PREPARATION AND CHARACTERIZATION OF POLYSTYRENE IN WORMLIKE MICELLES

Unchalee Somphao

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2006

ISBN 974-9990-07-2

Thesis Title:

Preparation and Characterization of Polystyrene in Wormlike

Micelles

By:

Unchalee Somphao

Program:

Polymer Science

Thesis Advisors:

Asst. Prof. Manit Nithitanakul

Assoc. Prof. John H. O'Haver

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Asst. Pro Manit Nithitanakul)

(Assoc. Prof. John H. O'Haver)

(Assoc. Prof. Nantaya Yanumet)

Nantaya Tammet.

(Asst. Prof. Pomthong Malakul)

ABSTRACT

4772031063:

Polymer Science Program

Unchalee Somphao: Preparation and Characterization of

Polystyrene in Wormlike Micelles.

Thesis Advisors: Asst. Prof. Manit Nithitanakul, and Assoc. Prof.

John H. O'Haver 56 pp. ISBN 974-9990-07-2

Keywords:

Emulsion Polymerization/ Polystyrene/ Wormlike micelle

Surfactant molecules in aqueous solution can self-assemble into micellar aggregates such as spheres, rods, and wormlike micelles, etc. One approach to stabilization of micelle structures is through emulsion polymerization of monomer in surfactant micelles, as these micelles are sensitive to the solution condition. In this work, preparation and characterization of polystyrene in CTAT wormlike micelles and morphology of obtained wormlike micelle under different amounts of surfactant, monomer and initiator loading and polymerization temperature were studied. Effects of these parameters on the properties of the obtained polystyrene were characterized. by fourier transform infrared (FTIR), gel permeation chromatography (GPC), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC). Comparison between characteristic of polymer and morphology of polystyrene stabilized wormlike micelle, obtained from transmission electron microscope (TEM), were made. Results showed that the extent of the elongated micelles increased with increasing CTAT concentration, styrene loading, polymerization temperature and decreasing AIBN loading which are contrast to the conditions for producing high molecular weight polystyrene i.e. low CTAT concentration, high styrene loading and low AIBN loading. Condition for obtaining long polystyrene stabilized wormlike micelle is high surfactant loading (20 %wt), low AIBN loading (50:1 of styrene to AIBN ratio), high styrene loading (1.6:1 of CTAT to styrene ratio) and polymerization temperature of 70 °C.

บทคัดย่อ

อัญชลี สมเผ่า: การเตรียมและวิเคราะห์คุณสมบัติของพอลิสไตรีนที่ได้จากกระบวนการ พอลิเมอไรเซชั่นในสารลดแรงตึงผิวที่มีโครงสร้างการรวมกลุ่มลักษณะคล้ายตัวหนอน (Preparation and Characterization of Polystyrene in Wormlike Micelles) อ. ที่ปรึกษา: ผส. คร. มานิตย์ นิธิธนากุล และ รส. คร. จอห์น เฮช โอ เฮเวอร์, 56 หน้า ISBN 974-9990-07-2

โมเลกุลของสารลดแรงตึงผิวในสารละลายสามารถรวมตัวกันเองเกิดเป็นโครงสร้างที่มี รูปร่างต่างๆ ได้แก่ รูปทรงกลม รูปแท่ง และรูปร่างคล้ายตัวหนอน เป็นต้น วิธีหนึ่งที่ทำให้รูปร่าง เหล่านี้คงรูปอยู่ได้คือผ่านการพอลิเมอไรซ์เซชั่นแบบอิมัลชั่น ของมอโนเมอร์ที่อยู่ภายใน โครงสร้าง เหล่านั้น เนื่องจากโครงสร้างเหล่านั้นไวต่อสภาวะต่างๆของสารละลาย ในงานวิจัยนี้ได้ เตรียมและศึกษาลักษณะของพอลิสไตรีนที่อยู่ในโครงสร้างการรวมกลุ่มคล้ายตัวหนอนของสาร ลดแรงตึงผิวชนิดเซติลไตรเมทธิลแอมโมเนียมทอซิเลต และศึกษารูปร่างอสัณฐานของโครงสร้าง การรวมกลุ่มคล้ายตัวหนอนที่ได้ ภายใต้ความแตกต่างของจำนวนสารลดแรงตึงผิว, จำนวนมอโน เมอร์, จำนวนสารริเริ่ม, และ การศึกษาผลกระทบของตัวแปรเหล่านี้ต่อคุณสมบัติของพอลิสไตรีน ทำได้โดยตรวงสอบด้วย FTIR, GPC, TGA, และ DSC การเปรียบเทียบระหว่างลักษณะของ พอลิเมอร์กับรูปร่างอสัณฐานของโครงสร้างการรวมกลุ่มคล้ายตัวหนอนหลังจากผ่านการพอลิเมอ ไรซ์เซชั่นแล้ว ซึ่งได้จากการศึกษาด้วย TEM นั้น ได้ถูกนำมาวิเคราะห์ ผลจากการวิจัยพบว่า โครงสร้างการรวมกลุ่มคล้ายตัวหนอนได้มีขนาดยาวขึ้น เมื่อเพิ่มความเข้มข้นของเซติลไตร เมทธิล แอมโมเนียมทอซิเลต ปริมาณของโมโนเมอร์ และอุณหภูมิที่ใช้ในการสังเคราะห์ แต่ลคปริมาณ สารริเริ่ม ซึ่งตรงข้ามกับสภาวะที่ผลิตพอลิสไตรีนที่มีน้ำหนักโมเลกุลสูง ได้แก่ ความเข้มข้นของเซ ติลไตรเมทธิลแอมโมเนียมทอซิเลตและปริมาณสารริเริ่มต่ำ แต่ปริมาณของมอโนเมอร์สูง ซึ่ง สภาวะที่เหมาะสมในการผลิตโครงสร้างคล้ายตัวหนอนให้ยาวคือ ความเข้มข้นของสารลดแรงตึง ผิวสูง (20 เปอร์เซ็นต์โดยน้ำหนัก), ปริมาณสารริเริ่มต่ำ (50:1 ของอัตราส่วนระหว่างสไตรีนต่อ สารริเริ่ม), ปริมาณของสไตรีนสูง (1.6:1 ของอัตราส่วนระหว่างเซติลไตรเมท ธิลแอมโมเนียมทอ ซิเลตต่อสไตรีน) และอุณหภูมิการเกิดปฏิกิริยาที่ 70 °C

ACKNOWLEDGEMENTS

I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University where I have gained extensive knowledge in polymer science and also for providing the scholarship during two years of my graduate study.

I would like to express my grateful appreciation to my advisor, Asst. Prof. Manit Nithitanakul, for continuous suggestions, encouragement, and providing all necessary things needed throughout this research work. It is my honor and pleasure to work with him.

I would like to thank Assoc. Prof. John H. O'Haver, my co-advisor from The University of Mississippi, for his helpful suggestions and constant encouragement. I am also appreciated the valuable mails that he sent me from Mississippi. This work would have not been completed without him. I am deeply appreciated his wonderful friendship that has exceeded my expectations.

I would like to thank Ms. Suxiang Wei and Mr. Chun Hwa See (The University of Mississippi) for their helpful discussion and suggestions.

I would like to thank Assoc. Prof. Nantaya Yanumet and Asst. Prof. Pomthong Malakul for being my committee.

I am grateful for the partial scholarship and funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, I would like to thank my friends and all of the staff of the Petroleum and Petrochemical College for their helpfulness and encouragement. I am also greatly indebted to my family for their financial support, love, and understanding during my studies and thesis work.

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Ack	nowledgements	v
Tab	le of Contents	vi
List	List of Tables	
List	of Figures	x
CHAPTE	CR CR	
I	INTRODUCTION	1
	1.1 Surfactant	2
	1.2 Micelle Formation	4
	1.3 Solubilization	6
	1.4 Emulsion Polymerization	7
II	LITERARURE REVIEWS	10
	2.1 Micelle Formation of Cationic Surfactant	10
	2.2 Solubilization	11
	2.4 Emulsion Polymerization	12
Ш	EXPERIMENTAL	14
	3.1 Materials and Equipment	14
	3.2 Micellar Formation	14
	3.3 Emulsion Polymerization	15
	3.4 Characterization	16
	3.4.1 Fourier Transform Infrared Spectroscopy	16
	3.4.2 Thermal Stability	16
	3.4.3 X-ray Diffraction	16

CHAPTER		PAGE	
	3.4.4 Gel Permeation Chromatography	17	
	3.4.5 Transmission Electron Microscopy	17	
IV	RESULTS AND DISCUSSION	18	
	4.1 Micellar formation	18	
	4.2 Micellar polymerization	20	
	4.3 Characterization of Obtained Polystyrene	23	
	4.3.1 Fourier Transform Infrared Results	23	
	4.3.2 Thermogravimetric Analysis Results	24	
	4.3.3 Differential Scanning Calorimeter Results	26	
	4.3.4 X-ray Diffraction Results	28	
	4.3.5 Gel Permeation Chromatography Results	29	
	4.3.6 Effect of CTAT Concentration, Monomer Loading,		
	Initiator Loading and Polymerization Temperature	32	
	4.3.6.1 Effect of CTAT Concentration,		
	Monomer Loading and Initiator Loading		
	on Molecular Weight	32	
	4.3.6.2 Effect of CTAT Concentration,		
	Monomer Loading, Initiator Loading and		
	Polymerization Temperature on Morphology	y	
	Of Wormlike Micelles	35	
V	CONCLUSIONS AND RECOMMENDATIONS	45	
	REFERENCES	46	
	APPENDICES	49	
	Appendix A Micell Formation Measurement of CTAT	49	

CHAPTER		PA	
	Appendix B	Calculation for Amount of CTAT Loading, AIB	N
		Loading and Styrene Loading System	50
	Appendix C	Scanning Electron Micrographs of Polystyrene	53
	Appendix D	Gel Permeation Chromatography Results	55
	CURRICUL	IIM VITAE	56

LIST OF TABLES

TABLE		PAGE
3.1	List of instruments and models used in this work	14
3.2	Micellar Polymerization Conditions	15
4.1	Polymerization conditions and the characteristic of	21
	polystyrene obtained	
4.2	$\overline{M_w}$, $\overline{M_n}$, and MWD of Polystyrene Samples obtained from	
	5%wt CTAT	30
4.3	$\overline{M_w}$, $\overline{M_n}$, and MWD of Polystyrene Samples obtained from	
	10%wt CTAT	31
4.4	$\overline{M_w}$, $\overline{M_n}$, and MWD of Polystyrene Samples obtained from	
	20%wt CTAT	32

LIST OF FIGURES

FIGURE		PAGE
1.1	Structure of a surfactant molecule	2
1.2	The structure of cetyltrimethylammonium tosilate (CTAT)	3
1.3	Formation of surfactant micelle in aqueous media	4
1.4	Structures of the micelle	5
1.5	Plot of surface tension versus log of the bulk phase	
	concentration for an aqueous solution of a surfactant	6
1.6	Phenomenon of solubilization	7
1.7	Loci of solubilization of material in a surfactant micelle	7
4.1	Surface tension of CTAT solution as a function of surfactant	
	concentration at 30±1 °C	19
4.2	Conductivity of CTAT solution as a function of surfactant	
	concentration at 30±1 °C	19
4.3	Photograph of polystyrene on solution surface	22
4.4	FTIR spectrum of polystyrene standard and polystyrene in	
	20%wt CTAT, 15:1 of styrene to AIBN ratio, and 1.6:1 of	
	CTAT to styrene	23
4.5	FTIR spectrum of CTAT and polystyrene in 20%wt CTAT	
	and 15:1 of styrene to AIBN	24
4.6	TGA thermogram of polystyrene sample in 20%wt CTAT	
	1.6:1 of CTAT to styrene and 15:1of styrene to AIBN	25
4.7	TGA thermogram of CTAT	25
4.8	The DSC thermogram of CTAT	26
4.9	The DSC thermogram of polystyrene samples in 15:1 of	
	styrene to AIBN ratios, at high styrene loading	27
4.10	The DSC thermogram of polystyrene samples 30:1 of	
	styrene to AIBN ratios, at high styrene loading	27

FIGURE		PAGE
4.11	The DSC thermogram of polystyrene samples 50:1 of styrene	
	to AIBN ratios, at high styrene loading	28
4.12	WAXD patterns of polystyrene samples	
	(50:1 styrene:AIBN), at high styrene loading and CTAT	29
4.13	Effect of CTAT concentration on weight average molecular	
	weight of polystyrene at high styrene loading (1.6:1)	33
4.14	Effect of initiator loading on weight average molecular	
	weight of polystyrene in 20 %wt CTAT concentration	34
4.15	Effect of styrene loading on weight average molecular	
	weight of polystyrene	35
4.16	Photograph of polystyrene stabilized micelles at 5%wt	
	CTAT, high styrene loading (1.6:1) and 15 mole of	
	styrene:1 mole of AIBN at 70 °C	38
4.17	Photograph of polystyrene stabilized micelles at 10%wt	
	CTAT, high styrene loading (1.6:1) and 15 mole of	
	styrene:1 mole of AIBN at 70 °C	38
4.18	Photograph of polystyrene stabilized micelles at in 20%wt	
	CTAT, high styrene loading (1.6:1) and 15 mole of	
	styrene:1 mole of AIBN at 70 °C	39
4.19	Photograph of polystyrene stabilized micelles at 5%wt	
	CTAT, 30 mole of styrene:1 mole of AIBN and high styrene	
	loading (1.6:1) at70 °C	39
4.20	Photograph of polystyrene stabilized micelles at 10%wt	
	CTAT, 30 mole of styrene:1 mole of AIBN and high styrene	
	loading (1.6:1) at 70 °C	40

FIGURE		PAGE	
4.21	Photograph of polystyrene stabilized micelles at 20%wt		
	CTAT, 30 mole of styrene:1 mole of AIBN and high styrene		
	loading (1.6:1) at 70 °C	40	
4.22	Photograph of polystyrene stabilized micelles at 5%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and high styrene		
	loading (1.6:1) at 70 °C	41	
4.23	Photograph of polystyrene stabilized micelles at 10%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and high styrene		
	loading (1.6:1) at 70 °C	41	
4.24	Photograph of polystyrene stabilized micelles at 20%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and high styrene		
	loading (1.6:1) at 70 °C	42	
4.25	Photograph of polystyrene stabilized micelles at 20%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and medium		
	styrene loading (3:1) at 70 °C	42	
4.26	Photograph of polystyrene stabilized micelles at 20%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and low styrene		
	loading (6:1) at 70 °C	43	
4.27	Photograph of polystyrene stabilized micelles at 20%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and high styrene		
	loading (1.6:1) at 60 °C	43	
4.28	Photograph of polystyrene stabilized micelles at 20%wt		
	CTAT, 50 mole of styrene:1 mole of AIBN and high styrene		
	loading (1.6:1) at 50 °C	44	