CHAPTER IV

THE POISSON INTEGRAL OF A MEASURE

The aim of this chapter is to represent a temperaturc
on a half-space in the form of the Poisson integral of a
measure. In the sequel we shall construct a sequence of
bounded measure which converges to a bounded measure in a

%*

W ~ topology.

A sequence Qf“ga of bounded measures is said to

. . = i

converge to a measure /L in w - topology if for all

£ & Co(iRn),the class of all real valued continuous

functions (in iR™) vanishing at infinity, then

;
.].im (.. fd A‘Lj = .\‘: fd‘J{“ .
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Denote supp(f) =i x / P24 O%.

By ¢( B™) we denote the class of all real-valued
functions (in R™), and furnish it with the tovology of
convergence uniform on compact subsets of jRn. This
tovology may be defined by the seminorms
l

K ranging over any preassigned base for the compact subset

L C )
GL(8) = sup JIE(y)) /£ € O(R™), yek

(Al

of iRn. Moreover, fn is said to converge to f if and only

if there exists a compact subset K such that

supp(fn) “ K



a4

and
fn*_)f uniformly in K.
A real linear functional ('3 on C( an) is said to be

bounded if for each compact set K, there exists mF>0
such that
| 1 6"_; n N
](Ef! < Py "I\,(f) (f< C(|R™) with supp(f)<¥x),
For each f & C ( \IR™), we define Wl by

I\ f“@= sup‘(f[_lf(y)l/ yE 1an{5.

We notice that|\flbbis finite, since f & co(an).

A set PC X jig said to be convex if

tx + (1L - t)y € P (xyeP, 0€£1<£1),

L neighborhood of a point x & X is an open set that
contains x, g

A collection@ of neighborhood-of a point x & X is
a local base at x if every neighborhood of x contains a
member ofq. In the vector space context, the term local
base will always mean a local base at 0.

A topological vector space is locally convex if
there is a local baseffs whose members arc convex.

Note that C( R") with the femily of seminorms (7

on C( ;Rn) is a locally convex topological vector space

(see Edwards, R.E., Functional Analysis,[3 ], §1.1o.1, p 78).
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Theorem 4.1.1l. (Hahn-Banach Theorem). If /. is a
bounded linear functionsl on a subsnace M of a locally
convex space X, then there exists a bounded linear
functional (A on X, such that

8=\ on M,
(Sce Rudin. W., Punctional Analysis,[571, McGraw-Hill

Book Company).

Theorem 4.1.2. (Riesz Repressentation Theorem).
If CB be a bounded linear functional on C( |R™). Then
there exists a uniquely determined real Radon measurﬁfx

on |R" having a compact support and such that

@f:S faj4 . (fec(RY).
Niae /

(See Tawards, R.E., Functional ﬂnalysis,LBT? Theorem 4.10.1,

p 203).

Before proving Theorem 4.1.5., we first notice that
Go(an) is separable (sce Bourbakiﬂhﬁl, Chapter X, ? 3.3,

Corollary of Theorem 1). Thus there exists = countable set

E ={fié'co( ’i'Rn) / 1= 1921”'}! Say,

1'1) 5

is densc in Co(!R Tater on, we need two lemmas (Lemmna

4,1.3. and Lemma 4.1.4.).



Lemma 4.1.3. TLet %jui% be a seauence of Radon
measures defined on the Borel subsets of 1Rn with

n - ; -
/Ai(lR ) Lk, for all i, and for some positive number k.

Then there is a Radon measure/pk defined on the Borel

subsets of |R¥ with

M B £ k,

and a subsenuence‘yﬁl k which converges to/}k-in the
*
w - topology.

Proof: Since Co(tRn) is separable, there exists
E =:iij}fé,....'xa countable dense subset of CO({Rn).
The sequence of real numbers

‘. f1‘1/“‘1
o

is bounded by k“fl\\ . There is a subsequence%/}l. R of
o 17}

)
. :
1/ 3 \ such that
1lim '( fld/J. exists.
i~ e 1

Now consider the sequence of real number
)
8
J o f i,

which is bounded by ki, “aO' There is o subsequence

i/llizg of %/4-5_1 ?s such that

1lim C y i d/il exists.
19 2
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Continue this precess, we get a subsequencefi/&i ‘Sof
J

: 5
) AL '
[} 1 9
‘/( t(3-1) ) _
1lim & f.i/ﬁi exists for j 22
J

1= o/ J

Now consider any f¢ Cm(an) and any §& >0,

Let fm & E be such that

Since f € E, the secuence of absolute values on the
iy ’

right approaches zero as i, j —yo and

l( —{fd

{
11m ; LAA L ! <’ € e
1,50 | Q‘ /ﬁ 1 Y ‘/ Jj]

This shows that the secuence

( fa /u.i . i
o i

is a Cauchy sequence and that

W

\

N Ff = 1im (a fa exists for ecach f € Co(|Rn).
= L ey



To checl that /- is bounded on b e
For any K compact subset of |Rn, for any f & CO( ")

such that supp (f) & K,
/  H= 8|

Sn fd/‘*ii g LTI

iR p & 7/

5

<1 Gy,

therefore J\. is bounded lineer functional on Co(|Rn).
By Theorem 4.,1.1,, there exists a bounded linear functional
Q? defined on C( (R™) such that

@f = e/ /| B pliNE ¢ ( B,

Apply Theorem 4,1.2. to 65 ; we have that there exists a
uniquely determined real Radon measure/ﬂ& on iRn having a

compact gsupport and such that

C 7 =5 ;E‘dyw gor—all T & e( RY).
IR?
Thus N ¢ =J Fd A for all £ € C_(IR™),
i /A
(?
fap = lim | fa My for all £ € C_(IRM).
J f 1i—e0 j i 0

. 4 . *
and this is just the definition of w - convergence.

Next, we shall show that a necessary and sufficient
for a temperature u to be positive on the strip H(O‘c)
.
ig that

u(x,t) = K(y-x,'i;)d;,}i(y),

n
{
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where/bl is a Radon measure. Note that the proof of the

sufficiency is given in Theorem 2.1.7.

1im Klyex,t) _ -
Lemma 4.1.4. ;yH@ﬁL'{")'ly, =0, 0<t<t, .

(o

Proof: This lemma follows immediately for the

following identities @
2 (*. B ias
k(yi—xi’t) _ .EE ex?('(yi”xi) /4%)
t

k(yi’to) exp(-yi?/ﬂfto)
¥ 2 2 2y
» ’.?_Q exp{ (t-t ) (.Vi-k _’ff_g] e }
t att | t-t, | 2% 4t(t=t )

i

. J52 y g Bl
(t=t,) x;%; [, e N
4t% P 4 2t 4t(t-t0)

Theorem 4.1.5. If u(x,t) € }6; and u(x,t) } o,

on the strip H(O.c)’ then
s

:t 5 -2y d :
u(x,t) (Sn K(yxt)/,;

R
n

where /LL is a Radon measure on |R™ .
Proof: TFor a fixed t )0, we set

OLS(E) = J: | K(y;to)u(y,S )ay,

S
where 0 <& < ¢ is such that t < ¢c-3 and E is a measurable
set of [Rn.
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By Theorem 3.1.4., we get
0 < czlg(E) £ u(O,tO+S )LD, for all 5,

and for all measurable sets E.
Therefore dé is a Radon measure. By Lenma 4.1.3.;
there is a Radon measure 0{ such thﬂt {_0( % converges to
OL in w - topology as S--:;O, 1e ey

lim \ 16.0{ = ;dd for all £ &: CO( |Rﬂ)-,

$=>0 J
and

ol(g) £ u(O;to+g | %

4 C K(y—x,t)u(y;g.)dy
(x,‘t)——}>(x0,0+) [Rn

Since u(xo, o)

= lim ( K(y-x,t)d 0( (.V),

(x,8)>(x_,0%) G0 K(y,t,)

*

?

K(y-x,t)u(y,% Yay £ u(x,t+ S-), Tor 0< 1;<c-—g,

R"
and 1lim A,t+g) = u(xos g), we have that
(x,t+9 )-—»(xo,
| i
S} {u(x,t-l-g) -J K(y-x,t)u(y, 9 )dy = O.
(x,t+ --?(x (RD

Since (4.1 ) u(x;t+5) -g K(y-x, % uly, Yay- -
iR

- - -T :
belongs to E‘Ee in the strip I‘(O,c-g)’

u(xo,g) -§ K(y—xo,t)u(y,g)dy = 0.
IR™
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Hence, apply the Theorem 3.1l.6. to the function (4.1),
we get

u(x,t+%) - 5 K(y—-x;t)u(y;g )dy = O
'Rn
in the strip H(O;o—%)'

lim u(x, t+g )

30 |
lim 5 K(y-x,t)u(y, S)dy
2= 0 ‘Rn

13m K(y-x,8)a A ().
- Oé;n K(y,t,) B

Since K(y-x,%) € ¢ _(IR®) (by Lemma 4.1.4.), we have,
K(y,%,) 3

Therefore u(x,t)

Il

1l

I

by Lemma 4.1.3.,.that

14 k( -'-‘-t)dol (r)=(j K(—-’G)d ();t £
s, Mpeme ) ) Kpmsedon. s,
Define

/\A(E) 1 111 el 157,
- E

K(y,%,)
where E is a measurable subset of |Rn.
We can see that/l(E)}O for all E measurable set, and
/UIE) is finite whenever E is compact. Hence/}k is a Radon
measure; and

u(x,t) = K(y-x,t)am(y).
\R"
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