CHAPTER II

PRELIMINARIES

In this chapter we will give scme definitions and results
from topology and group theory. The meterials are standard and can
be found in [1], [2], [3], [4], [5]. We shall assume that the reader

is familiar with common terms used in set theory.

2.1 Cartesian product

Let {Xa:aeA} be a family of sets. The set of all mappings Xx: AU X
ael.

such that x(a) € X, for each a e A is called the cartesian product or

product of X& s. We shall denote this set by 1 Xa . When A is finite,
aeh
say A ={l,...,n} we also denote T X by X.x X x,,.Xx X . For ecach
P 3 ¢ 2 n

xe M X andoeecA, x(a) is usually denoted by x, and is called the
ach

t . .
a 4 co~ordinate of x. The mapping Pu I Kﬁ-——o K& defined by
AEA

. t
P&(x) =X, , is called the g h projection,

2.2 Algebraic Concepts

By a group we mean an ordered pair (G,,), where G is a non-empiy
set and o is a binary operation on G satisfying the following conditions:
(i) The operation is associative, that is,

Xo(yo2z) = (x0¥)oz for all element x,y,z of G.



(ii) There exists an element e of G such that
e o X =X0g¢e=x for each x in G.
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(iii) For each x in G, there is an element x ~ in G

such that x o x T = e = x 1o X.

For convenience, we shall denote the group (G,o) simply by G. It cen
be shown that the element e in (ii) is unique, it is known as the
identity of G. For each x in G, the element x * in (iii) is also
unique. It is known as the inverse of x.

A group G in abelian or commutative, if and only if Xoy = yox for all
elements x, y of G. By the order of G, denoted by |G|, we mean the
cardinality of G. G is called finite or infinite as its order is finite

or infinite. For any element x in G, the order of x is the least:

positive integer m such that xm = e, If no such integer exisis we say

that x is of infinite order. A group H is a subgroup of G if and only if

H C G and the group operation of H is the restriction of that of G.

It can be shown that any non-empty set H forms a subgroup of (G,o) if
and only if X o y-l e H for any x, y in H. If S is a subset of G,
the symbol {S>will denote the subgroup of G generated by S. This <S>

n
consists of all product of the form a:1o aezo...o a:k with a, € S, o

i
are integers, and k is a positive integer. If<{S) =G, S is said to be

a set of generators of G; the element of S are generators of G. If

the subset S consists of a single element a, then the subgroup (S},

also denoted by ¢a), generated by it is called the cyclic subgroup of G.

A group that coincides with one of its cyclic subgroup, is called a

cyclic group.




If H is a subgroup of a group G and x, y are elements of G

such that x o y_l e H, we say that x is right congruent to y modulo H

and denoted by x ¥R Y. If x-lo y € H, we say that x is left congruent

to y modulo H and denoted by x M, y. If HR and HL are coincide we shall

denote them by ﬁ. It can be shown that left (right) congruence modulo X
is an equivalence relation on G. The equivalence class of x € G under left

(right) congruence modulo H is the set xoH = {xoh : heH} (Hox = {hex :

heH}), it is called a left (right) coset of H in G, It follows

that G = U(x,H) = U(Hox) where the union is taken over all pairwise
disjoint cosets. If H is a subgroup of G such that left and right

congruence modulo H coincide, then H is said to be a normal subgroup

of G. In an abelian group, each subgroup is normal, If H is a normal
subgroup of a group G, then G/ﬁ is a group under the binary operation

given by (xH)(yH) = xyH, this group is called the quotient grcup or

factor group of G by , and will be denoted by G/y .
A mapping h on a group (G,o,) into group (G',#) is said to be
a homomorphism provided
h(xoy) = h(x)«h{y), for all x, y in G.
If h is bijective, h is called an isomorphism. Two groups G and G'
are iscmorphic, denoted G G', if there is an isomorphism h : G— G'.

Let h : G — H be a homomorphism. The kernel of h is the

subset of G :
kernel h= {x e G: h(x) = ¢} .

It can be shown that kernel of any homomorphism is a normal subgroup.



An abelian group (G,o) is said to be the direct sum of its
subgroups Gu, a € I, if for each g e G, g # e, there is a unique

expression (but for order) for g of the form
€= g o O +es 0 By
0, fa, K

where ga € Gu , with a_,..., @ being distinct elements of I and no

3 3 1 k

is an identity. When G is the direct sum of its subgroups Gﬂ, ael

J

we write G = I Ga’ and say that each Gh is a direct summand of G,
acl

€y

In case I is finite, say I = {1,2,..., n}, we also write Gl@r...@ Gn

for T G .
aeTl

Theorem 2.2.1 Let {Ga: acl} be a family of abelian groups. Then
there exists an abelian group G which is the direct sum of subgroups
isomorphic to Gﬁ .

For the proof of this theorem see [2], page 183.

A group F is said to be a free abelian group if it can be

expressed as a direct sum of 2 number of infinite eyclic groups, i.e.
F can be written as
F = Z < X,2 »
v
where <xg> denotes an infinite cyclic group with xv as a generator,
The totality of generators X, of all these cyclic direet summands

is called a basis of F. Every element of F can be written in one and

only one way as a product, with integer exponents, of a finite number

of elements of the basis.



Theorem 2.2.2  Given an abelian group (G,o) with set J%'= {aa : ael}
of generators. Then there exist a free abelian group F, with a basis W,
and a subgrﬁup H of F such that

(1) there exists & bijection © :Q}t-——i W,

(2) there exists an isomorphism ¥ from-F/H onto G such that

m ni m ni
vi(m(e(a )) o8 = na X
i=1 ! i=1 %4

for all a, and for all integer ni.
i

Proof For each ael, let G“ ='(xu) be an infinite cyelic group
with x, @s a generator. Then Gu is abelian for all ¢« . Hence,

by theorem 2.2.1, there exists a group which is the direct sum of

subgroup isomorphic to Ga' Let F= I §u , Where Ea is isomorphic
ael

to Gﬁ . Then for each ael, 53 is an infinite cyclic group. For each

ael, let X be a generator of G,.

Let W = {:-:a:ueI}.
Therefore F is free abelian group with basis W.

petine 0 :HN — W 1y

O(ah) = Xy .

Since a # ag and X, # ;e for a # 8 , hence 0 is a bijection
from Cﬂ’ to W. That is (1) holds.

Define h : F — G by

i
=
o

m n,
h( | (e(a, )) 7)
i=1 i




If follows that h is a bijective homomorphism.
m ni m n,
Let H={1 (9(& )} ¢ I aal
i=1 i i=l i

Define L F/H-—-; G Dby

w(n(o(a N, )=h(n(0(a nh = Mot
i=1l i i=1l i i= i
Now ¥ is well defined, for if
m n m n!
H(O(a R —— H(O(au))ioﬁ.
i=1l i i& i
then
n, n! 4
H (o(a, )) *4 A4 H (G(a N NN Ne &,
i= | i=l %
m n, n n' 1
n( M (e(e, ) "o (M(ala ))?) ) = e,
i= e | i=1 i
and so
n, n!
h( T (8(a, )) ) = [1h( n(o(a NTY.
i=1 5 i=1 i
¥ 1is a homomorphism, for
m n, n! n n'
‘l"( I (9(3 )) oHo H (0(& )) 1 ) = 'P( H (9(«" )) o II (9(8- )) 1
i=l 1 i=l al i=1l i i= 1
m n, +n!
=¥(Mm(e(a N1 T m)

i=1l i

n,+n!
n(_ 1 (oa. N 1 Yy,
i=1 i

= e.}, i.e. H is the kernel of h.
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m ng m ni
=h( 1 (6(a_)) Ton( Me(a_ )) 7),
i=1 g i=1 %

n n!

m
=y( n (e(a_))
i=1 ] 1=1 i

¥ is one-to-one, for if

m n, m ni
v( m (e(a_)) "o H) ¥( m(e(a )) "o H),
i=l %4 iy~ %

then

m n, m ni
h( m (G(au.)) *) h( 1 (Q(au . N

i=1 o B i=l 3

therefore
m ni m n; —
h( 1 (e(a_)) ~ o ( @ (O(aa ) 2 W N = e,

1=y %Y i=1 i

m n1 m ni =1

m(efa, )) "o (m(a(a,))™) € H,

i=1 i i=1 i
and so

m ni m ni

n (e(aa )) o H = T (e(a, )) ~ o H.

i=1 i i=l i

Clearly, the image of ¥ is the image of h, i.~. H.
Therefore, ¥ is an isomorphism from F/H onte G such that
m n, i
¥(n(ela ) " oH) = I a’
i=l i i=l i

for all a  and for all integer n,, i.e. (2) holds.
p &

m
am)o¥( T (8(a, ) oH).



In the proof of the above theorem, the homomorphism h maps each

n D n
element xnl o xaa O+ 00 x:k of F to the element aalo aue 0ssv0 ank of G.
% 2 k 1 P "

Hence, for each x Qa0 xnk in H, we have

a o

1 k

a QO = oa = e .

N *x

Such an equation will be called a relation between the elements of&A’

in G. We shall say that it is a relation corresponding to the element

w T "
xa o xu Qeer0 xa

1 2 k

jn H. Let N be any subset of H that generates H.

The system'n{.of all relationsthat correspond to the elements in N is

called a system of defining relations of G. An abelian group G with

a given set of generators is completely determined by its defining
relations, since the set N completely determines the normal subgroup H
of the free sbelizn group F and therefore the factor group F/H.

By a field we mean a triple (K,+,.), where +,, are binary
operations on K, known as addition and multiplication respectively,
such that the following hold :

(i) K forms a commutative group under addition.

(ii) K* = K-{0}, where 0 is the additive identity forms

a commutative group under multiplication.
(iii) For any a,b,c € K, we have
alb +c¢c) = ab+ ac.

For convenience, we shall denote a field (K,+,,) simply by K.
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Let (K,+,.) be a field and (V,+) be a commutative group with a
rule of multiplication which assigns to aeK, ueV, a product aueV.

Then V is called a vector space over K if the following axioms hold :

(1) For any aeK and any u, veV, a(utv) = autav,

(2) For any a, beK and any ueV, (a+b)u = aut+bu,

]

(3) For any a, beK and any ueV, a(bu) = (ab)u.
(4) For ueV, 1l.u =u where 1 is the multiplicative identity
of K.

The elements of K and V will be refered as scalar and vector,

respectively. If V is a vector space over the field K and {xi}(lsisn)

n
is a finite subset of V, then for 8y © K, 1¢i<n, I ey X, is called a
i=1
linear combination of the Xse The vectors xl,..., x € V are said to

be linearly dependent, or simply dependent, if there exist scalars

n

Biseees & ¢K,not all of them zero, such that £ g.x, = O. An arbitrary
n g=) 1 2

set A of vectors is said to be a linearly dependent set if some finite

subset of A is linearly dependent. Otherwise, the set A is called

a linearly independent or simply independent. If‘ES is a linearly

independent subset of V such that for every v ¢ V, v can be written as

a linear combination of vectors in 6% » Wwe say that B isa basis of V.
It can be shown that every vector in V has a unique representation as

a linear combination of elements of'ﬁs . and that every basis of V has
the same cardinal number., The cardinal number of a basis of a
vector space is called its dimension. If the cardinal number of a basis

of a vector space is finite, the vector space is called finite dimensional.




Observe that the set R of real numbers can be considered as a
vector space over the field Q of rational numbers. It can be shown
that R has a basis over Q. Such a basis is known as a Hamel basis.

A proof of the existence of such a basis can be found in [6] .

2.3 Topological Concepts

By a topological space we mean an ordered paired (X,t), where

X is a set and 1 is a family of subset of X satisfying the following
conditions :
a) X and @ are elements of T .
b) The intersection of any finite number of members of T is in T.
¢) The arbitrary union of members of T is in 7.
Any family T satisfying these three conditions will be called a topology
for X. We shall also denote a topological space (X,t) simply by X.
Each member of T will be called t-open set of X or simply opén set
of X. For any subset Y of a topological space (X,7), it can be shown

that the family v, = {TNY : T e 1} 1is a topology for Y. The topological

Y
space (Y, 'rY) is called a subspace of (X,t), the topology Ty is called

the relative topology of Y induced by <.

A subcollection 65 of a topology 1 of X is said to be a base
of 1 provided the following condition hold : for each T e vt and x e T,
the exists B ¢ G5 such that x ¢ BC T, or equivalently, each T in T
is a union of members of 4. It can be shown thet if a family (A of

subsets of a set X has the properties ;
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(1) the union of set in O is X,

(ii) for each B, B, ed B O B, is a union of members of 0,

then 05 is a base for some topclogy for X.
This topology consists of all sets that can be written as unions of
sets in 55. Observe that the family of all open intervals form a base
of a topclogy for the set R of real numbers. This topclogy is known

as the usual topology for RR.

A subfamily'{gof a topology Tt for X is a subbase if the set
of all finite intersections of member of {% form a base for T.

If {(Xa,ra) : a € A} is a family of topological spaces, then

the family 65 = {P;l(Ta) : ‘I‘u £ Ty &€ A} forms a subbase of a

topology Tt for the cartesian product 1 Xa . This topology T is
oeA

known as the product topology. The topological space ( I Xa,t) will be
aEhA

called the product space of {(XG,TG): o €A},

By a neighborhood of a point x in a topological space X, we shall
mean a subset N of X for which there exists an open set T of X such
that x e T N.

A function f of a topological space (X,T) into a topological

space (Y,QAJ is continuous at a point x ¢ X if, given any neighborhood

V& of the point y = f(x), there is a neighborhood U, of the point x
such that f(Ux)CZ‘Vy « The mapping f is said to be continuous on X

if it is continuous at every point of X.
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Theorem 2,3.1 If X and Y an topological spaces and f is a function

on X to Y, then the following statements are equivalent

a) The function f is continuous.

b) For any open set V< Y, f—l[v] ={xe X : f(x) e V} is

open set of X.

For the proof of this theorem see [4].

A mapping f of a topological space X into a topological space Y
is said to be open if for each open set U in X, £(U) = {£(x) : x € U}
is an open set of Y.

A sequence {xn} of points in a topological space X is said to

1]

converge to x (written 1linm X, x) if for each neighborhood U

n— e

of x, there is a natural number n, such that for any natural number n,

i i€ U.
n > n, implies xn €

Theorem 2.3.2 Let X, Y be topological spaces. If f : X— Y is

continuous at x and lim x_ = x, then lim f(x ) = f(x) . For the
n—s o n—w« n

proof of this theorem see [4].
Let X be a topological space, R be an equivalence relation on X

and Y = x/R be the quoitent set of X with respect to the relation R.

The mapping ¥ : X—> Y defined by ¥(x) = X, the equivalence class of x,

will be called the canonical mapping. It can be shown that the fomily

Ty ={vc Y : ?nl(V) is open} is a topology for Y; it is called the

quotient topology and (Y,Tv) is called the quotient space of X by R.
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Theorem 2.3.3 Let X be a topological space, R an equivalence

relation on X, ¥ the canonical mapping of X onto X/R » then a mapping
g of X/R into a topological space Y is continuous if and only if g o ¥
is continuous on X.

For the proof of this theorem see [4].

2.4 Topological Groups

A triple (G,0,T) is & topological group if (G,o) is a group,

(G,t) is a topological space and the function whose value at & membter
(x,y) of G x G is x o y-l is continuous relative to the product
topology for G x G. We sometimes denote a topological group (Gy0,T)

simply by G.

The following are examples of topological groups :

a) The set R of real numbers with sddition as the group
operation and the usual topology form a topological group.

b) The set R* of nonzero real numbers with multiplication as
the group operation and the relative topology of the usual topology
for R form a topological group.

¢) The set R' of positive real numbers with multiplication as
the group operation and the relative topology of the usual topology
for R form & topological group.

d) The set R" of all real n-tuples with an addition +,
defined by (xl,..., xn)+(yl,..., yn) = (x1+ Yyreees x + yn), as a group

operation and the usual topology for ®R" form a topological group.
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e) The set €* of nonzero complex numbers with complex
multiplication defined by (x,y).(z,w) = (xz-yw, yz+xw), vhere
(x,y),(z,w) ¢ €C*, as a group operation, and the relative topclogy
of the usual topology for Bz form a topological group.

If H is a subgroup of G, H endowed with the relative topology

is a topological group ; it is called a topological subgroup or simply

a subgroup of G, If H is a normal subgroup of G, then G/H, the quotient
group with respect to the equivalence relation ﬁ, and the quotient

topology form a topological group; it is called the quotient group of

G by H.
A function f on a topological group (G,o,T) onto a topological
group (G',+,7') is an isomorphism if
' 1) f is bijective ;
2) flxoy) = f(x)+f(y) for all x, y in G, and

3) f and its inverse, £71 . are contimuous.

NO6579

2.5 Vector Group

A vector group is the vector space V over the field R of real
numbers and a topology T on V such that addition and scalar multiplication

are continuous, where the topology on R is the usual topology.
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