CHAPTEP II

PRELIMINARIES

In this thesis, we assume a basic knowledge of real and
complex analysis, However, this chapter contains a review of some
relevant definitions end facts from integration theory which we

will be using. Proofs will not be given, and can be found in [1].

2.1 Definition A collection m of subsets of a set X is said to

be a 0 - algebrs in X if m has the following three properties:

(a) X e m
(b) 1If A g m , then S ¢ m where AS is the
complement of A relative to X.

=]
(¢) If & = \U Ah and if Au ¢ m fornmn=1,2,... then
n=1

If m is 2 o - algebra in X, then X is called a

measurable space and the members cf m are called the measurable sets

in X.

2.2 Definition If ¥ is a measurable space, Y 18 a topological
space, and f is a mapping of X into Y, then f is said tc be
measurable provided that f-l(v) is a measurable set in X for every

open set V in Y.



2.3 Proposition Let m be a 0- alpebra in a set X.

(a) dem

(b) m is closed under finite union.

(¢) m is closed under countable intersection.
m is closed under finite intersection

(d) 1fAcmBe mthen A-B € m.

2.4 Theorem Let Y and Z be topological spaces, and let g: Y =+ Z
be continuous. If % is a measurable space and f: X > Y 1is

measurable and if h = gof , then h: ¥ =+ Z is measurable.

2.5 Theorem Let u and v be real measurable functions on a
measurable space X, let & be a continuous mapping of the plane
into a topological space Y, and define h(x) = ¢ (x), v(x)) for

x £ X, Then h: X ~+ Y is measurable.
2.6 Corollaries Let ¥ be a measurable space. Then we have the
following results:

(a) If f =wu + iv, where u and v are real measurable

functions on X, then f is a complex measurable functiom on X.

(b) If f =u + iv is a complex measurable function on
X, thenu, v, and |f| are real recasurable functions on X.
(¢) 1If f and g are complex measurable functions on X,

then so are f + g and fg.



(d) If E is a measureble set in X and if

| if x € E.
}(E(x) =
0 if x ¢ E,

then Xg is a measurable function.

We call Xg the characteristic function of the set E,

(e) 1f f is a complex measurable function on X, there is
a complex measursble functicn o on X such that |o| = 1 and

£ = alf].

2.7 Theorem If R is any collection of subsets of X, there exists

a spallest o-zlgebra m* in X such that 6.’—5,' € W .

2.8 Definition Let ¥ be a topological space. By theorem 2.7,
there exists a smallest 0 - algebra 'ﬁ% in X such that every open
set in X belongs to 53. The members of 53 are called the

Borel sets of X.

2.9 Definition If X is a Borel measurable space, Y is a topological
space, and f is a mapping of ¥ into Y. Then f is said to be

Borel measurablg provided that fﬁl(V) is a Borel set in X for every

open set V in Y.

Note If Y is the real line or the complex plane, the Borel measurable

functions will be called Borel functions.




2,10 Definition Let {ah} be a sequence in [- o, mﬂ, and put

by = sup (@ qGgys YGyyo eee}  (k=1,2,3, ...) and

B = inf { bl’ b2’ b3, ... } . We call B the upper limit of {an} '
and write B = lim sup a, - The lower limit is defined
fog o

analogously : simply interchange sup and inf.

2.11 Theorem If £ : X > [« , «] is measurable, for
n=1,2,3, ... and

g = sup f y h = inf f
n 31 n 21

k = lim sup f , 4= lim inf £ _,

Tee N

then g, h, k and £ are measurable.

2.12 Corollary If f and g are measurable (with range in [- =] ),
then so are max {f, g} and min {f, g} . Im particular, this is

true of the functicns
+ =
£ = pax {f, o} and f = -min {f, o} .

+ -
The functionsf end f are called the positive and pegative parts

of £f. We have |£| = £ + f and f = o5,



2.13 Definition A function g on a set X whose range consists of

only finitely many pcints in [p,m ) will be called a simple functiom.

If ¥ is a measurable space, Oys wees o, are the

distinct values of 2 simple function s on X, and

. n
Ay = {x| s(x}) = o4} then s = i£1 ¢ty XA1 where XA& is

the characteristic function of Ai and s is measurable if and only

if each of the sets Ai is measurable,

2.14 Definition A positive messure is a function p , defined on a

g - algebra m , whose range is in [o,mﬂ and which is countably
additive. i.e. if {Li} is a pairwise disjoint countable collection

of members of m , then

o @
u(UA) = T u(A,)
=t gE11 4 e
and we shall alsc assume that p (A) < o for at least one

A 4 ¢ em .

2.15 Definition A measure space is a measurable space which has a2

positive measurs defined on the o - algebra of its measurable sets.

2.16 Definition A complex measure on X is a complex-valued

countably additive function defined on a ¢ - algebra m in X.

Note If pu (E) = O for every E € m , then u is a positive measure.



2.17 Theorem Let u be a positive measure on a ¢ - algebra m .

Then

(a) () = 0

() w Ay V...V A) = u (4) + ...+ u (Ah) if
Al, . An are pairwise disjoint members of m .

(¢) 4 C B implies 1 (4 <u @) ifA € m B em.

() wa) »u@) asn>=if A = J A ,A e m

a=1 n n
and A; C A, C ...
o
(e) u(a) = u(a) as n +» @ if A = 431 A,A em

Al > & D... and y (Al) is finite.

Integration of Positive Function

In this section, m will be a2 ¢ - algebra in & set X and

B will be a positive measure cnm .

2.18 Definiticn If e ie a messurable simple function om X, of the

form
n
B = I a, X
g=1 Ay
where al, ces O are the distinct values of 8 and if E € m, we
define

n
SJesdyp = I oy u(;ﬂ.:l N E).
E i=1



The convention 0.® = 0 is used here ; it may happen that o = Y
for some i and that u (A, N E) = o . If f:X > [0, »] 1s
measurable, and ¥ € m , we define

Jfdy = sup [ s du R €. |
[

E
With

The supremum being taken over all simple measurable functicng g such

that 0o € s £ f£.

The left integral of (*) is cellec the Lebesgue integral of f over E

with respect to the measure U .

It is 2 number in [o,“ﬂ .

2.19 Propositicn The functions and sets occuring in the following
propositions are assumed tc be measurable:

(a) If o <« £ ¢ g, them S fdu ¢ [ gdy.
E E

(b) IfA ¢ Bandf > othen f fdp g S Efdy.
A B

(¢) Iff > o and c is a constant, o g ¢ < =, then

fefdy = ¢ [ fadp.
3

(@) I1f £(x)

¢ for all x € E, then

f fdy = 0, even 1f p(E) =

(¢) Tf p(E) = O then [ £dy = 0, even if f(x) = «
E

for every x ¢ FE.



(f) Iff > O, then J £ dyu = Ifodu.
E X

2.20 Proposition 1et s and t be measurable simple functions on X.

For E € m, define

Y(E) = J sadu.

0

Then 3 is 2 measure on m. Also

S (8 4+ t) du = fsdu + [ftadu.
X X X

2.21 Lebesgue's Monotone Convergence Theoren

Let {fn} be a sequence of measurable functions on X and suppose

that
(a) 0 < £, < £,(x) .. ¢ © for every x € X,

(b) £, + £(x) asn > @ for every x € Y. Then f

is measurable, and

Jf du - S £ du as n > °© ,
n
X X
2,22 Theorem Suppcse £ : X -+ [0, m] is measurable, and
YeE = Jfduy (E € m.
E

Then Lf is a measure on m , and

fgdaja = fgf du
X X

for every measurable function g on-X with range in fO,m].
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Remark The second assertion of Thecrem 2.22 is sometimes written in

the form
dlf = £ du .

We assign no independent meaning to the symbols d g?and dy . This

merely means that [ g d{f = [ gfdy for every measurable
X X

g > 0.

Integration cf Complex Functions

As before, 1 will be a positive measure on an arbitrary measurable

space Y.

i
2,22 Definiticn We define 1 (u) to be the collection of all complex
measurable functions f on X for which

B e dy—e—.
X

- 5
The members of L (u) are called Lebesgue integrable functions

(with respect to ).

2.24 Definition If £ = u + iv where u and v arec real measurable

L
functions on X and if f ¢ L (u), we define

s - + -
S f£du = u dy = Sfu dy +41 fv du-1i [fv dy
E E E E E

for every measurable set E.
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+ -
Hereu andu are the pesitive and nepative parts of u

+
as defined in Corollary 2.12 ; v

7

and v are similary obtained from

v. These four functions are measurable, real and nonnegative ;

hence the four integrals on the right exist, by Definition 2.18.

.+.
Furthermore, we have uw < |u| <

-~

| £| , etc., so that each of these

four integrals is finite.
We define the intepral of a measurable function f with

range in [— M,mﬂ tc be

+ -
Jfau = /05804 f R du ,
E E E

provided that at least one of the integrals on the right is finite.

The integral on the left is then a number in [- w,»| .

i
2.25 Theorem Suppose f and g £ L (u) and o and B are complex

4
numbers. Then of + Be ¢ L (u) and

S (of +Bg) duy = o f fdu+ B S gdu.
X X ¥

1
2.26 Theorem If f ¢ L (p), then

S Edul ¢ |f] du .
X X
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2.27 lebesgue’s Dominated Convergence Theorem

Suppose {fn} is a sequence of complex measurable functicns on X

such that £(x) = lim fn(x) exists for every x € X. If

n+ee "

1
there is 2 function ¢ € L (u) such that |fq(x)| < g(x)

1
(b= 1,2,3, vusy X E X), then f € L (n), 1lim S ]fn - f[du =0,
X

n=ee

and lim J £ dun =% d¢ .
n
e X X

2,28 Defirnition Let P be a property which a point x may or may nct
have. If § is 2 mcasure on a 0 - dpebra mand if E € m, the
statement "P holds zlmost everywhere on E” (P holds a.e on E) means
that there exists an N g m such that p() = 0, N <€ E and P

holds at every point of E - N.

The concept of a.e¢ depends of course very strongly on the given
measure,

2.29 Theorem Suppose u(X) < =, {fn} is a sequence of bounded

complex measurable functions on X, and f“ + £ uniformly on X. Then

lim S £ dp = [ £du .
n*e X X
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2.3C Theorem Let L fn be a uniformly cconvergent series of
n=1
continuous complex measurzble functioms on a topological space X

which is a2lso measurable, f is the sum of the series and u(¥) < @

then
(=] o0
J £du = F..x fn du = L i fn du .
X ¥ n=1 n=)] X

2.31 Definition A linear transfcrmation of a vecter space V into

a vector space Vl is a mapping & of V inte V1 such thet

Alox + By) = uvx + Bay for 2ll xand y € V and for all scalars
o and B. In the speciel case in which Vl is the field of scalars,

A ie called 2 linear functional. A linear functional is thus a

complex function on V which satisfies the above equality.

Note All vector spaces occuring in this thesis will be complex, with
one notable excepticn : the eu¢lidean spaces Rk are vector spaces

over the real field.

2.32 Definitiorn Iet C be the set of all continucus complex-valued
functions on . and A : C =+ € is a linear functional. A is called

a positive lincer functional if for all real valued £ € C

1) Af € R

2) Af > 0 whenever f 2 O,
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2.33 Theorem Suppose X 1s a Hausdorff space, K C ¥, K is compact
andp € K® (the complement of K). Then there are open sets U and

Wsuch thatp € U, K C WandU N W = ¢ .

2.34 Theorem Suppose U is open in a loczlly compact Hausdorff space
X, 8 C U, and K is compact. Then there is an open set V with

compact closure such that

E otV SNl U

2.35 Definition The support of a complex function f on e topological

space X is the closure of the set
{x|£(x) ¢ 0} .

The collection of all continuous complex functions on X whose support

is compact is denoted by Cc(X)'

2.36 Thecrem The range of any f € CC(X) is a compact subset of

the complex plane.

2.37 Notation

The notation X < £ will mean that K is a compact subset of X, that
f € CC(X) end f is real valued function, that

0 < f(x) < 1 Y x €& X and that f(x) = 1 Y x e K,

The notation f < V will mean that V is open that f € CC(X) and
f is real valued function, 0 < f < 1 and that the support of £

lies in V.
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The notation K < f < V will be used to indicate that both above

cases hold.

!

{ i
| S Al ¥ o3
PRV

2.38 Urysohn's Lemma

Suppose X is a locally compact Bausdorff space, V is open in X,

K C V and K is compact. Then there exists an f € CC(K) such

that K < £ < V.

2.39 Theorer Suppose Vl, A1/ 30N Vn are open subsets of a locally

compact Hausderff space X, ¥ is compact and K C,Vl v V2 U oees U Vn.

Then there exist functioms h, < V, (41 =31, ... n) such that
hl(xj + ... + hn(x) mre—a]) {x: € B s snuesald)

Since this theorem is not sc well-known, then we will show an idea

of the proof.

Proof : By Theorem 2.34, each z € K has a neighborhood W_ with

compact closure fﬂ{ C Vi for some i (depending on x). There are

J
points Xys vees X such that kxlu vee U me . KT 1f

1 £ i ¢ »n, let H; be the union of these EL which lie in V; .

B
By Urysohn's Lemma 2.38, there are functione 8y such that

< < .
H gy Vv, . Define

| 17902927
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Then hi < Vi .

By induction

By +hy 4. b= ()0 =gy e (mg) e

Since K C H; v ...V H , at least one gi(x) = 1 at each point
x ¢ K ; hence (2) shows that (1) holds.

We shall now state a Theorem whose proof we shall pive in

“ Chapter III. .

2.40 Theorem Let ¥ te a locally corpact Hausdorff space, and let
A be a positive linear functicmal on CC(K). Then there exists a
o - algebram in X which contains all Borel sets in X, and there
exists a unique positive measure Yy on m which represents A in the

genge that

(a) Af = [ £ du for every f ¢ C_(X) and which has
X

the following additional properties i
() u(®) < = for every compact set K (C X.

(c) TYor every E € m , we have

wWE) = dnf { w(v) : E < ¥V, Vopen }.
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(d) The relation

u(E) = sup {p(X) : K C E, K compact} holds for
every open set L, and for every E € m with p(B) < o .

() IfFii € m, A C E, and u(E) = O them A € m .

2.41 Definitior A measure p defined on the o - algebra of all
Borel sets in a locally compact Hausdorff space ¥ is called a

Borel measure on X.

9.42 Definition A set E in a topological space is called g - compact
if E is 2 countable union of compact sets., A set E in a measure

space (with measure y) is said to have g - finite measure if E is &

countable unign of sets Ei with u(Ei) < o©

2.43 Definition If 1 is positive, a Borel set E C ¥ is outer

regular or inner regular , respectively, if E has property (c¢) or

(d) of Theowem 2.48. If every Borel set in X is both outer and

inner regular, p is called regular.

2.44 Theorem Suppose X is a locally compact, g - compact Hausdorff
space. If m and u are as described in the statement of Theorem

2.80 then m and p have the following prcperties :

(a) If¥ € m and € > 0, there is a closed set F and
an open set V such that F ¢ E C Vand uV-F < €

(6) u 1is a regular Borel measure on X.
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2.45 Definition If p and q are positive real numbers such that

+ = 1 then we call p and q a pair of

o =
N

p+tq = pq or

conjugate €xponents.

2.46 Definition Let ¥ be an arbitrary measure space with a positive
measure B, If 1 ¢ p < = and if f is a complex
measurable function on ¥, define

1/
el = €/ IetP )} P
X

and let 1P(u) consist of all f for whichll £ Hp < o . We call []fl]p
the LP- norm »f f.

2.47 Definition Suppose g : ¥ -+ [0, »| is measurable. Let S be
the set of all real o such that

ug ™! (@, =) = 0.

If §$ = ¢ , . put BN (= @0 .
If S # ¢ put & = inf S. Since g_l (R , mﬂ) =
o

U 8-1 ((g + %—, ®|), and since the union of a countable collection
n=1

of sets of measure 0 has meesure O, we see that B € S. Ve call

B the essential supremum of g.

If £ is a complex measurable functien on X, we define ||f||m to be

the essential supremum of |f| and we let T () consist of all f for

which ||£]|], < <.
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2.48 Theorem Lpgﬂb is a complete metric space, for 1 < p < @

and for every positive measure U .
2.49 Theorem Let S be the class cof all complex, measurable, simple
functions on ¥ such that for any s€3S
p({xls(x) # 0} < «.
If 1 & p < @, then S is dense in P (.

Now let X be a locally compact Hausderff space, and let
be a measure on a O - algebra m in X, with the properties stated

in Thecrem 2.40.
2.50 Theorem For 1 < ' p < = CC(X) is dense in LP (p).

2.51 Definition A complex function f on a locally compact

Hausdorff space ¥ is said to vanish at infinity if to every € > 0

there exists a compact set K ¢ ¥ such that |£(x)| < € for all

x not in K.

The class of all continuous functions f on X which vanish at igfinity is

called CO(X).

Therefore CC(E) C CO(X) and the two classes coincide if X is

compact. In that case we write C(X) for either of them.
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2.52 Theorem If ¥ is a locally compact Hausdorff space, thenm CO(X)

is the completion of cc(x), with respect to the metric defined by
the supremum norm

|[1€]] = suwp |£GI] .
x e X

2.53 Definition Consider a linear transformation .A. from a normed

linear space ¥ into a normed linear space Y and define its mnorm by

[lall = suw {—-l—llf‘—{-‘—:xex,x,&og

if ||A]|] < =« then A 'is called a bounded linear transformation.

2.54 Hahn - Banach Theorem If M i8 a subspace of a normed linear

space X and if f is a2 bounded linear functional on M, then f can be

extended to a bounded linear functional Fon X so that ||F|| = [3£]1.-

2.55 Theorem Let M be a lincar subspace of 2 normed linear space X
and let x, E X. Then X is in the closure Mof M iff there is mo
bounded lincar functional £ on ¥ such that f(x) = ©C ¥ x e M

but f(xo) 4 0.

Complex Mecasures

2.56 Definition Let m be a o - algebra in a set X. Call a

countable collection {Ei}iel of members of m a partition of E if

E, N E, = ¢ whenever i # 1 and if E = U E
i 3 iel 1
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A complex measure W on m is then a complex function en m such that

o«

WE) = I u(Ey) (E & m) for every partition {Ei} of E.
i=1
2.57 Definiticn Let u be 2 complex measure on the 0 - algebram .

We define a set function |u| onm by
oo

|u](ﬁ) = sup L Iu(Ei)I (E & m ,
1

the supremum being taken over 211 partitions {Ei} rf E. Note that

lwl &) > |1 (B)} but in peneral lu! (E) is not equal to

|u (B)| . The set functdion |u| is called the total variation of y .

If u is a pesitive measure, then  |u| = n .

2.5¢ Theorem The total variation |u| of complex measure u om

is a positive measure on m .
2.59 Theorem If u 4s a complex measure on X, then |u| (X) < =,

2.60 Definiticn If p and A are complex measures on the same

o - algebra m , we define p + A and cy by

(p + MN(E)
(cp) (E)

w(E) + A(E)

]

cu (E)

where E € m and ¢ is any complex number u + A and cu are

complex measure.
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2.61 Definition Define |u| as before and define
+ - 1
Woe 2 dul v, W = 3 Ul -,

+ -
Then beth p and are positive measures on m , and they are

bounded, by Theorem 2.58.
% " + -
Also, ¥ = W - u , |uf = w+wu

+ -
The measures u and u are celled the positive and negative

variations of p , respectively. This representation of u as the

difference of the positive measures u+ and | ~ 4s known as the

Jordan decomposition of u .

2.62 Theorem lLet u be a complex measure on a 0 - algebra m in X.
Then there is a complex valued measurable function h such thet

|h(x)| = 1 forall x & X an¢ such that dy = h ajuf .

1
2.63 Thecrem Suppcse | is a positive measure on m , g ¢ L (W

and
A(E) = [ g dy (E € m).
E
Then (Al (B) = S lel du (E € m).
¥

2.64 Theorem Suppose 1 < p < =, u is a ¢ - finite positive
measure on ¥, and ¢ 1is a becunded linear functional on 1P(u). Then
there is a unique g € !E(u) where g is the exponent conjugate to p,

gsuch that
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8(f) = /[ fg dy (£ ¢ 1P},
X

Moreover, if @ and g are related as above, we have

el = 1lell, -

2.65 Definition Let X be a locally compact Hausdorff space and
is a complex Porel measure, we define integration with respect to a

complex measure u by the formula

[ £ dy = [ fmalyl.

2.66 Tefinition A complex Borel measure p on X is regular if |ul

is regular.

Integration on Product Spaces

2.67 Definition If X, Y are two sets, we define the set
XxY-{(x,y)|xgx,er}.IfAc'_xandBc Y,
it follows that A //x "B/ €1 ¥ x Y. We call any set of the form

A % B a rectangle in X x Y.

Suppose (¥, 6) and (Y,3J) arc measurable space. A measurable
rectangle is any set of the ferm & X B, where A ¢ 6§ and

B £ J X

IfQ = RI UV ewe U Rh , where each Ri is a measurable
rectangle and Ri n Rj = ¢ fori ¢ j , we say that 0 € qi

the class of elementary sets.
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8§ x o 1is defined to be the smallest 0 - algebra in X x ¥

which contains every reasurable rectangle.

A monotone class m is a collection of sets with the following

properties :

If 4, em , B, € m such that 4, C Ay, » By D By, for

i=1
then A € mand B € m/ |

1IfE C ¥ x Y ,x ¢ X,y € Y, we define

E = {y|(x, ¥y). € E}

£y = {x|€¢9) e E}

We call Ex the x - section of F and EY the y - secticn of E.

2.68 Theorem If E ¢ & xJ , ther Ex e 3 and’ ¢ &, for

every x ¢ Xandy ¢ Y.

2,69 Thecren 8§ x & 1is the smallest monotone class which contzins

all the elementary sets.

2.70 Definiticn Let f be an extended real valued function defined on
X x Y. For x g X we associate a function fx defined on Y by
£() = flx,y). Sizilarly fery e Y, £/ ig the function defined

on X by £7(x) = f(x, y).



2.71 Theorem Let f be an (§ X&) - measurable function on X x Y.

Then the following held -
(a) For cach x ¢ ¥, fx is a o - measurable function.
(b) For eachy € Y, ¢Y ig a2 § ~ measurable function.
2.72 Theorem Llet (¥,8,p) and (¥,7,d) be ¢ - finite measure spaces.
Suppose O e & x :f.

If Y&x) = Q) , g ly) = u(@”) for every x ¢ ¥ and

y € Y, then (53 is § - mcasurable , Y is J - measurable and

SGdy = [ ydu .
xtf Yv

2.73 Definitien If (X,8;u) and (¥,9,)) are g - finite measure

spaces and if Q ¢ § x & , we define

( x D@ = F Mo du () = ru@ax ).
p.4 Y

We c2ll py x A the product of the measure | and A . uXx A 1is

a measure.

2.74 The Fubini Thecrem

Let (X,d8,p) and (v,7,)) be ¢ - finite measure spaces, and let f be

an (8§ x Y ) measurable function on X % Y .
(a) If C < f g = and if

(1) §G) = J fxdl sy V() =S fdy (xe X, ye Y),
Y X
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then Ey is § - measurable,  1is i) - measurable, and

2) f9au = [ £duxAN = [Ppdr.
. XXy Y

(b) If £ is complex and if
® *
(3) 'kj‘ (x) = f|f| d) and fiji dy < »
lx .
Y X
1
them £ L (ux M.
1 1
(¢) Iff € L(ux )) thenf e L ()\) for almost ell
1
x £ X, £ e 1 (y) for almost ally € Y , the functions f and

1 1
$ , defined by (1) a.e. are in L () and L (\) respectively and (2)

helds.

Notee The first and the last inteprals in (2) can also be written
in the more usual form

() Of dy () £(x, y) A (y) = sdx (y) [E(x,y)du(x).
¥ - Y X

These are the sc - called "iterated integrals’ of f.
The middle integral im (2) is often referrec to as a double integral.

The combinaticn of (b) and (c) gives the following useful result :
If f is (6 X 3)) - measurabtle and if

Fap 0 [ lfx, p] é ) < @,
X Y

then the two itorated integrals (4) are finite end equal. In other
words "the order of integration may be reversed” for
(8§ x J) - measurable functions f whencver f > 0 and also whenever

one of the iterated inteprals of |f| is finite.
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2.75 Definition If r > 0 znd 2 is a complex number, D(a, r) =
{z|| z - a| < r} e the oven circular disc with centre at a and

radius r

v
D (a,r) = {z|] 0 < |z -a| <r} is the punctured disc with center

at a and radius r.

2.76 Definition A maximal connected subset of E is called a

component of E.

A region is 2 ncnempty connected cpen subset of the complex plane.

Each component of a plane cpen set O is a region.

2.77 Definition Suppose f is a complex functiou define in Q
(plane open set). If the derivative of f denoted by £'(z) exists
for every z ¢ § then f is aralytic in O . The class of anelytic

functions in  will be denoted by H(Q).

2.78 Definition A functicn f defined in Q  1is said tc be

representable by a power series in © 1if to every disc p(a, r) C N

(=]

there corresponds a series I cj(z - a)" which converges to f(2z)
n=¢0

for all z e I(a,r).

2.79 Theorem If f is representable by power series in Q then

f & HE.
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2.80 Theorem Suppose MU is a complex (finite) measure on a measurable
space X, lg is 2 complex measurable function cn ¥, ) is an open set in

the plane which dces not intersect Ef(x) , and

- dy (&)
£(z) i l§??§*:§;— (ze Q)-

Then f is representable by power series in Jv .

2.81 Definition If X is a topologieal space, a curve in X is a
i
continuous mapping y of a compact interval [a ,B] ¢ R 1into X ;

here a < B

We call &1, 8] the parameter interval of y and denote the

+ *
range of y by y . Thus y is a mapping , and y is the set of

all points y(t) for o < t < B .

1f the initial pcint y(a) of y ccincides with its erd point y(R),

we call y a closed curve.

2.82 Definition A peth is a piecewise continucusly differentiable

curve in the plane., More explicitly, a path with parameter interval
[« , 8] 1is a continuous corplex function y on [o ,8] , such that
the following hclds : There are finitely many points sj ,

6 = B, ¢ BT B = f , and the restriction of y tc each
L

intervai [ 3j_1 v Sj ] has a centinuous derivative on [pj—l 3 aj] .

however, at the points Sy s - B the left - and right - hand

n-1
derivatives of y may differ.
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A élosed path is a closed curve which is alsc a path. Suppose Y 1is
%

a path and f is continucus function on Yy . The integral of f over
y is defined as an integral over the parameter interval Bx .Q] of v :
g '

J f(z) dz = [ f£(y(t)) vy (t) dt.

Y ¢
2.83 Definition 1If a is 2 complex number and ¢ > 0, the path
defined by y(t) = a + reit (0 € t £ 2m) is called the

positively oriented circle with center at 2 and radius r.

2.84 Definition If a and b are complex numbera the path y given by
y(t) = a+ (b - a)t 0 < t £ 1)

is called the oriented interval [a, B] ; its length is ]b - a| .

2.85 Theorem Let ¥y be & closed pathy, let Q be the complement of

1 I df
27i -z
Y 2

(z € 0). Then IndY is an integer - valued function on § which

*
y (relative to the plane), end define IndY(z) =

is constant in cach component of Q and which is O ir the unbounded

component.

2.86 Theorem If <y is the positively oriented circle with center
at & and radius r, then

! if jz-2a] < r.

IndY (z) = i
0 if |z -~a] > r.
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2.87 Theorem For every open set O in the plane, every f € H(R)

is representable by power series in Q.

2.8& Theorem Suppose £ 1is a region, f € H(®) , and

2(f) = {acQ|f(a = 01} . Then either 2(f) = Q or Z(f) has
no limit point in O . In the latter casc there corresponds to each
a e 2(f) a unique positive integerm = m (a) such that

f(z) = (= - ™ glz) (z e ), wvhere g € H(O) and g(a) # C,

furthermore , 2(f) is at most countable.

2.89 pefinition Ifa € N and £ ¢ H(Q - {a} ), then f is said

to have an isolated singularity at the point a. If f can be so

defined at a that the extended function is analytic in @, the

sinpularity is seid tc be rerovable.

2.90 Theorem If 2 € Q end £ € H(® - {a} ) then ore of the

following three cases must occur :

(2) f has a removable singularity at a.
(b) There are cormplex number Cp s »ee s Cpos where m is a

positive integer and c # 0 , such that

m c
f(z) - L
k=1 (z - a)

has a removable singularity at a.

(¢) Ifr > 0andN(a, r) € 2 , then f(D' (2, r)) is

dense in the planc.
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2.91 Theorem Every open set 0 in the plane is the union of a sequence

{K}, n=1,2,3, ... of compact sets such that
n
fal (<] 312 - w
(a) Kn 1ies in the interdior of Kﬁ+1 foer n 1,2, .
(b) Every compact subsct of @ lies in some Kn .

(c) Let SZ be the extended complex plane then every component

9
of §° - Kn contains a cemponent of 82 - Q, forn=1,2,3, ...

2.92 Theorem Suppoge a and b are complex numbers, b # 0 and v is
the path ccnsisting of the oriented intervszls [} +1" b s &+ 1n+1 bl
(n=0,1,2,3). Then Indy(z) = 1 for every z in the interior of the

square with vertices at the points a + 1" b {n+«0,1,2,3),:

2.93 Thecrez If K is a compact subset ¢f a2 plane cpen set {0 ,
there exist oriented line intevvals vy, , /... ; Y, in § = K such

that the Cauchy formula

: 1 £(E)
£(z2) = jil 51 -ij gt ag holds for every

f € H(R) 2né every g € K,
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