CHAPTER III

MAXIMAL LOCALLY CYCLIC SUBGROUPS OF ABELIAN GROUPS

The materials of this chapter are drawn from references [1], [4], [5], [6], [7]

All groups in this chapter are presumed to be <u>abelian</u>. The main purpose of the chapter is to characterize the socalled maximal locally cyclic subgroups of a given group. To do this, we first prove a theorem showing that groups are direct sum of their primary components.

<u>Definition 3.1.</u> A group is called <u>p-primary</u>, where p is a prime number, if the order of each element of the given group is some power of p.

Given a group G , and a prime number p , the p-primary component of G is the set G_p consisting of all elements of G whose orders are powers of p .

For convenience, we will restate a theorem of Chapter II .

Theorem 3.2. If G is a torsion group , then G is the direct sum of its p-primary components .

Before we can prove the main theorem of this chapter, we need to develope some preliminary lemmas. Also, some definitions are needed.

<u>Definition 3.3.</u> Let G be a group . A subgroup of G is called a <u>maximal locally cyclic subgroup of G</u> if it is locally cyclic and if it is not properly contained in any other locally cyclic subgroup of G. <u>Definition 3.4</u>. A group is said to be <u>decomposable</u> if it is a direct sum of its proper subgroups ; otherwise , the group is called <u>indecomposable</u>.

Let G be a group . A subgroup of G is said to be a <u>maximal indecomposable</u> (<u>decomposable</u>) if it is indecomposable (respectively, decomposable) and if it is not properly contained in any other indecomposable (respectively, decomposable) subgroup of G.

Lemma 3.5. A torsion group G is locally cyclic if and only if each of its p-primary components is indecomposable .

A proof of this lemma is given in $\begin{bmatrix} 4 \end{bmatrix}$.

<u>Theorem 3.6</u>. Let G be a torsion group and $G = \sum_{p \in \mathbf{IP}} G_p$ its p-primary decomposition. Then a subgroup M of G is a maximal locally cyclic subgroup if and only if, for each prime number p, the p-primary subgroup M_p of M is a maximal indecomposable subgroup of G_p .

<u>Proof</u>. Suppose that $M = \sum_{p \in \mathbf{P}} M_p$ is a maximal locally cyclic subgroup of G where \mathbf{P} denotes the set of all prime numbers. By Lemma 3.5, each M_p is indecomposable. If for some q in \mathbf{P} , M_q is a proper subgroup of an indecomposable subgroup H of G_q , then the subgroup

$$H \bigoplus \sum_{p \in \mathbf{P}^*} M_p$$

where $\mathbf{P}^* = \mathbf{P}^{-}\{q\}$, is locally cyclic, by Lemma 3.5 and contains M as a proper subgroup. It then follows that each M_p must be maximal indecomposable as a subgroup of G_p.

Conversely, suppose $M = \sum_{p \in IP} M_p$, a subgroup of G such that each M_p is a maximal indecomposable subgroup of G_p . Then M is locally cyclic, by Lemma 3.5. Let L be a locally cyclic subgroup of G containing M. If $L = \sum_{p \in IP} L_p$, then each L_p is indecomposable, by Lemma 3.5. Since L_p contains M_p and M_p is a maximal indecomposable subgroup of G_p , $L_p = M_p$ for each $p \in IP$. Hence M is a maximal locally cyclic subgroup of G.

Now the theorem is completely proved .

Lemma 3.7. No infinite cyclic group contains a non-zero element of finite order .

<u>Proof.</u> Let [a] be an infinite cyclic group. Then the order of a , denoted by O(a) , is $+\infty$. If there exists a non-zero $x \in [a]$ such that $O(x) < +\infty$, then

na = x,

for some integer n . Now

O(x)na = O(x)x = 0, so that O(a) divides O(x)n and, therefore, $O(a) < +\infty$, contradicting the assumption.

Hence the lemma is proved .

Lemma 3.8. No finite cyclic group contains a non-zero element of infinite order .

<u>Proof</u>. Let [a] be a finite cyclic group. Then $O(a) < +\infty$. For any non-zero element $x \in [a]$, there exists a non-zero integer n such that

$$x = na$$
,

and so

O(a)x = O(a)na = 0.

Hence O(x) divides O(a) and , therefore , $O(x) < + \infty$. Thus the lemma is proved .

Lemma 3.9. Let G be a group and M a non-zero locally cyclic subgroup of G . Then M is either torsion or torsion-free .

<u>Proof</u>. Since $M \neq 0$, there exists a non-zero $g \in M$. For any element $x \in M$, x and g generate a cyclic subgroup [c] of G.

If the order of g is finite, then $\begin{bmatrix} c \end{bmatrix}$ is the finite cyclic subgroup of G, by Lemma 3.7 and, therefore, the order of x is finite, by Lemma 3.8.

If the order of g is infinite, then $\lfloor c \rfloor$ is the infinite cyclic subgroup of G, by Lemma 3.8 and, therefore, the order of x is infinite, by Lemma 3.7.

Hence M is either torsion or torsion-free . Thus the lemma is proved .

Lemma 3.10. Let G be a torsion-free group and let g be in G. Then

 $\langle g \rangle = \left\{ x \in G \ / \ mx \in [g], for some non-zero integer m \right\}$ is isomorphic to a subgroup of the additive group Q of rational numbers and , therefore , $\langle g \rangle$ is locally cyclic .

<u>Proof</u>. Clearly, $\langle g \rangle$ is a torsion-free subgroup of G. The case when g = 0 is obvious, assume $g \neq 0$. For any non-zero $x \in \langle g \rangle$,

$$mx = ng$$
,

for some non-zero integers m , n . Define

$$\varphi(\mathbf{x}) = n/m$$

and

 $\varphi(0) = 0$. To show that φ is a well-defined map from $\langle g \rangle$ into

 ${\cal Q}$, let x be any non-zero element in ${<}g{>}$. Suppose that there exist non-zero integers m , n and p , q such that

mx = ng

and

$$px = qg$$
.

Then

mpx = npg = mqg,

so that

$$(np - mq)g = 0$$
.

Since $g \neq 0$ and $\langle g \rangle$ is torsion-free,

$$np = mq$$
,

and hence

$$n/m = q/p$$
.

For any non-zero elements x , y $\in \langle g \rangle$,

mx = ng,

for some non-zero integers m , n , so that

$$\varphi(\mathbf{x}) = \mathbf{n}/\mathbf{m} ;$$

and also

py = qg,for some non-zero integers p, q, so that $\varphi(y) = q/p.$ Since $\langle g \rangle$ is commutative,

$$mp)(x + y) = (mp)x + (mp)y .$$

But

mpx = npg, mpy = mqg

so that

```
(mp)(x + y) = npg + mqg
= (np + mq)g.
```

Then

$$\varphi(\mathbf{x} + \mathbf{y}) = (\mathbf{np} + \mathbf{mq})/\mathbf{mp}$$

$$= \mathbf{n/m} + \mathbf{q/p}$$

$$= \varphi(\mathbf{x}) + \varphi(\mathbf{y}) ,$$

and hence φ is homomorphism .

For any non-zero elements x, $y \in \langle g \rangle$ such that $\varphi(x) = \varphi(y) = n/m$,

for some non-zero integers m , n . Then

mx = ng = my,

so that

mx - my = 0.

Since $\langle g \rangle$ is commutative ,

m(x - y) = mx - my = 0.

Since $\langle g \rangle$ is torsion-free and $m \neq 0$,

$$x = y$$
,

and hence φ is one-to-one .

Thus $\langle g \rangle$ is isomorphic to an additive subgroup of Q. Since subgroups of the additive group Q are locally cyclic , $\langle g \rangle$ is locally cyclic .

Hence the lemma is completely proved .

We are now ready to prove the main theorem of this chapter .

<u>Theorem 3.11</u>. Let G be a group and M a subgroup of G . Then M is a maximal locally cyclic subgroup if and only if either

(a) $M = \langle g \rangle$, for some $g \in G \setminus \{0\}$ of infinite order, or

(b) M is the direct sum of maximal indecomposable subgroups of the p-primary components of the torsion subgroup tG of G, one such subgroup from each component.

<u>Proof</u>. Suppose M is a maximal locally cyclic subgroup of G. If M = 0 and if there exists a non-zero $x \in G$, then

27

M is contained properly in [x], contradicting the assumption. Thus G = O and , therefore , M satisfies (b).

If $M \neq 0$, then M is either torsion or torsion-free, by Lemma 3.9.

If M is torsion, then M satisfies (b), by Theorem 3.6.

If M is torsion-free and if we choose a non-zero $g \in M$, then for any non-zero $x \in M$, x and g generate a cyclic subgroup $\lceil c \rceil$ of G. Let

$$c = mc$$

and

= nc

g

for some non-zero integers m , n . Then

$$nx = mnc = mg$$
,

and hence x $\notin \langle g \rangle$; i.e., $M \leq \langle g \rangle$. Since $g \notin M$, $\langle g \rangle$ is a locally cyclic subgroup of M, by Lemma 3.10 and, therefore, $M = \langle g \rangle$.

Conversely, suppose that (a) or (b) holds .

If (a) holds, then $M = \langle g \rangle$, for some $g \in G \setminus \{0\}$ of infinite order. By Lemma 3.10, $M = \langle g \rangle$ is locally cyclic. If M is not a maximal locally cyclic subgroup of G, then there exists $x \in G \setminus \langle g \rangle$ such that $M \cup \{x\}$ is contained in a maximal locally cyclic subgroup of G, and hence x and g generate a cyclic subgroup [c] of G. Let

$$c = mc$$

and

g

n

for some non-zero integers m , n . Then

$$x = mnc = mg$$
,

so that $x \in \langle g \rangle$, contradicting the choice of x. Hence M is a maximal locally cyclic subgroup of G.

If (b) holds, then M is a maximal locally cyclic subgroup of G , by Theorem 3.6 .

Hence the theorem is completely proved .

The above theorem gives a result , which will be used in Chapter V .

Corollary 3.12. Let G be a torsion-free group which is not locally cyclic . Then the intersection of all its maximal locally cyclic subgroups , denoted by G , is the trivial subgroup 0 .

Proof. By Theorem 3.11 , M is a maximal locally cyclic subgroup of G if and only if $M = \langle g \rangle$, for some $g \in G \setminus \{0\}$. Then

$$\left\{ \langle g \rangle / g \in G \setminus \{0\} \right\} \cdot$$

coincides with the set of all maximal locally cyclic subgroups of G . It suffices to show that

 $\langle g \rangle \cap \langle h \rangle$

if $\langle g \rangle \neq \langle h \rangle$.

If there exists a non-zero x $\epsilon < g > n < h >$, then

> mx ng

and

$$sx = th$$
,

for some non-zero integers m , n , s , t , so that

$$sx = nsg = mth$$
.

Since ns $\neq 0$ and mt $\neq 0$, g $\in \langle h \rangle$ and h $\in \langle g \rangle$. Hence $<\!\!g\!\!>\!\leq\!<\!\!h\!\!>$ and $<\!\!h\!\!>\!\leq\!<\!\!g\!\!>$ and , therefore , $<\!\!g\!\!>=\!<\!\!h\!\!>$. Thus, if $\langle g \rangle \neq \langle h \rangle$, then $\langle g \rangle \cap \langle h \rangle = 0$.

Now $\overline{G} = 0$, and the corollary is proved .