CHAPTER V

APPLICATIONS TO GEOMETRY

In this chapter, we apply the results in previous chapters to solve some problems in geometry. The main results in this chapter are due to L.Carlitz (see [2]). However, for the proof of the main results we follow the method considered in F.R.Jung [7] for the problem of similar nature. Throughout this chapter, F denotes a finite field of odd order q and of odd characteristic p.

The results of Corollary 4.8 lead to the following theorems.

5.1 Theorem. Let S_n denote an n-dimensional affine space with F as base field. If n > 4, there are no hyperplanes of S_n contained in the complement of the quadric $Q_n(a)$ defined by

$$a_1 x_1^2 + \cdots + a_n x_n^2 = a$$
 $(a_1 \cdots a_n \neq 0).$

Proof. By the first statement of Corollary 4.8, a hyperplane $L_{n-1}(b)$ of S_n defined by

$$b_1 x_1 + \cdots + b_n x_n = b$$

always has a common point with $Q_n(a)$ if $n \geqslant 4$. Therefore if $n \geqslant 4$, there are no hyperplanes of S_n contained in the complement of $Q_n(a)$.

5.2 Theorem. Let T_n denote an n-dimensional projective space with base field F. If $n \gg 3$, a quadric Q_n of T_n defined by

$$(5-1) a_0 x_0^2 + a_1 x_1^2 + \cdots + a_n x_n^2 = 0 (a_0 a_1 \cdots a_n \neq 0)$$

has at least one point in common with a given hyperplane,

$$(5-2) L_n : b_0 x_0 + b_1 x_1 + \cdots + b_n x_n = 0.$$

<u>Proof.</u> Since Q_n has a point in common with L_n if and only if $N_{s,n+1}(0,0) > 1$, the theorem follows from the second assertion of Corollary 4.8.

Let Q_n denote the quadric of T_n defined by (5-1). By a quadric, we shall mean a diagonal quadric; there is no loss in generality in making such an assumption (for example, see L.E.Dickson [5, 19168]). If $\Psi(a)$ denotes the Legendre symbol in F, that is, $\Psi(a) = -1$, -1, or 0 according as a is a square, a non-square or zero in F, then we define the exterior of Q_n as the set of points (x_0, x_1, \dots, x_n) of T_n such that

$$\Psi(Q_n(x_0, x_1, ..., x_n)) = +1$$

where $Q_n(x_0, x_1, \dots, x_n) = a_0x_0^2 + a_1x_1^2 + \dots + a_nx_n^2$. Similarly, the <u>interior</u> of Q_n is the set of points of T_n such that

$$\Psi(Q_n(x_0, x_1, \dots, x_n)) = -1.$$

For a given hyperplane L defined by

$$b_0 x_0 + b_1 x_1 + \dots + b_n x_n = 0,$$

where at least one of the b_j is non-zero, we let $N_E(L_n)$ denote the number of points of L_n in the exterior of Q_n and $N_I(L_n)$ the number of points of L_n in the interior of Q_n . The numbers $N_E(L_n)$ and $N_I(L_n)$ are determined explicitly in Theorem 5.3. Moreover, we find as a direct consequence of Theorem 5.3 that $N_E(L_n) = N_I(L_n)$ or $N_E(L_n) + N_I(L_n) = q^{n-1}$. Finally, we determine the number of points

in the interior and in the exterior of Q_n (see Theorem 5.8). We consider the sum

(5-3)
$$S = \sum \Psi(a_0 x_0^2 + a_1 x_1^2 + \dots + a_n x_n^2),$$

where the summation is over all x (F such that

$$(5-4) b_0 x_0 + b_1 x_1 + \cdots + b_n x_n = 0.$$

Clearly,

(5-5)
$$S = \sum_{a \in F} \Upsilon(a)N(a),$$

where N(a) denotes the number of solutions of the system of equations

$$a_0 x_0^2 + a_1 x_1^2 + \cdots + a_n x_n^2 = a$$

$$b_0 x_0 + b_1 x_1 + \cdots + b_n x_n = 0$$

If f(a) = -1 or q-1 according as $a \neq 0$ or a = 0, and if

(5-6)
$$A = a_0 a_1 \cdots a_n$$
, $B = \sum_{i=0}^{n} \frac{b_i^2}{a_i}$,

then by Theorem 4.7, we obtain N(a) as follows.

Case 1.
$$(B \neq 0 = D)$$
.

$$N_{s,t}(a,0) = \begin{cases} q^{t-2} + q^{k-1}(q-1)^{4}((-1)^{k}AB) & \text{if } t = 2k+1, \\ q^{t-2} & \text{if } t = 2k. \end{cases}$$

Using t = n+1 and put k = m, we get

$$N(a) = \begin{cases} q^{2m-1} + q^{m-1}(q-1)^{4}((-1)^{m}AB) & \text{if } n = 2m, \\ q^{2m} & \text{if } n = 2m+1, \end{cases}$$

where m' = m-1.

Case 2.
$$(B \neq 0 \neq D)$$
.

$$N_{s,t}(a,0) = \begin{cases} q^{t-2} - q^{k-1} \ \Psi((-1)^k AB) & \text{if } t = 2k+1, \\ q^{t-2} + q^{k-1} \ \Psi((-1)^k AD) & \text{if } t = 2k. \end{cases}$$

Since D = -aB, we get

$$N(a) = \begin{cases} q^{2m-1} - q^{m-1} \Psi((-1)^{m}AB) & \text{if } n = 2m, \\ q^{2m'} + q^{m'} \Psi((-1)^{m'}AB) & \text{if } n = 2m'+1. \end{cases}$$

Case 3.
$$(B = 0 = a)$$
.

$$N_{s,t}(a,0) = \begin{cases} q^{t-2} + q^{k-1}(q-1) & \forall ((-1)^k A) \\ q^{t-2} & \text{if } t = 2k+1. \end{cases}$$

Consequently,

$$N(a) = \begin{cases} q^{2m} + q^{m}(q-1) & \forall ((-1)^{m+1}A) & \text{if } n = 2m+1, \\ q^{2m-1} & \text{if } n = 2m. \end{cases}$$

Case 4.
$$(B = 0 \neq a)$$
.

$$N_{s,t}(a,0) = \begin{cases} q^{t-2} - q^{k-1} \Psi((-1)^k A) & \text{if } t = 2k, \\ q^{t-2} + q^k \Psi((-1)^k A) & \text{if } t = 2k+1. \end{cases}$$

Consequently,

$$N(a) = \begin{cases} q^{2m'} - q^{m'} \Psi((-1)^{m+1}A) & \text{if } n = 2m+1, \\ q^{2m-1} + q^{m} \Psi((-1)^{m}aA) & \text{if } n = 2m. \end{cases}$$

Thus when $B \neq 0$, it follows from Case 1 and 2 that

(5-7)
$$N(a) = \begin{cases} q^{2m-1} + q^{m-1} & \forall ((-1)^m AB) & \text{if } n = 2m, \\ q^{2m} + q^{m} & \forall ((-1)^m AB) & \text{if } n = 2m+1. \end{cases}$$

Substituting from (5-7) in (5-5) we get, when B \neq 0,

(5-8)
$$S = \begin{cases} 0 & \text{if } n = 2m, \\ q^{m}(q-1) & \forall ((-1)^{m}AB) \end{cases}$$
 if $n = 2m+1$.

When B = 0, it follows from Case 3 and 4 that

(5-9)
$$N(a) = \begin{cases} q^{2m-1} + q^m & \forall ((-1)^m aA) \\ q^{2m'} + q^m & \forall ((-1)^{m+1}A) \end{cases}$$
 if $n = 2m$, if $n = 2m+1$.

It follows that, when B = 0,

(5-10)
$$S = \begin{cases} q^{m}(q-1) \Psi((-1)^{m}A) & \text{if } n = 2m, \\ 0 & \text{if } n = 2m+1. \end{cases}$$

Let $N_E(L_n)$ denote the number of solutions x_0, x_1, \dots, x_n of

$$(5-11) b_0 x_0 + b_1 x_1 + \cdots + b_n x_n = 0$$

such that $\Psi(a_0x_0^2 + a_1x_1^2 + \cdots + a_nx_n^2) = +1$ and $N_1(L_n)$ denote the number of solutions of (5-11) such that $\Psi(a_0x_0^2 + a_1x_1^2 + \cdots + a_nx_n^2) = -1$.

Then it is clear that

(5-12)
$$N_{E}'(L_{n}) = \frac{1}{2} \sum \{1 + \Psi(a_{0}x_{0}^{2} + a_{1}x_{1}^{2} + \dots + a_{n}x_{n}^{2})\} - \frac{1}{2}M,$$

$$(5-13) N_{I}'(L_{n}) = \frac{1}{2} \sum \{1 - \Psi (a_{0}x_{0}^{2} + a_{1}x_{1}^{2} + \cdots + a_{n}x_{n}^{2})\} - \frac{1}{2} M,$$

where in each case the summation is over all x_0 , x_1 ,..., x_n that satisfy (5-11) and M is the number of solutions of the system of equations

(5-14)
$$\begin{cases} a_0 x_0^2 + a_1 x_1^2 + \dots + a_n x_n^2 = 0 \\ b_0 x_0 + b_1 x_1 + \dots + b_n x_n = 0. \end{cases}$$

In view of (5-3), (5-12) and (5-13) may be replaced by

(5-15)
$$N_{E}(L_{n}) = \frac{1}{2}(q^{n} + S - M)$$

(5-16)
$$N_{I}(L_{n}) = \frac{1}{2}(q^{n}-S-M).$$

The number M is determined by using Theorem 4.7 or can be easily obtained from (5-7) and (5-9). Therefore when B \neq 0.

(5-17)
$$M = \begin{cases} q^{2m-1} + q^{m-1}(q-1) & \text{if } n = 2m, \\ q^{2m} & \text{if } n = 2m+1; \end{cases}$$

when B = 0 we have

(5-18)
$$M = \begin{cases} q^{2m-1} & \text{if } n = 2m, \\ q^{2m'} + q^{m'}(q-1) \Psi ((-1)^{m+1}A) & \text{if } n = 2m+1. \end{cases}$$

If follows from (5-8) and (5-17) that when B \neq 0

(5-19) S+M =
$$\begin{cases} q^{2m-1} + q^{m-1}(q-1) & \forall ((-1)^m AB) & \text{if } n = 2m, \\ q^{2m} + q^{m}(q-1) & \forall ((-1)^m AB) & \text{if } n = 2m+1, \end{cases}$$

(5-20) S-M =
$$\begin{cases} -q^{2m-1} - q^{m-1}(q-1) \Psi((-1)^m AB) & \text{if } n = 2m, \\ -q^{2m} + q^{m}(q-1) \Psi((-1)^m AB) & \text{if } n = 2m+1; \end{cases}$$

when B = 0 we get using (5-10) and (5-18)

(5-21) S+M =
$$\begin{cases} q^{2m-1} + q^{m}(q-1) \Psi((-1)^{m}A) & \text{if } n = 2m, \\ q^{2m} + q^{m}(q-1) \Psi((-1)^{m+1}A) & \text{if } n = 2m+1, \end{cases}$$

(5-22) S-M =
$$\begin{cases} -q^{2m-1} + q^{m}(q-1) \, \Psi((-1)^{m}A) & \text{if } n = 2m, \\ -q^{2m} - q^{m}(q-1) \, \Psi((-1)^{m+1}A) & \text{if } n = 2m+1. \end{cases}$$

From the definition of $N_E(L_n)$, $N_I(L_n)$, $N_E(L_n)$ and $N_I(L_n)$ it is clear that

(5-23)
$$N_{E}(L_{n}) = (q-1)N_{E}(L_{n})$$
, $N_{I}(L_{n}) = (q-1)N_{I}(L_{n})$.

Thus substituting from (5-19), (5-20), (5-21) and (5-22) in (5-15) and (5-16) we obtain the explicit values of $N_E(L_n)$ and $N_I(L_n)$ as follows.

Case B # 0.

1

For
$$n = 2m$$
, $(q-1)N_E(L_n) = \frac{1}{2} \{q^{2m} - q^{2m-1} - q^{m-1}(q-1) \Upsilon((-1)^m AB)\}$

$$= \frac{1}{2} \{q^{2m-1}(q-1) - q^{m-1}(q-1) \Upsilon((-1)^m AB)\}.$$
Then $N_E(L_n) = \frac{1}{2} \{q^{2m-1} - q^{m-1} \Upsilon((-1)^m AB)\}.$
For $n = 2m+1$, $(q-1)N_E(L_n) = \frac{1}{2} \{q^{2m+1} - q^{2m} + q^m(q-1) \Upsilon((-1)^m AB)\}.$

$$= \frac{1}{2} \{q^{2m}(q-1) + q^m(q-1) \Upsilon((-1)^m AB)\}.$$
Then $N_E(L_n) = \frac{1}{2} \{q^{2m} + q^m \Upsilon((-1)^m AB)\}.$

For
$$n = 2m$$
, $(q-1)N_{I}(L_{n}) = \frac{1}{2} \{q^{2m} - q^{2m-1} - q^{m-1}(q-1) \Psi((-1)^{m}AB)\}$

$$= \frac{1}{2} \{q^{2m-1}(q-1) - q^{m-1}(q-1) \Psi((-1)^{m}AB)\}.$$
Then $N_{I}(L_{n}) = \frac{1}{2} \{q^{2m-1} - q^{m-1} \Psi((-1)^{m}AB)\}.$
For $n = 2m+1$, $(q-1)N_{I}(L_{n}) = \frac{1}{2} \{q^{2m+1} - q^{2m} - q^{m}(q-1) \Psi((-1)^{m}AB)\}.$

$$= \frac{1}{2} \{q^{2m}(q-1) - q^{m}(q-1) \Psi((-1)^{m}AB)\}.$$
Then $N_{I}(L_{n}) = \frac{1}{2} \{q^{2m} - q^{m} \Psi((-1)^{m}AB)\}.$
Case $B = 0$.

For
$$n = 2m$$
, $(q-1)N_E(L_n) = \frac{1}{2} \{q^{2m} - q^{2m-1} + q^m(q-1) \Upsilon((-1)^m A)\}$

$$= \frac{1}{2} \{q^{2m-1}(q-1) + q^m(q-1) \Upsilon((-1)^m A)\}.$$
Then $N_E(L_n) = \frac{1}{2} \{q^{2m-1} + q^m \Upsilon((-1)^m A)\}.$
For $n = 2m+1$, $(q-1)N_E(L_n) = \frac{1}{2} \{q^{2m+1} - q^{2m} - q^m(q-1) \Upsilon((-1)^{m+1} A)\}.$

$$= \frac{1}{2} \{q^{2m}(q-1) - q^m(q-1) \Upsilon((-1)^{m+1} A)\}.$$
Then $N_E(L_n) = \frac{1}{2} \{q^{2m} - q^m \Upsilon((-1)^{m+1} A)\}.$
For $n = 2m$, $(q-1)N_E(L_n) = \frac{1}{2} \{q^{2m} - q^{2m-1} - q^m (q-1) \Upsilon((-1)^m A)\}.$

$$= \frac{1}{2} \{q^{2m-1}(q-1) - q^m (q-1) \Upsilon((-1)^m A)\}.$$
Then $N_E(L_n) = \frac{1}{2} \{q^{2m-1} - q^m \Upsilon((-1)^m A)\}.$

For
$$n = 2m+1$$
, $(q-1)N_I(L_n) = \frac{1}{2} \{ q^{2m+1} - q^{2m} - q^{m}(q-1) \Upsilon((-1)^{m+1}A) \}$

$$= \frac{1}{2} \{ q^{2m}(q-1) - q^{m}(q-1) \Upsilon((-1)^{m+1}A) \}.$$
Then $N_I(L_n) = \frac{1}{2} \{ q^{2m} - q^{m} \Upsilon((-1)^{m+1}A) \}.$

Hence we have the following theorem.

4

5.3 Theorem. (L.Carlitz [2, Theorem 1]). Let Q_n denote the nonsingular quadric defined by

$$a_0 x_0^2 + a_1 x_1^2 + \cdots + a_n x_n^2 = 0$$

and let L denote the hyperplane

$$b_0 x_0 + b_1 x_1 + \cdots + b_n x_n = 0$$

Furthermore, let A and B be defined as in (5-6). If $N_E(L_n)$ denotes the number of points of L_n in the exterior of Q_n and $N_I(L_n)$ denotes the number of points of L_n in the interior of Q_n then we have, when $B \neq 0$,

$$N_{E}(L_{n}) = \begin{cases} \frac{1}{2} \left\{ q^{2m-1} - q^{m-1} \Psi((-1)^{m}AB) \right\} & \text{if } n = 2m, \\ \frac{1}{2} \left\{ q^{2m'} + q^{m'} \Psi((-1)^{m'}AB) \right\} & \text{if } n = 2m+1; \end{cases}$$

$$N_{I}(L_{n}) = \begin{cases} \frac{1}{2} \left\{ q^{2m-1} - q^{m-1} \Psi((-1)^{m}AB) \right\} & \text{if } n = 2m, \\ \frac{1}{2} \left\{ q^{2m'} - q^{m'} \Psi((-1)^{m}AB) \right\} & \text{if } n = 2m+1. \end{cases}$$

When B = 0, we have

$$\begin{split} N_{\mathbf{E}}(\mathbf{L_n}) &= \begin{cases} \frac{1}{2} \left\{ \mathbf{q}^{2m-1} + \mathbf{q}^m \ \Psi((-1)^m \mathbf{A}) \right\} & \text{if } n = 2m, \\ \frac{1}{2} \left\{ \mathbf{q}^{2m'} - \mathbf{q}^{m'} \ \Psi((-1)^{m'+1} \mathbf{A}) \right\} & \text{if } n = 2m'+1; \\ N_{\mathbf{I}}(\mathbf{L_n}) &= \begin{cases} \frac{1}{2} \left\{ \mathbf{q}^{2m-1} - \mathbf{q}^m \ \Psi((-1)^m \mathbf{A}) \right\} & \text{if } n = 2m, \\ \frac{1}{2} \left\{ \mathbf{q}^{2m'} - \mathbf{q}^{m'} \ \Psi((-1)^{m'+1} \mathbf{A}) \right\} & \text{if } n = 2m'+1. \end{cases} \end{split}$$

As immediate consequences of Theorem 5.3, we obtain the following theorems.

5.4 Theorem. With the notation of Theorem 5.3 we have $N_E(L_n) = N_I(L_n)$ when $B \neq 0$ and n = 2m or B = 0 and n = 2m+1. In the remaining cases $N_E(L_n) + N_I(L_n) = q^{n-1}$.

5.5 Theorem. $N_E(L_n) = 0$ if and only if one of the following conditions holds.

(i)
$$B \neq 0$$
, $n = 1$ and $\Psi(AB) = -1$;

(ii)
$$B = 0$$
, $n = 1$ and $\Psi(-A) = +1$;

(iii)
$$B = 0$$
, $n = 2$ and $\Psi(-A) = -1$.

 $N_{I}(L_{n}) = 0$ if and only if one of the following conditions is satisfied.

(i)
$$B \neq 0$$
, $n = 1$ and $\Psi(AB) = +1$;

(ii)
$$B = 0$$
, $n = 1$ and $\Psi(-A) = +1$;

(iii)
$$B = 0$$
, $n = 2$ and $\Psi(-A) = +1$.

5.6 Theorem. Let N_E denote the number of points in the exterior of Q_n . Let P be the number of solutions of the equation

(5-24)
$$\Upsilon(a_0x_0^2 + a_1x_1^2 + \cdots + a_nx_n^2) = +1.$$

Then $P = (q-1)N_E$.

Y

Proof. Let $x = (x_0, x_1, \dots, x_n)$ be a point in the exterior of Q_n . Then we get $\Psi(a_0x_0^2 + a_1x_1^2 + \dots + a_nx_n^2) = +1$. Given β be any non-zero element of F and let $\beta x = (\beta x_0, \beta x_1, \dots, \beta x_n)$, then $\Psi(a_0(\beta x_0)^2 + a_1(\beta x_1)^2 + \dots + a_n(\beta x_n)^2) = \Psi(\beta^2(a_0x_0^2 + a_1x_1^2 + \dots + a_nx_n^2)) = +1$. Hence βx is a solution of (5-24). Also, it is clear that any solution of (5-24) is of the form $\beta x = (\beta x_0, \beta x_1, \dots, \beta x_n)$ where (x_0, x_1, \dots, x_n) is in the exterior of Q_n . Since the number of non-zero elements in F is (q-1), we therefore have $(q-1)N_E = P$. Similarly, we obtain

5.7 Theorem. The number of solutions of the equation

$$\Psi(a_0x_0^2 + a_1x_1^2 + \dots + a_nx_n^2) = -1$$

is $(q-1)N_{I}$, where N_{I} denotes the number of points in the interior of Q_{n} .

Let N be the number of solutions of

$$a_0 x_0^2 + a_1 x_1^2 + \cdots + a_n x_n^2 = 1.$$

It follows that $N_E = N/2$. For if $x = (x_0, x_1, \dots, x_n)$ is a solution of (5-25), then $\theta x = (\theta x_0, \theta x_1, \dots, \theta x_n)$ where $\theta \in F$ is also a solution of (5-24). Thus for every two solutions $\frac{1}{2}x = (\frac{1}{2}x_0, \frac{1}{2}x_1, \dots, \frac{1}{2}x_n)$ of (5-25), there are (q-1) solutions of (5-24). Conversely, any solution of (5-24) is of the form θx , where x is a solution of (5-25)

and 0 \in F. Thus P = N(q-1)/2. Consequently, by Theorem 5.6 we have $N_E = \frac{P}{q-1} = \frac{N}{2}$.

Similarly, N_T is half the number of solutions of

$$a_0 x_0^2 + a_1 x_1^2 + \cdots + a_n x_n^2 = \mu$$

where µ is a fixed non-square of F.

By Theorem 4.6, we have therefore the following result.

5.8 Theorem. If Q_n denotes a non-singular quadric of discriminant A, that is, $A = a_0 a_1 \cdots a_n$, then

$$N_{E} = \begin{cases} \frac{1}{2} \left\{ q^{2m} + q^{m} \Psi ((-1)^{m} A) \right\} & \text{if } n = 2m, \\ \frac{1}{2} \left\{ q^{2m+1} - q^{m} \Psi ((-1)^{m+1} A) \right\} & \text{if } n = 2m+1; \end{cases}$$

$$N_{I} = \begin{cases} \frac{1}{2} \left\{ q^{2m} - q^{m} \Psi ((-1)^{m} A) \right\} & \text{if } n = 2m, \\ \frac{1}{2} \left\{ q^{2m+1} - q^{m} \Psi ((-1)^{m+1} A) \right\} & \text{if } n = 2m+1; \end{cases}$$

where m' = m-1.

1

5.9 Theorem. With the notation of Theorem 5.8 we have $N_E = N_I$ when n is odd and $N_E + N_I = q^n$ when n is even.