CHAPTER II

PRELIMINARIES

In this chapter we will give some definitions and results from topology and group theory. The materials are standard and can be found in [1], [2], [3], [4], [5]. We shall assume that the reader is familiar with common terms used in set theory.

2.1 Cartesian product

Let $\{X_\alpha : \alpha \in A\}$ be a family of sets. The set of all mappings $\mathbf{x} \colon A \to \mathbb{U} \ X_\alpha$ such that $\mathbf{x}(\alpha) \in X_\alpha$ for each $\alpha \in A$ is called the <u>cartesian product</u> or <u>product</u> of X_α^* s. We shall denote this set by $\Pi \ X_\alpha$. When A is finite, say $A = \{1, \ldots, n\}$ we also denote $\Pi \ X_\alpha$ by $X_1 \times X_2 \times \ldots \times X_n$. For each $\alpha \in A$ and $\alpha \in A$, $\mathbf{x}(\alpha)$ is usually denoted by \mathbf{x}_α and is called the $\alpha \in A$ and $\alpha \in A$. The mapping $\mathbf{P}_\alpha : \Pi \ X_\alpha \to X_\alpha$ defined by $\mathbf{P}_\alpha(\mathbf{x}) = \mathbf{x}_\alpha$, is called the α projection.

2.2 Algebraic Concepts

By a group we mean an ordered pair (G,o), where G is a non-empty set and o is a binary operation on G satisfying the following conditions:

(i) The operation is associative, that is, $x_0(y_0z) = (x_0y)_0z$ for all element x,y,z of G.

- (ii) There exists an element e of G such that $e \circ x = x \circ e = x$ for each x in G.
- (iii) For each x in G, there is an element x^{-1} in G such that $x \circ x^{-1} = e = x^{-1} \circ x$.

For convenience, we shall denote the group (G,o) simply by G. It can be shown that the element e in (ii) is unique, it is known as the identity of G. For each x in G, the element x^{-1} in (iii) is also unique. It is known as the inverse of x.

A group G in abelian or commutative, if and only if xoy = yox for all elements x, y of G. By the order of G, denoted by |G|, we mean the cardinality of G. G is called finite or infinite as its order is finite or infinite. For any element x in G, the order of x is the least positive integer m such that $x^m = e$. If no such integer exists we say that x is of infinite order. A group H is a subgroup of G if and only if H C G and the group operation of H is the restriction of that of G. It can be shown that any non-empty set H forms a subgroup of (G,o) if and only if $x \circ y^{-1} \in H$ for any x, y in H. If S is a subset of G, the symbol (S) will denote the subgroup of G generated by S. This (S) consists of all product of the form alo ago ... ak with a ES, n are integers, and k is a positive integer. If $\langle S \rangle = G$, S is said to be a set of generators of G; the element of S are generators of G. If the subset S consists of a single element a, then the subgroup (S), also denoted by (a), generated by it is called the cyclic subgroup of G. A group that coincides with one of its cyclic subgroup, is called a cyclic group.

If H is a subgroup of a group G and x, y are elements of G such that $x \circ y^{-1} \in H$, we say that x is right congruent to y modulo H and denoted by x HR y. If $x^{-1} \circ y \in H$, we say that x is left congruent to y modulo H and denoted by x HL y. If HR and HL are coincide we shall denote them by H. It can be shown that left (right) congruence modulo H is an equivalence relation on G. The equivalence class of $x \in G$ under left (right) congruence modulo H is the set $x \circ H = \{x \circ h : h \in H\}$ ($H \circ x = \{h \circ x : h \in H\}$), it is called a left (right) coset of H in G. It follows that $G = U(x \circ H) = U(H \circ x)$ where the union is taken over all pairwise disjoint cosets. If H is a subgroup of G such that left and right congruence modulo H coincide, then H is said to be a normal subgroup of G. In an abelian group, each subgroup is normal. If H is a normal subgroup of a group G, then G/H is a group under the binary operation given by (xH)(yH) = xyH, this group is called the quotient group or factor group of G by H, and will be denoted by G/H.

A mapping h on a group (G,o) into group (G',*) is said to be a homomorphism provided

 $h(x_0y) = h(x)xh(y)$, for all x, y in G.

If h is bijective, h is called an <u>isomorphism</u>. Two groups G and G' are isomorphic, denoted $G \cong G'$, if there is an isomorphism $h: G \longrightarrow G'$.

Let $h: G \longrightarrow H$ be a homomorphism. The kernel of h is the subset of G:

kernel $h = \{x \in G : h(x) = e\}$.

It can be shown that kernel of any homomorphism is a normal subgroup.

An abelian group (G, \circ) is said to be the <u>direct sum</u> of its subgroups G_{α} , $\alpha \in I$, if for each $g \in G$, $g \neq e$, there is a unique expression (but for order) for g of the form

$$g = g_{\alpha_1} \circ g_{\alpha_2} \circ \cdots \circ g_{\alpha_k}$$

where $g_{\alpha_j} \in G_{\alpha_j}$, with $\alpha_1, \ldots, \alpha_k$ being distinct elements of I and no g_{α_j} is an identity. When G is the direct sum of its subgroups G_{α} , $\alpha \in I$ we write $G = \sum_{\alpha} G_{\alpha}$, and say that each G_{α} is a <u>direct summand</u> of G. $\alpha \in I$ In case I is finite, say $I = \{1, 2, \ldots, n\}$, we also write $G_1 \oplus \ldots \oplus G_n$ for $\sum_{\alpha \in I} G_{\alpha}$.

Theorem 2.2.1 Let $\{G_\alpha\colon \alpha\epsilon I\}$ be a family of abelian groups. Then there exists an abelian group G which is the direct sum of subgroups isomorphic to G_α .

For the proof of this theorem see [2], page 183.

A group F is said to be a <u>free abelian group</u> if it can be expressed as a direct sum of a number of infinite cyclic groups, i.e. F can be written as

$$F = \sum_{v} \langle x_{v} \rangle$$

where $\langle x_{v} \rangle$ denotes an infinite cyclic group with x_{v} as a generator. The totality of generators x_{v} of all these cyclic direct summands is called a basis of F. Every element of F can be written in one and only one way as a product, with integer exponents, of a finite number of elements of the basis.

Theorem 2.2.2 Given an abelian group (G,o) with set $\mathcal{H} = \{a_{\alpha} : \alpha \in I\}$ of generators. Then there exist a free abelian group F, with a basis W, and a subgroup H of F such that

- (1) there exists a bijection $\theta: \mathcal{A} \longrightarrow W$,
- (2) there exists an isomorphism \psi from F/H onto G such that

$$\Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}}, H) = \prod_{i=1}^{m} a_{i}^{n_{i}},$$

for all a and for all integer n.

Proof For each $\alpha \in I$, let $G_{\alpha} = \langle x_{\alpha} \rangle$ be an infinite cyclic group with x_{α} as a generator. Then G_{α} is abelian for all α . Hence, by theorem 2.2.1, there exists a group which is the direct sum of subgroup isomorphic to G_{α} . Let $F = \sum_{\alpha} \overline{G}_{\alpha}$, where \overline{G}_{α} is isomorphic to G_{α} . Then for each $\alpha \in I$, \overline{G}_{α} is an infinite cyclic group. For each $\alpha \in I$, let \overline{x}_{α} be a generator of \overline{G}_{α} .

Let $W = \{\bar{x}_{\alpha} : \alpha \in I\}$.

Therefore F is free abelian group with basis W.

Define $\theta: A \longrightarrow W$ by

$$\Theta(a_{\alpha}) = \bar{x}_{\alpha}$$
.

Since $a_{\alpha} \neq a_{\beta}$ and $\bar{x}_{\alpha} \neq \bar{x}_{\beta}$ for $\alpha \neq \beta$, hence θ is a bijection from \mathcal{A} to W. That is (1) holds.

Define $h : F \longrightarrow G$ by

$$h(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}}) = \prod_{i=1}^{m} a_{\alpha_{i}}^{n_{i}}$$
.

If follows that h is a bijective homomorphism.

Let $H = \{ \prod_{i=1}^{m} (\Theta(a_{\alpha_i}))^{n_i} : \prod_{i=1}^{m} a_i^{n_i} = e. \}$, i.e. H is the kernel of h.

Define Ψ : $F/_{H} \rightarrow G$ by

$$\Psi \left(\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}} \circ H \right) = h \left(\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}} \right) = \prod_{i=1}^{m} a_{i}^{n_{i}}.$$

Now Y is well defined, for if

$$\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}} \circ H = \prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}} \circ H,$$

then

$$\prod_{i=1}^{m} (\theta(a_{\alpha_{i}}))^{n_{i}} \circ (\prod_{i=1}^{m} (\theta(a_{\alpha_{i}}))^{n_{i}^{\dagger}})^{-1} \in H,$$

$$h(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}} \circ (\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'-1}) = e,$$

and so

$$h(\prod_{i=1}^{m}(\theta(a_{\alpha_{i}}))^{n_{i}}) = h(\prod_{i=1}^{m}(\theta(a_{\alpha_{i}}))^{n_{i}}).$$

Y is a homomorphism, for

$$\begin{split} \Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}} \circ H_{0} \prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'} \circ H) &= \Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}} \circ \prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'} \circ H), \\ &= \Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'+n_{i}'} \circ H) \\ &= h(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'+n_{i}'}), \end{split}$$

$$= h(\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}})_{o}h(\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}'}),$$

$$= \psi(\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}}_{o}H)_{o}\psi(\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}'}_{o}H).$$

W is one-to-one, for if

$$\Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i_{0}}}H) = \Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i_{0}}}H),$$

then

$$h(\prod_{i=1}^{m}(\theta(a_{\alpha_{i}}))^{n_{i}})$$
 = $h(\prod_{i=1}^{m}(\theta(a_{\alpha_{i}}))^{n_{i}})$,

therefore

$$h(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}} \circ (\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'-1}) = e,$$

$$\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}} \circ (\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}'-1}) \in H,$$

and so

$$\prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}} \circ H = \prod_{i=1}^{m} (\Theta(a_{\alpha_{i}}))^{n_{i}'} \circ H.$$

Clearly, the image of W is the image of h, i.e. H.

Therefore, Ψ is an isomorphism from $F/_{H}$ onto G such that

$$\Psi(\prod_{i=1}^{m}(\Theta(a_{\alpha_{i}}))^{n_{i}} \circ H) = \prod_{i=1}^{m} a_{i}^{n_{i}},$$

for all a_{α_i} and for all integer n_i , i.e. (2) holds.

In the proof of the above theorem, the homomorphism h maps each element $x_{\alpha_1}^{n_1} \circ x_{\alpha_2}^{n_2} \circ \cdots \circ x_{\alpha_k}^{n_k}$ of F to the element $a_{\alpha_1}^{n_2} \circ a_{\alpha_2}^{n_2} \circ \cdots \circ a_{\alpha_k}^{n_k}$ of G. Hence, for each $x_{\alpha_1}^{n_1} \circ \cdots \circ x_{\alpha_k}^{n_k}$ in H, we have

$$a_{\alpha_1}^{n_1} \circ \cdots \circ a_{\alpha_k}^{n_k} = e$$
.

Such an equation will be called a <u>relation</u> between the elements of \mathcal{A} in G. We shall say that it is a <u>relation corresponding to the element</u> $x_{\alpha_1}^{n_1} \circ x_{\alpha_2}^{n_2} \circ \dots \circ x_{\alpha_k}^{n_k} \quad \text{in H. Let N be any subset of H that generates H.}$

The system R of all relations that correspond to the elements in N is called a system of defining relations of G. An abelian group G with a given set of generators is completely determined by its defining relations, since the set N completely determines the normal subgroup H of the free abelian group F and therefore the factor group F/H.

By a <u>field</u> we mean a triple (K,+,.), where +,. are binary operations on K, known as addition and multiplication respectively, such that the following hold:

- (i) K forms a commutative group under addition.
- (ii) K* = K-{0}, where 0 is the additive identity forms a commutative group under multiplication.
- (iii) For any a,b,c ε K, we have

$$a(b+c) = ab + ac.$$

For convenience, we shall denote a field (K,+,.) simply by K.

Let (K,+,.) be a field and (V,+) be a commutative group with a rule of multiplication which assigns to ask, usV, a product ausV. Then V is called a vector space over K if the following axioms hold:

- (1) For any ack and any u, veV, a(u+v) = au+av.
- (2) For any a, bek and any ueV, (a+b)u = au+bu.
- (3) For any a, bek and any ueV, a(bu) = (ab)u.
- (4) For uεV, 1·u = u where 1 is the multiplicative identity of K.

The elements of K and V will be referred as scalar and vector, respectively. If V is a vector space over the field K and {x,}(1<i<n) is a finite subset of V, then for a ∈ K, 1≤i≤n, ∑ax is called a linear combination of the x_i . The vectors $x_1, \dots, x_n \in V$ are said to be linearly dependent, or simply dependent, if there exist scalars $a_1, \dots, a_n \in K$, not all of them zero, such that $\sum_{i=1}^n a_i x_i = 0$. An arbitrary set A of vectors is said to be a linearly dependent set if some finite subset of A is linearly dependent. Otherwise, the set A is called a linearly independent or simply independent. If B is a linearly independent subset of V such that for every v & V, v can be written as a linear combination of vectors in B, we say that B is a basis of V. It can be shown that every vector in V has a unique representation as a linear combination of elements of B . and that every basis of V has same cardinal number. The cardinal number of a basis of a vector space is called its dimension. If the cardinal number of a basis of a vector space is finite, the vector space is called finite dimensional. Observe that the set R of real numbers can be considered as a vector space over the field Q of rational numbers. It can be shown that R has a basis over Q. Such a basis is known as a <u>Hamel basis</u>. A proof of the existence of such a basis can be found in [6].

2.3 Topological Concepts

By a topological space we mean an ordered paired (X,τ) , where X is a set and τ is a family of subset of X satisfying the following conditions:

- a) X and \emptyset are elements of τ .
- b) The intersection of any finite number of members of τ is in τ .
- c) The arbitrary union of members of τ is in τ . Any family τ satisfying these three conditions will be called a topology for X. We shall also denote a topological space (X,τ) simply by X. Each member of τ will be called τ -open set of X or simply open set of X. For any subset Y of a topological space (X,τ) , it can be shown that the family $\tau_Y = \{T \cap Y : T \in \tau\}$ is a topology for Y. The topological space (Y,τ_Y) is called a subspace of (X,τ) , the topology τ_Y is called the relative topology of Y induced by τ .

A subcollection \mathfrak{B} of a topology τ of X is said to be a <u>base</u> of τ provided the following condition hold: for each $T \in \tau$ and $x \in T$, the exists $B \in \mathfrak{B}$ such that $x \in B \subset T$, or equivalently, each T in τ is a union of members of \mathfrak{B} . It can be shown that if a family \mathfrak{B} of subsets of a set X has the properties;

- (i) the union of set in B is X,
- (ii) for each B_1 , $B_2 \in \mathcal{B}$, $B_1 \cap B_2$ is a union of members of \mathcal{B} , then \mathcal{B} is a base for some topology for X.

This topology consists of all sets that can be written as unions of sets in $\mathfrak B$. Observe that the family of all open intervals form a base of a topology for the set $\mathbb R$ of real numbers. This topology is known as the usual topology for $\mathbb R$.

A subfamily ℓ of a topology τ for X is a subbase if the set of all finite intersections of member of ℓ form a base for τ .

If $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$ is a family of topological spaces, then the family $\mathfrak{B} = \{P_{\alpha}^{-1}(T_{\alpha}) : T_{\alpha} \in \tau_{\alpha}, \alpha \in A\}$ forms a subbase of a topology τ for the cartesian product Π X_{α} . This topology τ is an area known as the product topology. The topological space $(\Pi X_{\alpha}, \tau)$ will be called the product space of $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$.

By a <u>neighborhood</u> of a point x in a topological space X, we shall mean a subset N of X for which there exists an open set T of X such that $x \in T \subset N$.

A function **f** of a topological space (X,τ) into a topological space (Y,\mathcal{U}) is continuous at a point $x \in X$ if, given any neighborhood V_y of the point y = f(x), there is a neighborhood U_x of the point x such that $f(U_x) \subset V_y$. The mapping f is said to be continuous on X if it is continuous at every point of X.

Theorem 2.3.1 If X and Y an topological spaces and f is a function on X to Y, then the following statements are equivalent

- a) The function f is continuous.
- b) For any open set $V \subset Y$, $f^{-1}[V] = \{x \in X : f(x) \in V\}$ is open set of X.

For the proof of this theorem see [4].

A mapping f of a topological space X into a topological space Y is said to be open if for each open set U in X, $f(U) = \{f(x) : x \in U\}$ is an open set of Y.

A sequence $\{x_n\}$ of points in a topological space X is said to $\frac{\text{converge}}{\text{to x}}$ (written $\lim_{n\to\infty} x_n = x$) if for each neighborhood U of x, there is a natural number n_0 such that for any natural number n_0 implies $x_n \in U$.

Theorem 2.3.2 Let X, Y be topological spaces. If $f: X \longrightarrow Y$ is continuous at x and $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} f(x_n) = f(x)$. For the proof of this theorem see [4].

Let X be a topological space, R be an equivalence relation on X and Y = X/R be the quoitent set of X with respect to the relation R. The mapping $\Psi: X \longrightarrow Y$ defined by $\Psi(x) = \overline{x}$, the equivalence class of x, will be called the canonical mapping. It can be shown that the family $\tau_{\Psi} = \{V \subset Y: \Psi^{-1}(V) \text{ is open}\}$ is a topology for Y; it is called the quotient topology and (Y, τ_{Ψ}) is called the quotient space of X by R.

Theorem 2.3.3 Let X be a topological space, R an equivalence relation on X, Ψ the canonical mapping of X onto $X/_R$, then a mapping g of $X/_R$ into a topological space Y is continuous if and only if g o Ψ is continuous on X.

For the proof of this theorem see [4].

2.4 Topological Groups

A triple $(G,0,\tau)$ is a topological group if (G,0) is a group, (G,τ) is a topological space and the function whose value at a member (x,y) of $G\times G$ is $x\circ y^{-1}$ is continuous relative to the product topology for $G\times G$. We sometimes denote a topological group $(G,0,\tau)$ simply by G.

The following are examples of topological groups :

- a) The set R of real numbers with addition as the group operation and the usual topology form a topological group.
- b) The set R* of nonzero real numbers with multiplication as the group operation and the relative topology of the usual topology for R form a topological group.
- c) The set \mathbb{R}^+ of positive real numbers with multiplication as the group operation and the relative topology of the usual topology for \mathbb{R} form a topological group.
- d) The set \mathbb{R}^n of all real n-tuples with an addition +, defined by $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$, as a group operation and the usual topology for \mathbb{R}^n form a topological group.

e) The set C* of nonzero complex numbers with complex multiplication defined by (x,y).(z,w) = (xz-yw, yz+xw), where $(x,y),(z,w) \in C*$, as a group operation, and the relative topology of the usual topology for \mathbb{R}^2 form a topological group.

If H is a subgroup of G, H endowed with the relative topology is a topological group; it is called a topological subgroup or simply a subgroup of G. If H is a normal subgroup of G, then G/H, the quotient group with respect to the equivalence relation H, and the quotient topology form a topological group; it is called the quotient group of G by H.

A function f on a topological group $(G, 0, \tau)$ onto a topological group $(G', +, \tau')$ is an isomorphism if

- 1) f is bijective;
- 2) $f(x_0y) = f(x)+f(y)$ for all x, y in G, and
- 3) f and its inverse, f⁻¹, are continuous.

006579

2.5 Vector Group

A vector group is the vector space V over the field R of real. numbers and a topology τ on V such that addition and scalar multiplication are continuous, where the topology on R is the usual topology.