 hl + 0, hz) + 2e ,
since | o, by + @, h, e qlll hil + |a 2H h2|
= Tl *{n,
£1:55% 80
Lo Af +Ag < An |+ In,1) +2 ¢
< NAN(F+)+2E .
Hence A¢ 4+ Ag < KAE ¥ 85  esseseuus sosees ceea(18)

Next, choose h € CC(}’) , subject only to the condition

|hl < f + g,

Ler 7 = {x | f(x) + g(x) > ¢} and define
h () = £Go hG) hy(x) = () h(x) (xe V)
f(x) + g(x) f(x) + g(x)

hl(x) = hz(x) = 0 (x ¢ V).
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Claim that h, and h, belong to CC(X).

h, and h2 are continuous on V.

1
If X ¢ V , then bl(xo) = hz(xo) = (0 and since we have
h(xo) = h,(x) + hz(xo), h(xo) = (., Since h is continuous

and since [h, (D] < |h(x)| for all x € ¥ , then also

Ihl(xo)I < |h(xo)| = 0 . It follows that x_  is a point

of continuity of h1 :

Thus h1 is continuous on X.

£(x) h(x)

We define hl(x)
f(x) + g(x)

If h(x) = 0 then hl(x) = 0. Thus the support of h, is a subset

of the support of h which is compact. Therefore the support of h1 is

compact. Hence hy € ﬂc(X) and the same holde for h, .
Since h, +h, = h and |h1| < 4, lh2| < g , we have
lom)| = [ech; + h))|
s Jewpl+  [etmyl]
< Af + Ag.
Hence A(f + g) < Nf + Ag., veiesessannassasssss(15)

From (14) & (15) we get -A(f + ) = AL+ Ag.
1f f is now a real function, f € CC(X) , then
26 = |f| + ¢, scthat £ € C_(X) ; likevise £ € C (X
? ot ? 1~

and since £ = f' - f , we define
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_ o, )
Af = AE - Af (f € CC(X) , f 18 a real valued
function).

let f, g € CC(X) and f and g are real valued functionms. We

want to show that A(f + g) = Af+Ag.
Let k = f£+¢
e e g -

K+ 6+ = k“+f++g+
AT+ +e) = Ak + £+ é+)

Ak Af +Ag = Ak + -f\-.'f+ + J\E+

At - A et - AE + Ae' - Ag
AT =K A -+ A - D)
Ak = Af +Ap
AL(f + g) = Af + Mg
To show -A(cf) = c-Af where ¢ 1s a real constant.
Clain that (-6)F = & and (-8 = £ .
Case 1 f(x} > ©
(-—f)+ = max { -f,o}l= 0, (-f)" = -min {-f,0} = =(-f) = £.

£ = -min {f,0} = 0, f = max {f,o} = f .



Case 2 f(x) <
(-f)+ = max
£ = -min

0

{-f,0} = -f, (-f)

+
{f,0} = -f, £

max

{f,0}
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= -min {-f,o} = 0

= 0.

For ¢ i a positive real constant and f 8 'a real valued function.

-+

Claim that cf = (cf)T & cf = (cf) .
Case 1 f(x) 3 ©

cf = cmax {fo} = ¢f , cf = -cmin {f,o}

(cf)” = max {cf,c} = ef , (c£f) = -min {cf,o0}
Case 2 f(x) <©

cfT = ¢ max {f,0} = 05 cf = -cmin {f,o0}

+ =
(cf) = max {cf,o} = 0, (cf) =

Consider for c

A (-f)

-min {cf,o0}
=1 and f is 3 real valueci function.
wieatiskear [

AlE - f+I]

AST - AE

- s - ]

- Tacst - £ ]

~Rf .

-cf
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For c isa positive real constant and f is a real valued function.

Alef) = ALenT - (en7]

Al - AeD)”

AcfT -« Acf”

. ot Fw ok £
-+ QY

= c(AFf =-Af)

= ch(f+ 287

= c K f .

For ¢ = 0.

Ae) = Alen=(n]
= KD AT = A@© -AQ0) = O
= g O

Then we consider

A(=cf) =A[(-1)ef]

= -hfcf]
= - cAf.
Hence A(cf) = cAf where ¢ isareal constant and f is

real-valued function in CC(X).
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1f £ is8complex-valued function, f = u + iv (u, v real) ,

we define
M o= Au+iv) = -Au+i Av.

Let f, and f, € Cc(x)

JL(fl e fz) Mul + ivl +u, + 1v2)

- _A.[(ul +u,) + iy + vz)]

A(u, + u2) + un(v1 + v,)

1

= A A
_¢u1+ u +1J}.v1+1 v,

2

= G, + idv) + A, +1 Av,)

- ‘M'“l -~ 1v1) 4 .ﬂ.(m2 + 1v2)

L}

J\El + J\.fz <

To show A (cf) = c-Af where c 1is complex constant and f isa

complex-valued function.

For ¢ isareal constant and f is a complex valued function.

A(cf) = Ac (u+ iv))
=A(cu +1ic W
= Alcw) + iA (cw)
= cAu+icAv

c(Au+ iAv)

= c{u+iv)

cd\f .



Consider for ¢ = 1.

A(1£)

L}

A @ + iv))
= A(iu - v)
= A((~v) + iuv)

= A(-y) +iA

~A(v) +iAu

i (Au+ iA V)

i (A(u+1iv) = 1 Af

If ¢ = o+ if where o , B are real constants and f is s

complex valued function

NAcf) = A((a+ 1R)F)

A(of + 1B £)

= A(of) + i A(Bf)
= oAf+ i BAf

= (a+ iB)AE

= cAf .

Now show that our extended functional JA. is linear on

CC(X).

This completes the proof.
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3.3 Theorem Suppose f is continuocus on [a,b] x ¥ where ¥ is a
compact subset in the plame, a2 < b are real numbers, g is sectionally
(piecewise) continuous on [a,b] . Then the integral

b

I £(t,z) g(t)dt can be approximated uniformly for
a

z ¢ K by a Riemann surm of the form

n

321 £(ty, 2) gley)  (ty = typ) vhere

Proof : Since g is sectionally continuous, there are at most finitely
many points in the parameter [Q,B] at which g fails to be continuous.

However such points g has left hand and right hand limits.

By considering each of the subintervals at a time, wemay assume that

g is continuous on [a,b] .

gf 1is continuous on [a,h] x K which is compact.

of 1s uniformly continuousesf,b] x K.
Given € >0, 3 § > C such that

(ts Z), ( ) E [ﬂ,b] x K,

% 3
dist. [ (5, 2) 5 (tj , zj) ] < 6

implies |g(t) f(r, z) - E(tj) £ty zj)l :
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Let {a = tos tys co- t, = b} be a partition of [a,b] such that

b n
Then | £ £(r,z) o(t) dt - jEl £(ty,2) g(t)(e; - €5 ) |
t,
n i
= |z 5 [ fk,2) gt) - (t,,2) g(tj)] at |
=1t ,
3'-‘.
t,
n i
< = s | £(t,2) g(t) - f(tj,z) g(tj)l dt < € .
=1t

Then the integral cau be approximated uniformly by the Riemann sum.

In the remainder of this chapter, our effort will be
directed toward proving the Riesz Representation Theorem for Hilbert

space. We use the proof found in [3] .
3.4 Definition A Hilbert space is a complete inner product space.

3.5 Definition Ilet %, y be any vectors in the complex vector space

B I (x3) 0, we say that x is orthogonel to y .

If if is = subspace of H, let Ml'be the set of all

y € H which are orthoegonal to every x € M.

3.6 Definition & set of vectors u, in a Hilbert space H, where «
runs through some index set A, is called orthonormal if it satisfies

the orthogonality relations (u ) = Ofcrallo ¥#B,a€e A

i
and B € A and |lua|| = 1 for eack @ € A .
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3.7 Definition If V is a vector space, if Xys see ¥y € V, and if

Cps vee ¢, are scalars then ¢ 1%y T L% is czlled a linear
combination of Xis wee Ky oo

The set [S] of all linear combinations of all finite subsets of §

(also called the set of all finite linear combinaticns of members of S)

is a vector space; [S] is the smallest subspace of V which contain S:

[s] is called the span of S.

3.8 Definition Let {“b : o £ A} be an orthonormal set in H.

{ua} is a maximal orthenormal set in ¥ if and only if the set S of all

finite linear combinaticns of members of {uh} ig dense in H.

Maximal orthonormal sets are called orthonormal bases.

3.9 Theorem Let ¥ be an inmer product space and let M be a subspace
of X such that dim ¥ < ©, tThen we have the direct sum decomposition

x-MGDM"'

[ihe notation ¥ @ N = X means that any vector
z € X can be written uniquely as z = x+ y where x ¢ Mandy ¢ I,
or, equivalently that every z g X can be written as z = X + y, where

X ¢ Mandy ¢ Hand¥ n N = ({C}].

Proof : First it will be shown that any vector in the space can be

written as the sum of an elerent from M and element from Mll

Since dim ¥ < = , we can choose an orthonormal basis for M : Kyseos

x -
n
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n
Ifz E X,t:hen E (z’ Xi)x 8 I{. |OilOﬂ.l.Q.l'i..t‘..lll.(l)
i
i=1
Now consider the wvector
n
y = z- I (2, x,) x,.
i=1 i i
Letting xj be any one of the basis vectors in ¥, we have

(y. Xj) = (z, Xj) - (z; xj) = 0 G =1, ...‘n) or that y

is orthogonal to each of the basis vectors in M.

Hence it is orthogonal to every vector in M, which

implies that y ¢ pt

Therefore, we have the representation , for any vector

n
R N S S
i=1 2Ty

where the first term on the right is in M and the second is in HL',
and have completed the first part of the proof.
To prove the second part, suppose that

X E MDD MT,

This immediately implies that (x, x) = G0 which implies that x = 0

and completeg the proof.
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3.10 The Riesz Representation Theorem for Hilbert space

If f is a bounded linear functional on a Hilbert space ¥, then there
exists a unique vector a in ¥ such that ||a|]| = ||£f|| and

f(x) = (x, a).

Proof : Let a ¢ X, define f(x) = (x, a) , we shall show that

f(x) is a bounded linear functional on X.

f( 03{1 + sz) ( axl + sz » &)

(axlt,,a) + (B X, 5 a)

a(xl, a) + B(x2 s a)

af (x) + BE(x,) -

Also [£()| = |, < =l Hell,
He |l < Hall .
However £(a) =" (e, ') = a2
Hell = [lall.

Next we prove the existence of a vector a given £. If f = 0, take

a=0 then f(x) = (x, ¢) = €. Subpose £ # 0 for some x.
let M = ker f = { x |f(x) = 0} .

The linearity of f shows that M is a subspace of X and the continuity
of f shows that 11 is closed.

i.e. 7 ie a closed subspace of X,
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Let M = {w e X | (w,=xn =3¢ ¥ x ¢ U}
L

Suppose M = {0}
AL L

Since M = 1 = {0} = X (by theorem 3.9),

f(x) = 0 Yx g X
Then also take a = C.

L
Suppose M~ does not consist of 0 alome .

Then we may choose 2, € %” such that f(al) = 1.
1
since 2, € Mo, Jay # 0 and f(al) # 0
L
let f(x) = n (x € M)
% f(x) 0= 1
£( %‘) = 1 (f is linear)
2 41
then choose a, = — & M .
1 n

For each x e ¥

f(x - a, f(x))

f(x) ~ f(al) f(x)
= 0
and therefore (x - a; f(x), al) = 0.

That is (x, al) - f(x) (al, al) = 0



(x, a;)
and hence f(x) = W
= ; (x, al)
%12
= s roardl
1o, 1]
1
Thus if a = T ]T;‘ then f(x) = (x, a) Y x e X.
a
1

Now to prove the uniqueness of a.

-
Suppose f(x) can be represented in another form (x , 2 ) then

#
(x, a) - (x,a ) =0
*
(x, a ~a ) =0 \7 x € Y.
*
Let X = a-a
& *
(a-a ,a-a ) . =0
*
a-a = 0
*

€7
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