CHAPTER I

PRELIMINARY RESULTS

In this chapter, we will iwmtroduce some properties

of K(x,t) and recall some facts from real analysis.

1.1 Some Properties of K(x.t)

It is easy to see that K(x,t) satisfies the equation

(1), by directly partial differentiation.

Proposition 1.1.1. 5 K(x,t)dx = 1, for each t >0,

e
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Repeat the process (1.1) n-1 times, we get

S K(x,t)dx = 1.
R
Proposition 1.1.2. K(x,t) has a maximum value at x = 0,

for fixed t 0.



Proof: For fixed t> 0. COCbserve that the function
(1.2) h(s) = exp(-s), s20
is strictly decreasing. Its maximum value occurs at s = 0,
Hence, since Ix| 20,

{0.3) K(0,t) 2 K(x,t); x e R",

Proposition 1.1.3. lim K(x,t) = 0, for x £ 0,
t—0"

' wn/2 2 S/ax
Proof: 1lim X(x,t) = 1im ((T) wu)/exp(|IxIc u/™),
t—0o' U0
by T Hospital rule, x # 0, the limit is zero.
: : -n/?2
Obviously, K(0,t) = (4TLt) tends to infinite as
t tends to 0,

1.2 Some Facts From Real Analysis

Theorem 1.2.1., (Lebesgue dominated convergence theorem )

{ be a sequence of Lebesgue-integrable functions on

Let { fnJ

a Lesbesgue measurable subset Y of }Rn. Assume that
(a) &fns converges almost everywhere on Y to a function T,
and
(b) there is a nonnegative function g in L(Y); such that,
for all n 71,

ffn(y) ]$g(y) y almost everywhere on Y.
Then the limit function fe L(*}, the sequence{jfn(y)dy}

converges, and X

(1.4) 5 f(y)dy = 1lim an()')dy.

N

4 Y



The proof of the theorem will be omitted (for the
completed proof seefl 17, 1.270).

Theorem 1.2.2. Let X be an open subset of R and
Y be a Lebesgue measurable subset of mn; and let f be a
function on Yx X and satisfy the following conditions:
(a) PFor each fixed x &¢X, the function fx(;y) defined on Y
by

£.(y) = £(y,x)

is measurable on Y, and fa(;r‘) € L(Y) for some =z2€X.
(b) The partial derivative Dx‘f(y;x) exists for each
interior point (y,x) of YxX. i

(¢) There is a nonnegative function G& L(Y) such that

| < a(y)

D, f(y,x)
X5 !
for all interior noints of Y >X.

Then the Lebesgue integral S fly,x)dy exists for every

: i
xe X, and the function F defined by

F(x) = § f(y;X)dy

is differentiable with respect to xy at each interior
point of X. Moreover, its derivative with respect to Xy
is given by

D. F(x) =\ D. f(y,x)dy.
X3 'S X3 2
Y
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Proof: Claim that ‘fx(:f)l\{

£ ()] + | x - a| &y
for all interior noints (y,x) of Y X.
The IMean - Value Theorem gives us

£(y,x) - £(y,e) = (x; - a;) D_ £(y,c)
"‘,’here a = (x]', X2 9080 0 ,Ki_l, a.i, Ki""l, LR R ] yn-nl) and

= -.'{- . e « 8 o0 }- 3'1‘ L = i
C (Kl, Xz,oou.’_l_l, Cl’ .‘{1+1, 9 ..m) de Cl 1183

between ay and ::i. It Ffollows that

[f(y;x)lfg £(y,a) +l X, - aiI]Dxif(y,0ﬂ

£(y,a) +I X -~ 8 ' G(y).

<
1:06.4 |fx(Y) ,S fa(y) + ':{ R 2 ,G(y).

Since fx is measurable on Y and dominated almost

everywhere on Y by a nommegative function in L(Y), f_€ L(Y).

. -

That is the integralS f(y,x)dy exists for each x€X,

X

1r . -
Choose any seruence {x*i of points in X such that

k : )| S
X = (Jnl, Xg,.o.o’ Xi"‘]., Xi, J'.i+1’00lcxm) % x
but lim xk = X or lim xl.{ = T
1% —>0 k>0 + &
Define a secuence of functions { Qk} on ¥ by
- k Nl '
(1.5) ay(y) = Znx g = £(7,x)
5 = By

Then qy € L(Y) rnd q, (y)—> D, f(y,x) at each interior
L i .



i §
point of Y. By the lean - Value Theorem znd (1.5), we have
o k
0 (¥) = ijl(y,c )
k | k

where ¢ = (xl, Xpgeeees X5 15 Cir X, 1',....,1 ) and c1l{

.|

lies between x. and x;. Therefore, by hypothesis (c),

et

'qk(y)l £G(y) almost everywhere on Y.
Lebesgue's Dominated Convergence Theorem shows that

}
{ (:‘q,{(y)dy ' converges, the integral ( D, f(y,x)dy exists,

J o +
Y . Y
and linm ok(,,r)cj == o {7)ay
k-> I~ 1" s
/.
S D f(yy )dv
Y
(* X
But g Clk(y}dy =u5 £(y, ) - f(y,x)dy
F(F) - P(x)
:c‘i - Xi

Since the last cquotient tends to a limit for all

sequences i xk} , it follows that 33'5':_ F(x) exists and that
i
D S d '
— F(x) = f(y,x)ay.
Xy Uxi ’

[
Y

1.3 The Sphoerical Coocdinate System.

The materials of this section are drawn from

references 741, p 3 - 4,



If % = (Xyyee0ey %) anQ ¥ = (Frse0e0, ¥,) are in

ﬂn, the length of a vector x is denoted by x| , and
ri

Ix! == x% p
1..‘1 &
The distance between two vectors x and y is defined to be
Ix—yl « The angle hetween two nonzero vectors x and y is

defined tc be the angle € such that 0£0< T and
4]

cos @ =

Meny of the functions that we shall deal with are
functions only of the distance from the origin 0€IR™,
For each functions it is more convenient to use a
spherical coordinate gystem rather than & rectangular
coordinate system. The spherical coordinates of x £ 0

are defined as follows : if » = |x! , then

X - %
o W T nh

v o e

is a point of Q)B(O,l), the vnit svhere with centre at 0.
The pair (O,r) uniguely determines x and are called the
spherical coordinates of x. The spherical coordinates of
0 isg the n»air (O;O). This transformation from
rectangular coordinates to spherical coordinates is
essentially the mapping (xl,...., xn)i\ré (Gl;...;gn_l,r)

where

B e



X
2
92 o
}’11_

-1
gn—.'l_ r

5
=

2 2
r = (Xl + see + Kn) .
x x'l"l .
We shall also let Qn =l Qm is the cosine of the angle

between x and the vector (0,0,....,0,1); that is, the angle
between x and the "x - axis". The Jacobian of the mapping

is easily calculated and absolute value is given by

: l'lf-:l.
3 (f\-]-gloog-t{rl) i i
7] 2 2 e
d-a(gl,ono,gn--l,r) (1-91 = s = 91’1—1)3
n=1
ST R
e, |

If v = (yl,....,yn)e R® ana ©30, then DB(_V, @) is the

surface defined by the cauation

2 2 2
(:{1 - yl) taeo-eF (Kn s Yn) = Q °
; ] - . )
(3) ider a Borel set Mc 9B(: N2 (Xyye0e9X. )/ X =y 205,
ons S (Ysre) l'.( 1? ? 1‘1)/ n yl'l/ i
Let Mn dericte the projection of M onto the subspace
" : . : ., ; : ] ;

(xl,...,xn)ér'[ E, . Fof cach x ¢ :.\}3(y,Q)L let ¥ = ¥ (x)
be the angle bétween the ":cn - axig" and the outer normal
to aB(y,e) at x. Then

1 &

cos & X, =Y
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and

i* 1
i
] i B
é(M) = \ie_)-.' ! sec 25 a-&l.... dxr}."‘l

renresents the surfnce area of M. If 1 Cfaﬂ(y,(a) N

- '] *
{(xl,..., xn)/ BTy S 03 , the surfacc area of I1 is
given by the swmme integral with secB= -&/(x - Yy e

o

The intesral of @ Borel function £ defined on ??B(y,ga)

“
&

relative to the surface arca & is denoted by

0

5_ F(x)as(x) .
2B(y, )

Consider an extended real-valucd function T with
domain in!Rn. We sholl talte the following liberty with °
the functional notation. Waen f is considered as a
function of the spherical coordinates (9,r) of x, we
shall denote the value of the composite function at (8,r)
by f(@;r). Suppose T is integrable on E(O,ég). Then the
intesral of f over B(0,©) can be evaluated using

snherical coordinates as follows

=
»’:‘3-

oy 5
’ f(x)dx = 13 e} (.GS‘ ) f(Q,r)rnﬂl
B(O’e ) Q = = R

dQ,..danldr
;“E O Y ;, _ Y

- J il ,Jj",ff(@,r]ds’(@) )dr.
0 i

4
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1.4 Subharmonic Functions
A function u having continuous second partial
derivatives onan open subset (7 of R? is said to be

subharmonic on (% if

Bu 20 on £).

Theorem 1.4.1 If u is subharmonic on the open set °

O € R®, then

u(x) { 1
g;_%—fﬁ-T_ : uds

whenever B(x,5 )< €L , &, denote the surface area of

a sphere with radius 1.

Proof: Suppose first that
(*) Au >0 on'B(x,g)C‘.Q.
Let
u(y) y € OB |
h(y) =

1 §62—!x—yl2 w(z)as(z)
€ By
oB

~e

ye B

oo

| z-y ™

h is continuous on B(x,® ) and harmonic on B .

Claim that w £h on B .
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Let w = h-u ,
Aw = An-Bv = ~Au <0 on B,
w=0 on 2B , and
w is continuous on B .,
Sunpose w g.ttains its minimum on B at X, e
5 5 g X € B, then
_@_2 W 20 i 1 = 13253650650
axf 1%,
and '

Aw(:co) > 0 , e contradiction .

Therefore , w=h-u 20 on B ,

-
icee wWx) K H(M = 1 | 8% u(z)as(z)
558 L BT

€P_1 S; ud &7

Now Aun >0 on B .
Letting a(x) = = 2%

For £ 7 0 , A (LHE) ONGKOBH TN\

By the first nart of the »nroof

~

u-€ g _é 1 \ (v-£t¢g)ax’

8;1 S,l’l“” :{B

= 1 S ud& - 3 E CIdG'
n-I -.1’1—1

RPN ©B an o

Letting &£ - 0 , we obtain



u(x) \{ 1 \ ud< .,
T

Theorem 1.4.2., If u is subharmonic on the open-get
D & B and xe ), then

(1.3) 1(x) & 8 uwdz ,
‘/;1Sn B(x,% )

whenever B(x,T)c ) , ‘/n £/50 .
n
Proof: Suppose that u is subharmonic on L) ,
xe, B(x,% )c ) 7 Af/ulx) = -0, (1.8) is trivially
true. Assume that u(x) > =00, Since., by Theorem 1l.4.1 ,
u(x) < 1 ude® , 0<e<g,
T 3 |
S/n@' oB

G'ﬁél'l u(x)éS wes |, O<9<S.
?B(x,e)

Integrating over (O,S)

n

1S
gng_n u(x) < S ud:s'dko
O "y

2 Cvdz . ( by mccticn 1.3 )
B(x,%)

Therefore, the theorem is nroved.
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