CHAPTER V

APPLICATIONS TO GEOMETRY

In this chapter, we apply the results in previous chapters to solve some problems in geometry. The main results in this chapter are due to L.Carlitz (see [2].). However, for the proof of the main results we follow the method considered in F.R.Jung [7] for the problem of similar nature. Throughout this chapter, F denotes a finite field of odd order q and of odd characteristic p.

The results of Corollary 4.8 lead to the following theorems.
5.1 Theorem. Let S_{n} denote an n-dimensional affine space with F as base field. If $n \geqslant 4$, there are no hyperplanes of S_{n} contained in the complement of the quadric $Q_{n}(a)$ defined by

$$
\left.a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=a^{2} \neq a_{1} \ldots a_{n} \neq 0\right)
$$

Proof. By the first statement of Corollary 4.8, a hyperplane L_{n-1} (b) of S_{n} defined by

$$
b_{1} x_{1}+\ldots+b_{n} x_{n}=b
$$

always has a common point with $Q_{n}(a)$ if $n \geqslant 4$. Therefore if $n \geqslant 4$, there are no hyperplanes of S_{n} contained in the complement of $Q_{n}(a)$.
5.2 Theorem. Let T_{n} denote an n-dimensional projective space with base field F. If $n \geqslant 3$, a quadric Q_{n} of T_{n} defined by

$$
\begin{equation*}
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=0 \quad\left(a_{0} a_{1} \ldots a_{n} \neq 0\right) \tag{5-1}
\end{equation*}
$$

has at least one point in common with a given hyperplane,

$$
\begin{equation*}
L_{n}: b_{0} x_{0}+b_{1} x_{1}+\ldots+b_{n} x_{n}=0 \tag{5-2}
\end{equation*}
$$

Proof. Since Q_{n} has a point in common with L_{n} if and only if $N_{s, n+1}(0,0)>1$, the theorem follows from the second assertion of Corollary 4.8.

Let Q_{n} denote the quadric of T_{n} defined by (5-1). By a quadric, we shall mean a diagonal quadric; there is no loss in generality in making such an assumption (for example, see L.E.Dickson [5, \$§168]). If $\Psi(a)$ denotes the Legendre symbol in F, that is, $\psi(a)=-1,-1$, or 0 according as a is a square, a non-square or zero in F, then we define the exterior of Q_{n} as the set of points ($x_{0}, x_{1}, \ldots, x_{n}$) of T_{n} such that

$$
\psi\left(Q_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)=+1,
$$

where $Q_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}$. Similarly, the interior of Q_{n} is the set of points of T_{n} such that

$$
\psi\left(Q_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)=-1
$$

For a given hyperplane L_{n} defined by

$$
b_{0} x_{0}+b_{1} x_{1}+\ldots+b_{n} x_{n}=0
$$

where at least one of the b_{j} is non-zero, we let $N_{E}\left(L_{n}\right)$ denote the number of points of L_{n} in the exterior of Q_{n} and $N_{I}\left(L_{n}\right)$ the number of points of L_{n} in the interior of Q_{n}. The numbers $N_{E}\left(L_{n}\right)$ and $N_{I}\left(L_{n}\right)$ are determined explicitly in Theorem 5.3. Moreover, we find as a direct consequence of Theorem 5.3 that $N_{E}\left(L_{n}\right)=N_{I}\left(L_{n}\right)$ or $N_{E}\left(L_{n}\right)+N_{I}\left(L_{n}\right)=q^{n-1}$. Finally, we determine the number of points
in the interior and in the exterior of Q_{n} (see Theorem 5.8).
We consider the sum
$(5-3)$

$$
S=\sum \psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)
$$

where the summation is over all $x_{i} \in F$ such that

$$
\begin{equation*}
b_{0} x_{0}+b_{1} x_{1}+\ldots+b_{n} x_{n}=0 \tag{5-4}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
S=\sum_{a \in F} \psi(a) \nabla(a), \tag{5-5}
\end{equation*}
$$

where $N(a)$ denotes the number of solutions of the system of equations

$$
\begin{aligned}
& a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=a \\
& b_{0} x_{0}+b_{1} x_{1}+\ldots+b_{n} x_{n}=0
\end{aligned}
$$

If $\xi(a)=-1$ or $q-1$ according as $a \neq 0$ or $a=0$, and if

$$
\begin{equation*}
A=a_{0} a_{1} \ldots a_{n}, B=\sum_{i=0}^{n} \frac{b_{i}^{2}}{a_{i}} \tag{5-6}
\end{equation*}
$$

then by Theorem 4.7, we obtain $N(a)$ as follows.
Case 1. ($B \neq 0=D$).

$$
N_{s, t}(a, 0)= \begin{cases}q^{t-2}+q^{k-1}(q-1)^{\mu}\left((-1)^{k} A B\right) & \text { if } t=2 k+1 \\ q^{t-2} & \text { if } t=2 k\end{cases}
$$

Using $t=n+1$ and put $k=m$, we get

$$
N(a)= \begin{cases}q^{2 m-1}+q^{m-1}(q-1) \psi\left((-1)^{m} A B\right) & \text { if } n=2 m \\ q^{2 m^{\prime}} & \text { if } n=2 m^{\prime}+1\end{cases}
$$

where $\mathrm{m}^{\prime}=\mathrm{m}-1$.

Case 2. $\quad(B \neq 0 \neq D)$.

$$
N_{s, t}(a, 0)= \begin{cases}q^{t-2}-q^{k-1} \psi\left((-1)^{k_{A B}}\right) & \text { if } t=2 k+1 \\ q^{t-2}+q^{k-1} \psi\left((-1)^{k_{A D}}\right) & \text { if } t=2 k\end{cases}
$$

Since $D=-a B$, we get

$$
N(a)= \begin{cases}q^{2 m-1}-q^{m-1} \psi\left((-1)^{m} A B\right) & \text { if } n=2 m \\ q^{2 m^{\prime}+q^{m^{\prime}} \psi\left((-1)^{m^{\prime}} a A B\right)} & \text { if } n=2 m^{\prime}+1\end{cases}
$$

Case 3. ($B=0=a$).

$$
N_{s, t}(a, 0)= \begin{cases}q^{t-2}+q^{k-1}(q-1) \psi\left((-1)^{k_{A}}\right) & \text { if } t=2 k \\ q^{t-2} & \text { if } t=2 k+1\end{cases}
$$

Consequently,

$$
\begin{aligned}
& N(a)= \begin{cases}q^{2 m^{\prime}+q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}+1} A\right)} & \text { if } n=2 m^{\prime}+1, \\
q^{2 m-1} & \text { if } n=2 m .\end{cases} \\
& \text { Case 4. }(B=0 \neq a) . \\
& N_{s, t}(a, 0)= \begin{cases}q^{t-2}-q^{k-1} \psi\left((-1)^{k} A\right) & \text { if } t=2 k, \\
q^{t-2}+q^{k} \psi\left((-1)^{k} a A\right) & \text { if } t=2 k+1 .\end{cases}
\end{aligned}
$$

Consequently,

$$
N(a)= \begin{cases}q^{2 m^{\prime}}-q^{m^{\prime}} \psi\left((-1)^{m^{\prime}+1} A\right) & \text { if } n=2 m^{\prime}+1 \\ q^{2 m-1}+q^{m} \psi\left((-1)^{m} a A\right) & \text { if } n=2 m\end{cases}
$$

Thus when $B \neq 0$, it follows from Case 1 and 2 that.
(5-7) $N(a)= \begin{cases}q^{2 m-1}+q^{m-1} \psi\left((-1)^{m} A B\right) \xi(a) & \text { if } n=2 m, \\ q^{2 m^{\prime}+q^{\prime}} m^{\prime} \psi\left((-1)^{m^{\prime}} a A B\right) & \text { if } n=2 m^{\prime}+1 .\end{cases}$
Substituting from (5-7) in (5-5) we get, when $B \neq 0$,

$$
(5-8) \quad S= \begin{cases}0 & \text { if } n=2 m \\ q^{\prime}(q-1) \psi\left((-1)^{\prime} m_{A B}^{\prime}\right) & \text { if } n=2 m^{\prime}+1\end{cases}
$$

When $B=0$, it follows from Case 3 and 4 that
(5-9) $N(a)= \begin{cases}q^{2 m-1}+q^{m} \psi\left((-1)^{m} a A\right) & \text { if } n=2 m, \\ q^{\left.2 m^{\prime}+q^{m^{\prime}} \psi\left((-1)^{m^{\prime}+1} A\right)\right\}(a)} & \text { if } n=2 m^{\prime}+1 .\end{cases}$
It follows that, when $B=0$,
$(5-10) S= \begin{cases}q^{m}(q-1) \psi\left((-1)^{m} A\right) & \text { if } n=2 m, \\ 0 & \text { if } n=2 m^{\prime}+1 .\end{cases}$
Let $N_{E}^{\prime}\left(L_{n}\right)$ denote the number of solutions $x_{0}, x_{1}, \ldots, x_{n}$ of
(5-11)

$$
b_{0} x_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}=0
$$

such that $\psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)=+1 /$ and $N_{I}^{\prime}\left(L_{n}\right)$ denote the number of solutions of $(5-11)$ such that $\psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)=-1$.

Then it is clear that
(5-12) $\quad N_{E}^{\prime}\left(L_{n}\right)=\frac{1}{2} \sum\left\{1+\Psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)\right\}-\frac{1}{2} M$,

$$
\begin{equation*}
N_{I}^{\prime}\left(L_{n}\right)=\frac{1}{2} \sum\left\{1-\psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)\right\}-\frac{1}{2} M \tag{5-13}
\end{equation*}
$$

where in each case the summation is over all $x_{0}, x_{1}, \ldots, x_{n}$ that satisfy (5-11) and M is the number of solutions of the system of equations

$$
\left\{\begin{array}{l}
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=0 \tag{5-14}\\
b_{0} x_{0}+b_{1} x_{1}+\ldots+b_{n} x_{n}=0
\end{array}\right.
$$

In view of $(5-3),(5-12)$ and $(5-13)$ may be replaced by

$$
\begin{equation*}
N_{E}^{\prime}\left(L_{n}\right)=\frac{1}{2}\left(q^{n}+S-M\right) \tag{5-15}
\end{equation*}
$$

$$
\begin{equation*}
N_{I}^{\prime}\left(L_{n}\right)=\frac{1}{2}\left(q^{n}-S-M\right) \tag{5-16}
\end{equation*}
$$

The number M is determined by using Theorem 4.7 or can be easily obtained from (5-7) and (5-9). Therefore when $B \neq 0$,
(5-17) $M= \begin{cases}q^{2 m-1}+q^{m-1}(q-1) & \psi\left((-1)^{m} A B\right) \\ q^{2 m^{\prime}} & \text { if } n=2 m, \\ & \text { if } n=2 m^{\prime}+1 ;\end{cases}$
when $B=0$ we have
(5-18) $M= \begin{cases}q^{2 m-1} & \text { if } n=2 m, \\ q^{2 m^{\prime}}+q^{m}(q-1) \psi\left((-1)^{m+1} A\right) & \text { if } n=2 m^{\prime}+1 .\end{cases}$
If follows from $(5-8)$ and $(5-17)$ that when $B \neq 0$
(5-19) $\quad S+M= \begin{cases}q^{2 m-1}+q^{m-1}(q-1) \psi\left((-1)^{m} A B\right) & \text { if } n=2 m, \\ q^{2 m^{\prime}}+q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}} A B\right) & \text { if } n=2 m^{\prime}+1,\end{cases}$
(5-20) $\quad S-M= \begin{cases}-q^{2 m-1}-q^{m-1}(q-1) \psi\left((-1)^{m} A B\right) & \text { if } n=2 m, \\ -q^{2 m^{\prime}}+q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}} A B\right) & \text { if } n=2 m^{\prime}+1 ;\end{cases}$
when $B=0$ we get using ($5-10$) and ($5-18$)
(5-21) $S+M= \begin{cases}q^{2 m-1}+q^{m}(q-1) \psi\left((-1)^{m} A\right) & \text { if } n=2 m,\end{cases}$
(5-22) $\quad S-M=\left\{\begin{array}{cl}-q^{2 m-1}+q^{m}(q-1) \psi\left((-1)^{m} A\right) & \text { if } n=2 m, \\ 2 m^{\prime},\end{array}\right.$

$$
-q^{2 m^{\prime}}-q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}+1} A\right) \quad \text { if } n=2 m^{\prime}+1
$$

From the definition of $N_{E}\left(L_{n}\right), N_{I}\left(L_{n}\right), N_{E}^{\prime}\left(L_{n}\right)$ and $N_{I}^{\prime}\left(L_{n}\right)$ it is clear that
(5-23)

$$
N_{E}^{\prime}\left(L_{n}\right)=(q-1) N_{E}(L / n), N_{I}^{\prime}\left(L_{n}\right)=(q-1) N_{I}\left(L_{n}\right) .
$$

Thus substituting from $(5-19),(5-20),(5-21)$ and $(5-22)$ in $(5-15)$ and (5-16) we obtain the explicit values of $N_{E}\left(I_{n}\right)$ and $N_{I}\left(I_{n}\right)$ as follows.

Case $B \neq 0$.

For $n=2 m, \quad(q-1) N_{E}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m}-q^{2 m-1}-q^{m-1}(q-1) \psi\left((-1)^{m} A B\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m-1}(q-1)-q^{m-1}(q-1) \psi\left((-1)^{m} A B\right)\right\} .
$$

Then $N_{E}\left(L_{n}\right) \quad=\frac{1}{2}\left\{q^{2 m-1}-q^{m-1} \psi\left((-1)^{m} A B\right)\right\}$.
For $n=2 m^{\prime}+1, \quad(q-1) N_{E}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m^{\prime}+1}-q^{2 m^{\prime}}+q^{m^{\prime}}(q-1) \sim\left((-1)^{m^{\prime}} A B\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m^{\prime}}(q-1)+q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}} A B\right)\right\}
$$

Then $\quad N_{E}\left(L_{n}\right)$

$$
=\frac{1}{2}\left\{q^{2 m^{\prime}}+q^{m^{\prime}} \psi\left((-1)^{m^{\prime}} A B\right)\right\}
$$

For $n=2 m, \quad(q-1) N_{I}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m}-q^{2 m-1}-q^{m-1}(q-1) \psi\left((-1)^{m} A B\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m-1}(q-1)-q^{m-1}(q-1) \psi\left((-1)^{m} A B\right)\right\}
$$

Then $N_{I}\left(L_{n}\right) \quad=\frac{1}{2}\left\{q^{2 m-1}-q^{m-1} \psi\left((-1)^{m} A B\right)\right\}$.
For $n=2 m^{\prime}+1, \quad(q-1) N_{I}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m^{\prime}+1}-q^{2 m^{\prime}-q^{m^{\prime}}(q-1)} \psi\left((-1)^{m^{\prime}} A B\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m^{\prime}}(q-1)-q^{m^{\prime}}(q-1) \Psi\left((-1)^{m^{\prime}} A B\right)\right\}
$$

Then $N_{I}\left(I_{n}\right)=\frac{1}{2}\left\{q^{2 m^{\prime}}-q^{m^{\prime}} \psi\left((-1)^{m^{\prime}} A B\right)\right\}$.
Case B $=0$.
For $n=2 m, \quad(q-1) N_{E}\left(L_{n}\right) \quad=\frac{1}{2}\left\{q^{2 m}-q^{2 m-1}+q^{m}(q-1) \psi\left((-1)^{m} A\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m-1}(q-1)+q^{m}(q-1) \psi\left((-1)^{m} A\right)\right\}
$$

Then $N_{E}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m-1}+q^{m} \psi\left((-1)^{m} A\right)\right\}$.
For $n=2 m^{\prime}+1, \quad(q-1) N_{E}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m^{\prime}+1}-q^{2 m^{\prime}}-q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}+1} A\right)\right\}$

$$
\text { CHULALON }=\frac{1}{2}\left\{q^{2 m^{\prime}}(q-1)-q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}+1} A\right)\right\}
$$

Then $N_{E}\left(L_{n}\right) \quad=\frac{1}{2}\left\{q^{2 m^{\prime}}-q^{m^{\prime}} \psi\left((-1)^{m^{\prime}+1} A\right)\right\}$.
For $n=2 m, \quad(q-1) N_{T}\left(L_{n}\right)=\frac{1}{2}\left\{q^{2 m}-q^{2 m-1}-q^{m}(q-1) \psi\left((-1)^{m} A\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m-1}(q-1)-q^{m}(q-1) \Psi\left((-1)^{m} A\right)\right\}
$$

Then $N_{I}\left(L_{n}\right) \quad=\frac{1}{2}\left\{q^{2 m-1}-q^{m} \psi\left((-1)^{m} A\right)\right\}$.

For $n=2 m^{\prime}+1, \quad(q-1) N_{I}\left(I_{n}\right)=\frac{1}{2}\left\{q^{2 m^{\prime}+1}-q^{2 m^{\prime}}-q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}+1} A\right)\right\}$

$$
=\frac{1}{2}\left\{q^{2 m^{\prime}}(q-1)-q^{m^{\prime}}(q-1) \psi\left((-1)^{m^{\prime}+1} A\right)\right\}
$$

Then $N_{I}\left(L_{n}\right)$

$$
=\frac{1}{2}\left\{q^{2 m^{\prime}}-q^{m^{*}} \psi\left((-1)^{m^{\prime}+1} A\right)\right\}
$$

Hence we have the following theorem.
5.3 Theorem. (L.Carlitz [2, Theorem 1]). Let Q_{n} denote the nonsingular quadric defined by

$$
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=0
$$

and let L_{n} denote the hyperplane

$$
b_{0} x_{0}+b_{1} x_{1}+\cdots+b_{n} x_{n}=0
$$

Furthermore, let A and B be defined as in (5-6). If $N_{E}\left(L_{n}\right)$ denotes the number of points of I_{n} in the exterior of Q_{n} and $N_{I}\left(L_{n}\right)$ denotes the number of points of I_{n} in the interior of Q_{n} then we have, when $B \neq 0$,

$$
\begin{aligned}
& N_{E}\left(L_{n}\right)= \begin{cases}\frac{1}{2}\left\{q^{2 m-1}-q^{m-1} \psi\left((-1)^{m} A B\right)\right\} & \text { if } n=2 m \\
\frac{1}{2}\left\{q^{2 m^{\prime}}+q^{m^{\prime}} \psi\left((-1)^{m^{\prime}} A B\right)\right\} & \text { if } n=2 m^{\prime}+1\end{cases} \\
& N_{I}\left(L_{n}\right)= \begin{cases}\frac{1}{2}\left\{q^{2 m-1}-q^{m-1} \psi\left((-1)^{m} A B\right)\right\} & \text { if } n=2 m \\
\frac{1}{2}\left\{q^{\left.2 m^{\prime}-q^{m^{\prime}} \psi\left((-1)^{m^{\prime}} A B\right)\right\}}\right. & \text { if } n=2 m^{\prime}+1\end{cases}
\end{aligned}
$$

When $B=0$, we have

$$
\begin{aligned}
& N_{E}\left(L_{n}\right)= \begin{cases}\frac{1}{2}\left\{q^{2 m-1}+q^{m} \psi\left((-1)^{m} A\right)\right\} & \text { if } n=2 m \\
\frac{1}{2}\left\{q^{2 m^{\prime}}-q^{m^{\prime}} \psi\left((-1)^{m^{\prime}+1} A\right)\right\} & \text { if } n=2 m^{\prime}+1\end{cases} \\
& N_{I}\left(L_{n}\right)= \begin{cases}\frac{1}{2}\left\{q^{2 m-1}-q^{m} \psi\left((-1)^{m} A\right)\right\} & \text { if } n=2 m \\
\frac{1}{2}\left\{q^{2 m^{\prime}-q^{\prime}} m^{\prime} \psi\left((-1)^{m^{\prime}+1} A\right)\right\} & \text { if } n=2 m^{\prime}+1\end{cases}
\end{aligned}
$$

As immediate consequences of Theorem 5.3 , we obtain the following theorems.
5.4 Theorem. With the notation of Theorem 5.3 we have $N_{E}\left(I_{n}\right)=N_{I}\left(L_{n}\right)$ when $B \neq 0$ and $n=2 m$ or $B=0$ and $n=2 m^{\prime}+1$. In the remaining cases $N_{E}\left(L_{n}\right)+N_{I}\left(L_{n}\right)=q^{n-1}$.
5.5 Theorem. $N_{E}\left(L_{n}\right)=0$ if and only if one of the following conditions holds.
(i) $B \neq 0, n=1$ and $\psi(A B)=-1$;
(ii) $B=0, n=1$ and $\psi(-A)=+1$;
(iii) $B=0, n=2$ and $\psi(-A)=-1$.
$N_{I}\left(L_{n}\right)=0$ if and only if one of the following conditions is satisfied.
(i) $B \neq 0, n=1$ and $\psi(A B)=+1$;
(ii) $B=0, n=1$ and $\psi(-A)=+1$;
(iii) $B=0, n=2$ and $\psi(-A)=+1$.
5.6 Theorem. Let N_{E} denote the number of points in the exterior of Q_{n}. Let p be the number of solutions of the equation

$$
\begin{equation*}
\psi^{\prime}\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}\right)=+1 \tag{5-24}
\end{equation*}
$$

Then $P=(q-1) N_{E}$.
Proof. Let $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a point in the exterior of Q_{n}. Then we get $\psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)=+1$. Given β be any nonzero element of F and let $\beta x=\left(\beta x_{0}, \beta x_{1}, \ldots, \beta x_{n}\right)$, then $\psi\left(a_{0}\left(\beta x_{0}\right)^{2}+a_{1}\left(\beta x_{1}\right)^{2}+\ldots+a_{n}\left(\beta x_{n}\right)^{2}\right)=\psi\left(\beta^{2}\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}\right)\right)$ $=+1$. Hence βx is a solution of $(5-24)$. Also, it is clear that any solution of (5-24) is of the form $\beta x=\left(\beta x_{0}, \beta x_{1}, \ldots, \beta x_{n}\right)$ where $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is in the exterior of Q_{n}. Since the number of non-zero elements in F is $(q-1)$, we therefore have $(q-1) N_{E}=P$. Similarly, we obtain
5.7 Theorem. The number of solutions of the equation

$$
\psi\left(a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}\right)=-1
$$

is ($q-1) N_{I}$, where N_{I} denotes the number of points in the interior of Q_{n}.

Let N be the number of solutions of

$$
\begin{equation*}
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=1 \tag{5-25}
\end{equation*}
$$

It follows that $N_{E}=N / 2$. For if $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is a solution of $(5-25)$, then $\theta x=\left(\theta x_{0}, \theta x_{1}, \ldots, \theta x_{n}\right)$ where $\theta \in F^{*}$ is also a solution of (5-24). Thus for every two solutions $\pm{ }^{+}=\left(\pm x_{0}, \pm x_{1}, \ldots, \pm x_{n}\right)$ of (5-25), there are ($q-1$) solutions of (5-24). Conversely, any solution of (5-24) is of the form $6 x$, whore x is a solution of $(5-25)$
and $\theta \in F^{*}$. Thus $P=N(q-1) / 2$. Consequently, by Theorem 5.6 we have $N_{E}=\frac{P}{q-1}=\frac{N}{2}$.

Similarly, N_{I} is half the number of solutions of

$$
a_{0} x_{0}^{2}+a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=\mu
$$

where μ is a fixed non-square of F.
By Theorem 4.5, we have therefore the following result.
5.8 Theorem. If Q_{n} denotes a nonmsingular quadric of discriminant A, that is, $A=a_{0} a_{1} \ldots a_{n}$ then

$$
\begin{aligned}
& N_{E}= \begin{cases}\frac{1}{2}\left\{q^{2 m}+q^{m} \psi\left((-1)^{m} A\right)\right\} & \text { if } n=2 m \\
\frac{1}{2}\left\{q^{2 m^{\prime}+1}-q^{m} \psi\left((-1)^{m^{\prime}+1} A\right)\right\} & \text { if } n=2 m^{\prime}+1 ;\end{cases} \\
& N_{I}= \begin{cases}\frac{1}{2}\left\{q^{2 m}-q^{m} \Psi\left((-1)^{m} A\right)\right\} & \text { if } n=2 m \\
\frac{1}{2}\left\{q^{2 m^{\prime}+1}-q^{m^{\prime}} \psi\left((-1)^{m^{\prime}+1} A\right)\right\} & \text { if } n=2 m^{\prime}+1 ;\end{cases}
\end{aligned}
$$

where $m^{\prime}=m-1$.
5.9 Theorem. With the notation of Theorem 5.8 we have $N_{E}=N_{I}$ when n is odd and $N_{E}+N_{I}=q^{n}$ when n is even.

