CHAPTER 1

INTRODUCTION

The high voltage power supply is housed in a triple width NIM module that is compatible with any standard NIM Bin. It uses a driven type dc-ac inverter operating at about 6 kHz which yields an efficiency higher than 80 % in power conversion to charge a multiplier circuit to produce power supply of 2 mA at 2500 V. The frequency of the inverter is determined by an astable multivibrator oscillating at the frequency for optimum operation [1].

The significant performance of the high voltage power supply to be developed are as follows :-

- 1. Output polarity : positive or negative
- 2. Output voltage range 50 to 2500V, continuously variable
- 3. Output load capacity 0 to 2 mA.
- 4. Regulation ≤ 0.01 % variation in output voltage for line variation from 200 to 240 V.
- 5. Temperature stability < 0.02 %/ °C through 0 to 50°C operating range.
- 6. Long-Term Drift < 0.05 %/hr. variation in output voltage at constant input line voltage after 30 min warmup.
 - 7. Output ripple < 10 mV peak to peak at full load
- 8. Overload protection: Built-in overload and short circuit protection with maximum output current of 2 mA.

The development of high voltage power supply can be summed up as follows:-

- 1. Develop a driven type dc-ac inverter using Ferrite E-P core.
- 2. Develop voltage multiplier and filter section for required HV output.
- 3. Develop regulated low voltage power supply for inverter and associated circuitry. The power is to be derived from 220V 50 Hz line.
- 4. Design master printed circuit boards to accommodate the components for the HV supply.
- 5. Design essential mounting hardwares for printed circuit boards in 4 and panel layout for controls and indicators
 - 6. Carry out the performance test of the HV supply.