CHAPTEP II

PRELIMINARIES

In this thesis, we assume a basic knowledge of real and complex analysis. However, this chapter contains a review of some relevant definitions and facts from integration theory which we will be using. Proofs will not be given, and can be found in [1].

2.1 Definition A collection m of subsets of a set X is said to

be a σ - algebra in X if m has the following three properties:

- (a) X ε m
- (b) If A ϵ m , then A c ϵ m where A c is the complement of A relative to X.
- (c) If $A = \bigcup_{n=1}^{\infty} A_n$ and if $A_n \in m$ for n = 1, 2, ... then $A \in m$.

If m is a o - algebra in X, then X is called a measurable space and the members of m are called the measurable sets in X.

2.2 <u>Definition</u> If X is a measurable space, Y is a topological space, and f is a mapping of X into Y, then f is said to be $\frac{\text{measurable}}{\text{measurable}}$ provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y.

- 2.3 Proposition Let m be a σ- algebra in a set X.
 - (a) ¢ € m
 - (b) m is closed under finite union.
 - (c) m is closed under countable intersection.
 m is closed under finite intersection
 - (d) If A & m, B & m then A B & m.
- 2.4 Theorem Let Y and Z be topological spaces, and let g: Y \rightarrow Z be continuous. If X is a measurable space and f: X \rightarrow Y is measurable and if h = gof, then h: X \rightarrow Z is measurable.
- 2.5 Theorem Let u and v be real measurable functions on a measurable space X, let Φ be a continuous mapping of the plane into a topological space Y, and define $h(x) = \Phi(u(x), v(x))$ for $x \in X$. Then $h: X \to Y$ is measurable.
- 2.6 Corollaries Let X be a measurable space. Then we have the following results:
- (a) If f = u + iv, where u and v are real measurable functions on X, then f is a complex measurable function on X.
- (b) If f = u + iv is a complex measurable function on X, then u, v, and |f| are real reasurable functions on X.
- (c) If f and g are complex measurable functions on X, then so are f+g and fg.

(d) If E is a measurable set in X and if

$$\chi_{E}(x) = \begin{cases} 1 & \text{if } x \in E. \\ 0 & \text{if } x \notin E. \end{cases}$$

then χ_E is a measurable function.

We call χ_E the characteristic function of the set E.

- (e) If f is a complex measurable function on X, there is a complex measurable function α on X such that $|\alpha|=1$ and $f=\alpha|f|$.
- 2.7 Theorem If F is any collection of subsets of X, there exists a smallest σ-algebra m* in X such that F c m*.
- 2.8 <u>Definition</u> Let X be a topological space. By theorem 2.7, there exists a smallest σ algebra ℜ in X such that every open set in X belongs to ℜ. The members of ℜ are called the <u>Borel sets</u> of X.
- 2.9 <u>Definition</u> If X is a Borel measurable space, Y is a topological space, and f is a mapping of X into Y. Then f is said to be <u>Borel measurable</u> provided that f⁻¹(V) is a Borel set in X for every open set V in Y.

Note If Y is the real line or the complex plane, the Borel measurable functions will be called Borel functions.

- 2.10 <u>Definition</u> Let $\{a_n\}$ be a sequence in $[-\infty, \infty]$, and put $b_k = \sup\{a_k, a_{k+1}, a_{k+2}, \ldots\}$ $(k = 1, 2, 3, \ldots)$ and $\beta = \inf\{b_1, b_2, b_3, \ldots\}$. We call β the <u>upper limit</u> of $\{a_n\}$, and write $\beta = \lim_{n \to \infty} \sup a_n$. The <u>lower limit</u> is defined analogously: simply interchange sup and inf.
- 2.11 Theorem If $f_n: X \to [-\infty, \infty]$ is measurable, for $n = 1, 2, 3, \ldots$ and

$$g = \sup_{n \in \mathbb{N}} f_n$$
 , $h = \inf_{n \in \mathbb{N}} f_n$

$$k = \lim_{n \to \infty} \sup_{n \to \infty} f_n, \ell = \lim_{n \to \infty} \inf_{n \to \infty} f_n,$$

then g, h, k and l are measurable.

2.12 Corollary If f and g are measurable (with range in $[-\infty,\infty]$), then so are max $\{f,g\}$ and min $\{f,g\}$. In particular, this is true of the functions

$$f^{+} = \max \{f, o\} \text{ and } f^{-} = -\min \{f, o\}$$
.

The functions f^{\dagger} and f^{-} are called the positive and negative parts of f. We have $|f| = f^{\dagger} + f^{-}$ and $f = f^{\dagger} - f^{-}$.

2.13 <u>Definition</u> A function s on a set X whose range consists of only finitely many points in $[0,\infty)$ will be called a <u>simple function</u>.

If X is a measurable space, $\alpha_1, \ldots, \alpha_n$ are the distinct values of a simple function s on X, and

$$A_i = \{x \mid s(x) = \alpha_i\}$$
 then $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$ where χ_{A_i} is

the characteristic function of A_i and s is measurable if and only if each of the sets A_i is measurable.

2.14 <u>Definition</u> A <u>positive measure</u> is a function μ , defined on a σ - algebra m, whose range is in $[\sigma, \infty]$ and which is countably additive. i.e. if $\{A_i\}$ is a pairwise disjoint countable collection of members of m, then

$$\mu \left(\bigcup_{i=1}^{\infty} A_{i} \right) = \sum_{i=1}^{\infty} \mu \left(A_{i} \right)$$

and we shall also assume that μ (A) < ∞ for at least one A \neq φ ϵ m .

- 2.15 <u>Definition</u> A measure space is a measurable space which has a positive measure defined on the σ algebra of its measurable sets.
- 2.16 <u>Definition</u> A <u>complex measure</u> on X is a complex-valued countably additive function defined on a σ algebra m in X.

Note If μ (E) = 0 for every E ϵ m, then μ is a positive measure.

2.17 Theorem Let μ be a positive measure on a σ - algebra m . Then

(a)
$$\mu$$
 (b) = 0

(b)
$$\mu (\Lambda_1 \cup ... \cup \Lambda_n) = \mu (\Lambda_1) + ... + \mu (\Lambda_n)$$
 if

 $A_1, \ldots A_n$ are pairwise disjoint members of m.

- (c) A C B implies μ (A) $\leq \mu$ (B) if A ϵ m, B ϵ m .
- (d) μ (A_n) \rightarrow μ (A) as $n \rightarrow \infty$ if A = $\bigcup_{n=1}^{\infty}$ A_n , A_n \in m and A₁ C A₂ C ···

(e)
$$\mu(A_n) \rightarrow \mu(A)$$
 as $n \rightarrow \infty$ if $A = \bigcap_{n=1}^{\infty} A_n$, $A_n \in m$ $A_1 \supset A_2 \supset \dots$ and $\mu(A_1)$ is finite.

Integration of Positive Function

In this section, m will be a σ - algebra in a set X and μ will be a positive measure on m .

2.18 <u>Definition</u> If s is a measurable simple function on X, of the form

$$\mathbf{s} = \sum_{\mathbf{i}=1}^{n} \alpha_{\mathbf{i}} \chi_{\mathbf{A}_{\mathbf{i}}}$$

where $\alpha_1,\;\dots\;\alpha_n$ are the distinct values of s and if E ϵ m, we define

$$\int_{E} s \, d \, \mu = \sum_{i=1}^{n} \alpha_{i} \, \mu(A_{i} \cap E).$$

The convention $0.\infty=0$ is used here; it may happen that $\alpha_{\bf i}=0$ for some i and that μ (A_i \cap E) = ∞ . If f: X \rightarrow [0, ∞] is measurable, and E ϵ m, we define

$$\int_{E} f d\mu = \sup_{E} \int_{E} s d\mu$$
(*)

With

The supremum being taken over all simple measurable functions s such that $o \leqslant s \leqslant f$.

The left integral of (*) is called the Lebesgue integral of f over E with respect to the measure μ .

It is a number in $[0,\infty]$.

- 2.19 <u>Proposition</u> The functions and sets occurring in the following propositions are assumed to be measurable:
 - (a) If o \leqslant f \leqslant g, then $\int\limits_E f \ d\mu \leqslant \int\limits_E g \ d\mu$.
 - (b) If A C B and f \geqslant o then $\int\limits_A f \ d\mu \leqslant \int\limits_B f \ d\mu$.
 - (c) If $f\geqslant o$ and c is a constant, o $\leqslant c<\infty,$ then $\int cf\ d\mu \ = \ c\ \int f\ d\mu\ .$ E
 - (d) If f(x) = 0 for all $x \in E$, then

 $\int \ f \ d\mu \ = \ 0 , \ {\rm even} \ \ if \ \ \mu(E) \ = \infty \quad .$ E

(e) If $\mu(E) = 0$ then $\int_E f d\mu = 0$, even if $f(x) = \infty$

for every x E E.

(f) If f
$$\geqslant$$
 0, then $\int\limits_E f \ d\mu = \int\limits_X \chi_E f \ d\mu$.

2.20 <u>Proposition</u> Let s and t be measurable simple functions on X. For E ϵ m, define

$$\mathcal{G}(E) = \int_{E} s \, d\mu$$
.

Then 4 is a measure on m. Also

2.21 Lebesgue's Monotone Convergence Theorem

Let $\{f_n\}$ be a sequence of measurable functions on X and suppose that

(a)
$$0 \le f_1(x) \le f_2(x) \dots \le \infty$$
 for every $x \in X$,

(b) $f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in Y$. Then f is measurable, and

2.22 Theorem Suppose $f: X \rightarrow [0, \infty]$ is measurable, and

$$\mathcal{G}(E) = \int_{E} f d\mu$$
 (E \varepsilon m).

Then φ is a measure on m, and

$$\int_{X} g \, dy = \int_{X} gf \, d\mu$$

for every measurable function g on X with range in [0,∞].

Remark The second assertion of Theorem 2.22 is sometimes written in the form

$$dy = fd\mu$$
.

We assign no independent meaning to the symbols d $\mathcal G$ and d μ . This merely means that $\int\limits_X g\ d\mu = \int\limits_X g\ f\ d\mu$ for every measurable $g\geqslant 0$.

Integration of Complex Functions

As before, μ will be a positive measure on an arbitrary measurable space X.

2.23 <u>Definition</u> We define $L^{1}(\mu)$ to be the collection of all complex measurable functions f on X for which

$$\int\limits_X \left| f \right| \, d\mu \ < \ \infty$$
 .

The members of $L^{1}(\mu)$ are called <u>Lebesgue integrable</u> functions (with respect to μ).

2.24 <u>Definition</u> If f = u + iv where u and v are real measurable functions on X and if $f \in L^{1}(\mu)$, we define

$$\int\limits_{E} \mathbf{f} \ d\mu \ = \ \int\limits_{E} \mathbf{u}^{+} \ d\mu - \int\limits_{E} \mathbf{u}^{-} \ d\mu \ + \mathbf{i} \int\limits_{E} \mathbf{v}^{+} \ d\mu - \mathbf{i} \int\limits_{E} \mathbf{v}^{-} \ d\mu$$

for every measurable set E.

Here u^+ and u^- are the positive and negative parts of u as defined in Corollary 2.12; v^+ and v^- are similarly obtained from v. These four functions are measurable, real and nonnegative; hence the four integrals on the right exist, by Definition 2.18. Furthermore, we have $u^+ < |u| < |f|$, etc., so that each of these four integrals is finite.

We define the integral of a measurable function f with range in $\left[-\infty,\infty\right]$ to be

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu ,$$

provided that at least one of the integrals on the right is finite. The integral on the left is then a number in $[-\infty,\infty]$.

2.25 Theorem Suppose f and g ϵ L¹(μ) and α and β are complex numbers. Then αf + βg ϵ L¹(μ) and

2.26 Theorem If $f \in L^{1}(\mu)$, then

2.27 Lebesgue's Dominated Convergence Theorem

Suppose $\{f_n\}$ is a sequence of complex measurable functions on X such that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for every $x \in X$. If there is a function $g \in L^1(\mu)$ such that $|f_n(x)| \leq g(x)$ $(n = 1, 2, 3, \dots, x \in X)$, then $f \in L^1(\mu)$, $\lim_{n \to \infty} \int_X |f_n - f| \, d\mu = 0$, and $\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$.

2.28 <u>Definition</u> Let P be a property which a point x may or may not have. If μ is a measure on a σ - algebra m and if E ϵ m, the statement "P holds almost everywhere on E" (P holds a.e on E) means that there exists an N ϵ m such that $\mu(N) = 0$, N \subset E and P holds at every point of E - N.

The concept of a.e depends of course very strongly on the given measure.

2.29 Theorem Suppose $\mu(X) < \infty$, $\{f_n\}$ is a sequence of bounded complex measurable functions on X, and $f_n \to f$ uniformly on X. Then

2.30 Theorem Let $\sum\limits_{n=1}^{\infty} f_n$ be a uniformly convergent series of continuous complex measurable functions on a topological space X which is also measurable, f is the sum of the series and $\mu(X) < \infty$ then

2.31 <u>Definition</u> A linear transformation of a vector space V into a vector space V_1 is a mapping A of V into V_1 such that $A(\alpha x + \beta y) = \alpha A x + \beta A y$ for all x and y ϵ V and for all scalars α and β . In the special case in which V_1 is the field of scalars, A is called a <u>linear functional</u>. A linear functional is thus a complex function on V which satisfies the above equality.

Note All vector spaces occurring in this thesis will be complex, with one notable exception: the euclidean spaces \mathbf{R}^k are vector spaces over the real field.

- 2.32 <u>Definition</u> Let C be the set of all continuous complex-valued functions on X and $A: C \to C$ is a linear functional. A is called a positive linear functional if for all real valued $f \in C$
 - 1) Af € R
 - 2) $\Lambda_f \geqslant 0$ whenever $f \geqslant 0$.

- 2.33 Theorem Suppose X is a Hausdorff space, K C X, K is compact and p ϵ K^C (the complement of K). Then there are open sets U and W such that p ϵ U, K C W and U \cap W = ϕ .
- 2.34 <u>Theorem</u> Suppose U is open in a locally compact Hausdorff space X, K C U, and K is compact. Then there is an open set V with compact closure such that

$K \subset V \subset \overline{V} \subset U$.

2.35 <u>Definition</u> The <u>support</u> of a complex function f on a topological space X is the closure of the set

$$\{x \mid f(x) \neq 0\}$$
.

The collection of all continuous complex functions on X whose support is compact is denoted by $C_c(X)$.

2.36 Theorem The range of any f ϵ $C_c(X)$ is a compact subset of the complex plane.

2.37 Notation

The notation K \prec f will mean that K is a compact subset of X, that $f \in C_c(X)$ and f is real valued function, that $0 \leqslant f(x) \leqslant 1 \quad \forall \ x \in X \ \text{and} \ \text{that} \ f(x) = 1 \quad \forall \ x \in K.$ The notation $f \prec V$ will mean that V is open that $f \in C_c(X)$ and f is real valued function, $0 \leqslant f \leqslant 1$ and that the support of f lies in V.

The notation K \prec f \prec V will be used to indicate that both above cases hold.

005399

2.38 Urysohn's Lemma

Suppose X is a locally compact Hausdorff space, V is open in X, K C. V and K is compact. Then there exists an f ϵ C_C(X) such that K < f < V.

2.39 Theorem Suppose V_1 , ..., V_n are open subsets of a locally compact Hausdorff space X, K is compact and K $\subset V_1 \cup V_2 \cup \ldots \cup V_n$. Then there exist functions $h_i \prec V_i$ (i = 1, ... n) such that $h_1(x) + \ldots + h_n(x) = 1 \qquad (x \in K) \ldots (1)$

Since this theorem is not so well-known, then we will show an idea of the proof.

Proof: By Theorem 2.34, each $x \in K$ has a neighborhood W_x with compact closure $\overline{W}_x \subset V_i$ for some i (depending on x). There are points x_1, \ldots, x_m such that $W_{x_1} \cup \ldots \cup W_{x_m} \supset K$. If $1 \le i \le n$, let H_i be the union of those \overline{W}_x which lie in V_i . By Urysohn's Lemma 2.38, there are functions g_i such that $H_i \leftarrow g_i \leftarrow V_i$. Define

$$h_1 = g_1$$
 $h_2 = (1 - g_1) g_2$
 $h_n = (1 - g_1)(1 - g_2) \dots (1 - g_{n-1}) g_n$

Then hi < Vi.

By induction

$$h_1 + h_2 + ... h_n = 1 - (1 - g_1)(1 - g_2) ... (1 - g_n) (2)$$

Since K $\subset H_1 \cup ... \cup H_n$, at least one $g_i(x) = 1$ at each point $x \in K$; hence (2) shows that (1) holds.

We shall now state a Theorem whose proof we shall give in Chapter III.

2.40 Theorem Let X be a locally compact Hausdorff space, and let \wedge be a positive linear functional on $C_{\mathbb{C}}(X)$. Then there exists a σ - algebra m in X which contains all Borel sets in X, and there exists a unique positive measure μ on m which represents \wedge in the sense that

- (a) $\Delta f = \int f d\mu$ for every $f \in C_c(X)$ and which has the following additional properties :
 - (b) $\mu(K)$ < ∞ for every compact set K \subset X.
 - (c) For every E & m, we have

$$\mu(E) = \inf \{ \mu(V) : E \subset V, V \text{ open } \}.$$

- (d) The relation
- $\mu(E) \ = \ \sup \ \{\mu(K) \ : \ K \ \subset \ E, \ K \ compact\} \qquad holds \ for$ every open set E_s and for every E ϵ m with $\mu(E) \ < \ \infty$.
 - (e) If E ϵ m, A \subset E, and $\mu(E)$ = 0 then A ϵ m.
- 2.41 <u>Definition</u> A measure μ defined on the σ algebra of all Borel sets in a locally compact Hausdorff space X is called a Borel measure on X.
- 2.42 <u>Definition</u> A set E in a topological space is called $\underline{\sigma}$ compact if E is a countable union of compact sets. A set E in a measure space (with measure μ) is said to have $\underline{\sigma}$ finite measure if E is a countable union of sets \underline{E}_i with $\mu(\underline{E}_i)$ < ∞ .
- 2.43 <u>Definition</u> If μ is positive, a Borel set E C X is <u>outer</u> regular or <u>inner regular</u>, respectively, if E has property (c) or (d) of Theorem 2.40. If every Borel set in X is both outer and inner regular, μ is called <u>regular</u>.
- 2.44 Theorem Suppose X is a locally compact, σ compact Hausdorff space. If m and μ are as described in the statement of Theorem 2.40 then m and μ have the following properties :
- (a) If E ϵ m and ϵ > 0, there is a closed set F and an open set V such that F \subset E \subset V and $\mu(V-F)$ < ϵ .
 - (b) μ is a regular Borel measure on X.

- 2.45 <u>Definition</u> If p and q are positive real numbers such that p+q=pq or $\frac{1}{p}+\frac{1}{q}=1$ then we call p and q a pair of conjugate exponents.
- 2.46 <u>Definition</u> Let X be an arbitrary measure space with a positive measure μ . If 1 \infty and if f is a complex measurable function on X, define

$$||f||_p = {\left\{ \int_X |f|^p d\mu \right\}}^{1/p}$$

and let $L^p(\mu)$ consist of all f for which $\|f\|_p < \infty$. We call $\|f\|_p$ the L^p -norm of f.

2.47 <u>Definition</u> Suppose $g: X \to [0, \infty]$ is measurable. Let S be the set of all real α such that

$$\mu(g^{-1}((\alpha, \infty]) = 0.$$

If $S = \phi$, put $\beta = \infty$.

If S $\neq \phi$, put S = inf S. Since $g^{-1}((\beta, \infty]) = \bigcup_{n=1}^{\infty} g^{-1}((\beta + \frac{1}{n}, \infty])$, and since the union of a countable collection

of sets of measure 0 has measure 0, we see that β ϵ S. We call β the <u>essential supremum</u> of g.

If f is a complex measurable function on X, we define $||f||_{\infty}$ to be the essential supremum of |f| and we let L^{∞} (μ) consist of all f for which $||f||_{\infty} < \infty$.

- 2.48 Theorem $L^p(M)$ is a complete metric space, for $1 \le p \le \infty$ and for every positive measure μ .
- 2.49 Theorem Let S be the class of all complex, measurable, simple functions on X such that for any seS

$$\mu(\{x \mid s(x) \neq 0\}) < \infty.$$

If $1 \leqslant p \leqslant \infty$, then S is dense in L^p (μ).

Now let X be a locally compact Hausdorff space, and let μ be a measure on a σ - algebra m in X, with the properties stated in Theorem 2.40.

- 2.50 Theorem For $1 , <math>C_c(X)$ is dense in $L^p(\mu)$.
- 2.51 <u>Definition</u> A complex function f on a locally compact Hausdorff space X is said to <u>vanish at infinity</u> if to every $\epsilon > 0$ there exists a compact set K \subset X such that $|f(x)| < \epsilon$ for all x not in K.

The class of all continuous functions f on X which vanish at infinity is called $C_0(X)$.

Therefore $C_c(X)$ \subset $C_o(X)$ and the two classes coincide if X is compact. In that case we write C(X) for either of them.

2.52 Theorem If X is a locally compact Hausdorff space, then $C_0(X)$ is the completion of $C_c(X)$, with respect to the metric defined by the supremum norm

$$||f|| = \sup_{x \in X} |f(x)|$$
.

2.53 <u>Definition</u> Consider a linear transformation A from a normed linear space X into a normed linear space Y and define its norm by

$$||\mathbf{A}|| = \sup \left\{ \frac{||\mathbf{A}\mathbf{x}||}{||\mathbf{x}||} : \mathbf{x} \in \mathbf{X}, \mathbf{x} \neq 0 \right\}$$

if | | < \infty then A is called a bounded linear transformation.

- 2.54 <u>Hahn Banach Theorem</u> If M is a subspace of a normed linear space X and if f is a bounded linear functional on M, then f can be extended to a bounded linear functional F on X so that ||F|| = ||f||.
- 2.55 Theorem Let M be a linear subspace of a normed linear space X, and let $x_0 \in X$. Then x_0 is in the closure \overline{M} of M iff there is no bounded linear functional f on X such that $f(x) = 0 \quad \forall x \in M$ but $f(x_0) \neq 0$.

Complex Measures

2.56 <u>Definition</u> Let m be a σ - algebra in a set X. Call a countable collection $\{E_i\}_{i \in I}$ of members of m a partition of E if $E_i \cap E_j = \phi$ whenever $i \neq j$ and if $E = \bigcup_{i \in I} E_i$.

A complex measure μ on m is then a complex function on m such that $\mu(E) = \sum_{i=1}^{\infty} \mu(E_i) \quad (E \in m) \text{ for every partition } \{E_i\} \text{ of } E.$

2.57 <u>Definition</u> Let μ be a complex measure on the σ - algebra m . We define a set function $|\mu|$ on m by

$$|\mu|(E) = \sup_{i=1}^{\infty} |\mu(E_i)|$$
 (E \varepsilon m),

the supremum being taken over all partitions $\{E_i\}$ of E. Note that $|\mu|$ (E) $> |\mu|$ (E) but in general $|\mu|$ (E) is not equal to $|\mu|$ (E) |. The set function $|\mu|$ is called the total variation of μ . If μ is a positive measure, then $|\mu| = \mu$.

- 2.58 Theorem The total variation $|\mu|$ of complex measure μ on m is a positive measure on m.
- 2.59 Theorem If μ is a complex measure on X, then $|\mu|$ (X) < ∞ ,
- 2.60 <u>Definition</u> If μ and λ are complex measures on the same σ algebra m , we define μ + λ and $c\mu$ by

$$(\mu + \lambda)(E) = \mu(E) + \lambda(E)$$

 $(c\mu)(E) = c\mu(E)$

where E ϵ m and c is any complex number μ + λ and $c\mu$ are complex measure.

2.61 Definition Define $|\mu|$ as before and define

$$\mu^{+} = \frac{1}{2} (|\mu| + \mu) , \quad \mu^{-} = \frac{1}{2} (|\mu| - \mu) .$$

Then both μ^+ and μ^- are positive measures on m , and they are bounded, by Theorem 2.58.

Also,
$$\mu = \mu^{+} - \mu^{-}$$
, $|\mu| = \mu^{+} + \mu^{-}$.

The measures μ^+ and μ^- are called the <u>positive</u> and <u>negative</u> $\frac{\nu}{\mu} = \frac{1}{\mu} + \frac{1}$

- 2.62 Theorem Let μ be a complex measure on a σ algebra m in X. Then there is a complex valued measurable function h such that |h(x)| = 1 for all $x \in X$ and such that $d\mu = h d|\mu|$.
- 2.63 Theorem Suppose μ is a positive measure on m, g \in $L^1(\mu)$ and

$$\lambda(E) = \int_{E} g d\mu$$
 (E & m).

Then $|\lambda|$ (E) = $\int\limits_{E}|g|\;d\mu$ (E ϵ m).

2.64 Theorem Suppose $l\leqslant p<\infty$, μ is a σ - finite positive measure on X, and Φ is a bounded linear functional on $L^p(\mu)$. Then there is a unique $g\in L^q(\mu)$ where q is the exponent conjugate to p, such that

$$\Phi(f) = \int_X fg \, d\mu$$
 (f $\epsilon L^p(\mu)$).

Moreover, if Φ and g are related as above, we have

$$||\Phi|| = ||g||_{\mathbf{q}}$$
.

2.65 <u>Definition</u> Let X be a locally compact Hausdorff space and μ is a complex Borel measure, we define integration with respect to a complex measure μ by the formula

$$\int f d\mu = \int f h d|\mu|$$
.

2.66 Pefinition A complex Borel measure μ on X is regular if $|\mu|$ is regular.

Integration on Product Spaces

2.67 <u>Definition</u> If X, Y are two sets, we define the set $X \times Y = \{(x, y) | x \in X, y \in Y\}$. If A $\subset X$ and B $\subset Y$, it follows that A \times B $\subset X$ $\times Y$. We call any set of the form A \times B a rectangle in X $\times Y$.

Suppose (Y, δ) and (Y, J) are measurable space. A <u>measurable</u> rectangle is any set of the form A \times B, where A ε δ and B ε J.

If Q = $R_1 \cup ... \cup R_n$, where each R_i is a measurable rectangle and $R_i \cap R_j = \phi$ for $i \neq j$, we say that $0 \in \mathcal{E}$ the class of elementary sets.

 $\delta \times \mathbb{J}$ is defined to be the smallest σ - algebra in X \times Y which contains every measurable rectangle.

A monotone class m is a collection of sets with the following properties:

If $A_i \in m$, $B_i \in m$ such that $A_i \subset A_{i+1}$, $B_i \supset B_{i+1}$ for $i=1,2,3,\ldots$ and if

$$A = \bigcup_{i=1}^{\infty} A_i, B = \bigcap_{i=1}^{\infty} B_i$$

then A & m and B & m .

If E C y x Y, x ϵ X, y ϵ Y, we define $E_{x} = \{y | (x, y) \in E\}$ $E_{y} = \{x | (x, y) \in E\}.$

We call E_x the x - section of E and E^y the y - section of E.

- 2.68 Theorem If E ϵ $\delta \times J$, then E ϵ J and E ϵ δ , for every x ϵ X and y ϵ Y.
- 2.69 Theorem $\delta \times \Im$ is the smallest monotone class which contains all the elementary sets.
- 2.70 <u>Definition</u> Let f be an extended real valued function defined on $X \times Y$. For $x \in X$ we associate a function f_x defined on Y by $f_x(y) = f(x, y)$. Similarly for $y \in Y$, f^y is the function defined on X by $f^y(x) = f(x, y)$.

- 2.71 Theorem Let f be an $(\delta \times \mathbb{J})$ measurable function on X \times Y. Then the following hold:
 - (a) For each x ϵ X, f_x is a J-measurable function.
 - (b) For each y ϵ Y, f^y is a δ measurable function.
- 2.72 Theorem Let (X, δ, μ) and (Y, J, λ) be σ finite measure spaces. Suppose Q ϵ $\delta \times J$.

If $\psi(x) = \lambda(Q_x)$, $\psi(y) = \mu(Q^y)$ for every $x \in Y$ and $y \in Y$, then $\psi(y) = 0$ is 0 - 0 measurable, $\psi(y) = 0$ is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable and 0 + 0 is 0 - 0 measurable.

2.73 <u>Definition</u> If $(X, \delta; \mu)$ and $(Y, \mathcal{I}, \lambda)$ are σ - finite measure spaces and if $Q \in \delta \times \mathcal{I}$, we define

$$(\mu \times \lambda)(Q) = \int_{X} \lambda(Q_{X}) d\mu (x) = \int_{Y} \mu(Q^{Y}) d\lambda (y).$$

We call $\mu \times \lambda$ the product of the measure μ and λ . $\mu \times \lambda$ is a measure.

2.74 The Fubini Theorem

Let (X,δ,μ) and (Y,\mathcal{J},λ) be σ - finite measure spaces, and let f be an $(\delta$ \times \mathcal{J}) measurable function on X \times Y .

(a) If
$$0 \leqslant f \leqslant \infty$$
 and if

(1)
$$\mathcal{G}(x) = \int_{Y} f_{x} d\lambda$$
, $\psi(y) = \int_{X} f^{y} d\mu$ (x \(\varepsilon\) X, y \(\varepsilon\) Y,

then φ is δ - measurable, ψ is \Im - measurable, and

(2)
$$\int_{X} \varphi d\mu = \int_{X \times Y} f d (\mu \times \lambda) = \int_{Y} \psi d\lambda$$
.

(b) If f is complex and if

(3)
$$g^*(x) = \int_{Y} |f|_{X} d\lambda$$
 and $\int_{X} g^* d\mu < \infty$,

then f ϵ L $(\mu \times \lambda)$.

(c) If $f \in L^1(\mu \times \lambda)$ then $f_X \in L^1(\lambda)$ for almost all $x \in X$, $f^y \in L^1(\mu)$ for almost all $y \in Y$, the functions g and ψ , defined by (1) e.e. are in $L^1(\mu)$ and $L^1(\lambda)$ respectively and (2) holds.

Notes The first and the last integrals in (2) can also be written in the more usual form

(4)
$$\int_{Y} d\mu$$
 (x) $\int_{Y} f(x, y) d\lambda$ (y) = $\int_{Y} d\lambda$ (y) $\int_{X} f(x, y) d\mu(x)$.

These are the so - called "iterated integrals" of f.

The middle integral in (2) is often referred to as a double integral.

The combination of (b) and (c) gives the following useful result:

If f is $(\delta \times \Im)$ - measurable and if

then the two iterated integrals (4) are finite and equal. In other words "the order of integration may be reversed" for $(\delta \times \mathbb{J}) - \text{measurable functions f whenever } f \geqslant 0 \text{ and also whenever } one of the iterated integrals of |f| is finite.$

- 2.75 <u>Definition</u> If r > 0 and a is a complex number, $D(a, r) = \{z \mid |z-a| < r\}$ is the open circular disc with centre at a and radius r
- $D'(a,r) = \{z \mid 0 < |z-a| < r\}$ is the punctured disc with center at a and radius r.
- 2.76 <u>Definition</u> A maximal connected subset of E is called a component of E.
- A <u>region</u> is a nonempty connected open subset of the complex plane. Each component of a plane open set Ω is a region.
- 2.77 <u>Definition</u> Suppose f is a complex function define in Ω (plane open set). If the derivative of f denoted by f'(z) exists for every z $\in \Omega$ then f is <u>analytic</u> in Ω . The class of analytic functions in Ω will be denoted by $H(\Omega)$.
- 2.78 <u>Definition</u> A function f defined in Ω is said to be representable by a power series in Ω if to every disc $D(a, r) \subset \Omega$ there corresponds a series $\sum_{n=0}^{\infty} c_n(z-a)^n$ which converges to f(z) for all $z \in D(a,r)$.
- 2.79 Theorem If f is representable by power series in Ω then f ϵ H(Ω).

2.80 Theorem Suppose μ is a complex (finite) measure on a measurable space X, ψ is a complex measurable function on Y, Ω is an open set in the plane which does not intersect Ψ (Y), and

$$f(z) = \int_{X} \frac{d\mu(\xi)}{\varphi(\xi) - z} \qquad (z \in \Omega).$$

Then f is representable by power series in A.

2.81 <u>Definition</u> If X is a topological space, a <u>curve</u> in X is a continuous mapping γ of a compact interval $\left[\alpha,\beta\right]$ \subset R into X; here $\alpha<\beta$.

We call $[\alpha$, $\beta]$ the <u>parameter interval</u> of γ and denote the range of γ by γ^* . Thus γ is a mapping, and γ^* is the set of all points $\gamma(t)$ for α \leq t \leq β .

If the initial point $\gamma(\alpha)$ of γ coincides with its end point $\gamma(\beta)$, we call γ a closed curve.

2.82 <u>Definition A path</u> is a piecewise continuously differentiable curve in the plane. More explicitly, a path with parameter interval $[\alpha \ , \beta]$ is a continuous complex function γ on $[\alpha \ , \beta]$, such that the following holds: There are finitely many points s_j , $\alpha = s_0 < s_1 \ldots < s_n = \beta$, and the restriction of γ to each interval $[s_{j-1}, s_j]$ has a continuous derivative on $[s_{j-1}, s_j]$: however, at the points s_1 , ... s_{n-1} the left - and right - hand derivatives of γ may differ.

A closed path is a closed curve which is also a path. Suppose γ is a path and f is continuous function on γ^* . The integral of f over γ is defined as an integral over the parameter interval $[\alpha,\beta]$ of γ :

$$\int_{Y} f(z) dz = \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt.$$

- 2.83 <u>Definition</u> If a is a complex number and $\mathbf{r} > 0$, the path defined by $\gamma(t) = a + re^{it}$ (0 $\leq t \leq 2\pi$) is called the positively oriented circle with center at a and radius \mathbf{r} .
- 2.84 Definition If a and b are complex numbers the path γ given by

$$\gamma(t) = a + (b - a)t$$
 (0 \le t \le 1)

is called the oriented interval [a, b]; its length is |b - a|.

- 2.85 Theorem Let γ be a closed path, let Ω be the complement of γ^* (relative to the plane), and define $\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{d\xi}{\xi z}$ ($z \in \Omega$). Then $\operatorname{Ind}_{\gamma}$ is an integer valued function on Ω which is constant in each component of Ω and which is 0 in the unbounded component.
- 2.86 Theorem If γ is the positively oriented circle with center at a and radius r, then

$$\operatorname{Ind}_{\gamma}(z) = \begin{cases} 1 & \text{if } |z-a| < r, \\ \\ 0 & \text{if } |z-a| > r. \end{cases}$$

- 2.87 Theorem For every open set Ω in the plane, every f ε $H(\Omega)$ is representable by power series in Ω .
- 2.88 Theorem Suppose Ω is a region, $f \in H(\Omega)$, and $Z(f) = \{a \in \Omega \mid f(a) = 0\}$. Then either $Z(f) = \Omega$ or Z(f) has no limit point in Ω . In the latter case there corresponds to each $a \in Z(f)$ a unique positive integer m = m. (a) such that $f(z) = (z-a)^m g(z)$ ($z \in \Omega$), where $g \in H(\Omega)$ and $g(a) \neq 0$, furthermore, Z(f) is at most countable.
- 2.89 <u>Definition</u> If a ε Ω and f ε $H(\Omega \{a\})$, then f is said to have an <u>isolated singularity</u> at the point a. If f can be so defined at a that the extended function is analytic in Ω , the singularity is said to be <u>removable</u>.
- 2.90 Theorem If a ε Ω and f ε H(Ω {a}) then one of the following three cases must occur:
 - (a) f has a removable singularity at a.
- (b) There are complex number c_1 , ... , c_m , where m is a positive integer and $c_m \neq 0$, such that
- $f(z) \sum_{k=1}^{m} \frac{c_k}{(z-a)^k}$ has a removable singularity at a.
- (c) If r > 0 and $D(a, r) \le \Omega$, then f(D(a, r)) is dense in the plane.

- 2.91 Theorem Every open set Ω in the plane is the union of a sequence $\{K_n\}$, $n=1,2,3,\ldots$ of compact sets such that
 - (a) K_n lies in the interior of K_{n+1} for $n = 1, 2, \ldots$
 - (b) Every compact subset of Ω lies in some $K_{\mathbf{n}}$.
- (c) Let S² be the extended complex plane then every component of S² K_n contains a component of S² Ω , for n = 1,2,3, ...
- 2.92 Theorem Suppose a and b are complex numbers, b \neq 0 and γ is the path consisting of the oriented intervals $[a+i^n b, a+i^{n+1} b]$ (n=0,1,2,3). Then $\operatorname{Ind}_{\gamma}(z)=1$ for every z in the interior of the square with vertices at the points $a+i^n b$ (n=0,1,2,3),.
- 2.93 Theorem If K is a compact subset of a plane open set Ω , there exist oriented line intervals γ_1 , ..., γ_n in Ω K such that the Cauchy formula

$$f(z) = \sum_{j=1}^{n} \frac{1}{2\pi i} \int_{\gamma_{j}} \frac{f(\xi)}{\xi - z} d\xi$$
 holds for every

f ϵ H(Ω) and every z ϵ K.