การหารัศมีความโค้งของโลกที่มีผลคอการแผ่กระจายคลื่นวิทยุ ในประเทศไทยโดยใช้ข้อมูลที่วัดได้จากราดีโอซอนค์

นาย อำนวยศักดิ์ ทูลสิริ

006599

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต แผนกวิชาวิศวกรรมไฟฟ้า บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย พ.ศ. 2518

THE DETERMINATION OF EFFECTIVE EARTH'S RADIUS FOR RADIOWAVE PROPAGATION IN THAILAND USING RADIOSONDE DATA

Mr. Amnuaysak Thoonsiri

A Thesis Submitted in Partial Fullfillment of the Requirements

for the Degree of Master of Engineering

Department of Electrical Engineering

Graduate School

Chulalongkorn University

1975

บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

ลิขสิทธิ์ของบั**น**ฑิควิทยาลัย จุฬาลงกรณมหาวิทยาลัย หัวข้อวิทยานิพนธ์ การหารัศมีความโค้งของโลกที่มีผลทอการแผกระจายคลื่นวิทยุ ในประเทศไทยโลยใช้ข้อมูลที่วัดได้จากราดิโอธอนด์ ขื้อ นาย อำนวยศักดิ์ ทูลศีริ แผนกวิชา วิศวกรรมไฟฟ้า ปีการศึกษา 2517

บทคัดยอ

วิทยานิพนชนี้ได้ทำขึ้นเพื่อคำนวณหาคารัศมีความโด้งของโลกที่มีผลค่อการแม่
กระจายคอื่นวิทยุซึ่งเหมาะสมกับสภาพบรรยากาศในประเทศไทยค้วยการค้นควาหาคา

k วาควรเป็นเท่าใด โดยใช้ข้อมูลของอุณหภูมิ ความกันและความชื้นสัมพัทธ์ของ
บรรยากาศในประเทศไทยที่กรมอุตุนิยมวิทยา กระทรวงคมนาคมได้เก็บรวบรวมไว้ใน
ช่วงปี พ.ศ.2497—2503 ข้อมูลเหาานี้ได้มาจากสถานีตรวจอากาศที่เชียงใหม่ กรุงเทษา
และสงขลาซึ่งเป็นสถานีตรวจอากาศที่ใช้ราดิโอชอนด์วัดข้อมูล จากข้อมูลต่าง ๆ เหล่านี้
ได้ใช้สู่ตรของ B.R. Bean คำนวณหาคาครรชนีหักเหคลื่นวิทยุของอากาศ, ก,
ที่ระดับความสูงต่าง ๆ เหนือพื้นผิวของโลกขึ้นไป จากนั้นได้นำคารีแฟรคกิวิที่, พี, มา
พลอตกราฟกับระดับสูงเพื่อหาความชันซึ่งทำให้สามารถคำนวณหาคา k ของแตละ
สถานีตรวจอากาศในเดือนต่าง ๆ ได้ ค่า k ต่าง ๆ ที่ได้เหล่านี้ได้นำมาคำนวณ
หาคาห้าสืบเปอร์เซนต์ของเวลาซึ่งในวิทยานิพนธนี้ได้ค่า k = 1.59 เมื่อเปรียบเทียบ
กับค่า k = 1.33 ที่ใช้กันโดยทั่ว ๆ ไปในเขตอบอุ่น ประโยชน์และขอบเขตการใช้
งานของค่า k ที่ได้จากวิทยานิพนธนี้ได้กล่าวไว้ในบทสรุปและวิจารณ์ซึ่งก็ได้แนะนำสิ่ง
ที่ควรทำต่อไปจากวิทยานิพนธนี้ไว้ควย.

Thesis Title The Determination of Effective Earth's Radius for Radiowave Propagation in Thailand using Radiosonde

Data.

Name Mr. Ammuaysak Thoonsiri Department Electrical Engineering

Academic Year 1974

ABSTRACT

The work in this thesis is concentrated on the evaluation of the modified earth radius factor, k, appropriate to the radio wave propagation in the troposphere in Thailand. The meteorological data of temperature, pressure and humidity in the lower atmosphere are obtained from the balloon-borne radiosonde. The data, complied over seven-year period from 1954. to 1960. at Chiengmai, Bangkok and Songkhla are made available by the Meteorological Department, Ministry of Communications. From these data, the refractive indices of air of various heights above the earth's surface are calculated using the formula described by B.R.Bean. The profile graphs of refractivity are plotted and the gradients of refractivity are evaluated. The k factor corresponding to each month is then calculated and the results are averaged. The resulting fifty per-cent of the time value k is equal to 1.59 as compare with 1.33 for the temperate zone. validity and usefulness of the value of k obtained in this manner are discussed, and the future work is recommended.

ACKNOWLEDGEMENT

The author expresses his gratitude and appreciation to :Dr. Suthi Aksornkitti, Department of Civil Aviation,
Ministry of Communications.

Asso. Prof. Dr. Narong Yoothanom, Department of Electrical Engineering, Chulalongkorn University.

Commander Kasem Sukabinta, Commander Damrong Chareonsock,

Commander Sawai Soontarosot and Lieutenant - Commander Sanga

Vaewkekee; Meteorological Department, Ministry of Communications.

whose this thesis would not have been possible without their assistance.

The author devotes this thesis for his parents and every one who gives him assistance, encouragement and stimulation.

CONTENTS

	Page
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
ACKNOWLEDGEMENT	vi
LIST OF SYMBOLS	viii
LIST OF TABLES	ix
LIST OF ILLUSTRATIONS	x
CHAPTER	
I) INTRODUCTION	1
II) THEORY	4
III) METHOD OF CALCULATION	25
IV) RESULTS	35
V) DISCUSSION AND CONCLUSION	108
REFERENCES	113
APPENDIX	115
VITA	126

LIST OF SYMBOLS

A = area

F = force

H,h = height

M = mass

N = refractivity

P = atmospheric pressure (mb)

T = absolute temperature (OK)

RH = relative humidity (%)

a = true earth radius

a_e = effective earth's radius

• velocity of light in vacuum

e = water-vapor pressure (mb)

e_s = saturated vapor pressure (mb)

g = acceleration of gravity

k = effective earth's radius factor

k = average value of k-values

 $k_{50\%}$ = fifty per-cent of the time value of k-values

n = radio refractive index of air

v = phase velocity

e angle between ray path and the surface of constant

refractive index

5 = variant

LIST OF TABLES

Table		Page
1	Meteorological data of Chiengmai weather	
	station in January	29
2	Results calculated from meteorological	
	data of Chiengmai weather station in January	30
3	Values of k at Chiengmai, Bangkok and	
	Songkhla weather station	33

LIST OF ILLUSTRATIONS

Figure		Page
1	Differential geometry used in the derivation	
	of the effective-earth's radius model atmosphere	5
2	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station in	
	January	31
3	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	January	71
4	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	February	72
5	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	March	73
6	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	April	74
7	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	May	75

Figure		Page
8	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	June	76
9	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	July	77
10	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	August	78
11	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	September	79
12	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	October	80
13	Graph showing relation between height (H) and	
	refractivity (N) at Eangkok weather station in	
	November	81
14	Graph showing relation between height (H) and	
	refractivity (N) at Bangkok weather station in	
	December	82

Figure		Page
15	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in January	83
16	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in February	84
17	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in March	85
18	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in April	86
19	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in May	87
20	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in June	88
21	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in July	89

xiii

Figure		Page
22	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in August	90
23	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in September	91
24	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in October	92
25	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in November	93
26	Graph showing relation between height (H) and	
	refractivity (N) at Chiengmai weather station	
	in December	94
27	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in January	95
28	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in February	96

Figure		Page
29	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in March	97
30	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in April	98
31	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in May	99
32	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in June	100
33	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in July	101
34	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in August	102
35	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in September	103

Figure		Page
36	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in October	104
37	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in November	105
38	Graph showing relation between height (H) and	
	refractivity (N) at Songkhla weather station	
	in December	106