THE NUMBER OF SOLUTIONS OF A SYSTEM OF LINEAR AND QUADRATIC EQUATIONS OVER A FINITE FIELD

Let F denote a finite field of order q and characteristic p, and let $a, b, a_{i}, b_{i}(1 \leqslant i \leqslant t)$ denote elements of F such that $a_{1} \ldots a_{t} \neq 0$ and such that exactly s of the elements b_{i} are $\neq 0$ where $1 \leqslant s \leqslant t$. In this chapter, we determine the number $N_{s}, t(a, b)$ of solutions in F of the system of equations,

$$
\left\{\begin{array}{l}
a=a_{1} x_{1}^{2}+\cdots+a_{t} x_{t}^{2} \tag{4-1}\\
b=b_{1} x_{1}+\cdots+b_{t} x_{t}
\end{array}\right.
$$

The method of evaluating $N_{s, t}(a, b)$ is based upon an elementary application of exponential sums.

We introduce some notations and list some known results that are needed in the sequel. For an element a of F, let $t(a)$ denote the trace of a , that is,

$$
t(a)=a+a^{p}+\ldots+a^{p^{r-1}}, \quad q=p^{r}
$$

and define

$$
e(a)=\exp (2 \pi \dot{t}(a) / p)
$$

It follows at once that

$$
\begin{equation*}
e(a+b)=e(a) e(b) \tag{4-2}
\end{equation*}
$$

In particular $e(0)=1$. For arbitrary a, b, in F put
$(4-3)$
$S(a, b)=\sum_{x \in F} e\left(a x^{2}+2 b x\right)$,
and let $G(a)=S(a, 0)$.
4.1 Lemma. For $a, b \in F$,
(4-4) $S(a, b)= \begin{cases}e\left(-b^{2} / a\right) G(a) \quad & \text { if } a \neq 0 \neq b, \\ \frac{q}{0} & \text { if } a=0=b, \\ \text { if } a=0 \neq b .\end{cases}$
Proof. For $a=0=b$, the second of $(4-4)$ is obvious. Assume $a \neq 0 \neq b$. We have

$$
\begin{aligned}
S(a, b) & =\sum_{x \in F} e\left(a x^{2}+2 b x\right) \\
& =\sum_{x \in F} e\left(a\left(x^{2}+\frac{2 b x}{a}+\frac{b^{2}}{a^{2}}-\frac{b^{2}}{a^{2}}\right)\right) \\
& =\sum_{x \in F} e\left(a\left(x+\frac{b}{a}\right) e\left(-\frac{b^{2}}{a}\right)\right. \\
& =e\left(-\frac{b^{2}}{a}\right) \sum_{x \in F} e\left(a\left(x+\frac{b}{a}\right)^{2}\right) \\
& =e\left(-b^{2} / a\right) G(a) .
\end{aligned}
$$

Finally, we assume that $\mathrm{a}=0 \neq \mathrm{b}$. Then there exists an element d in F such that $t(2 b d) \neq 0$; for example we may take $d=1 / 2 b$, so that $t(2 b d)=t(1)=r$. Hence for such d it is evident that $e(2 b d) \neq 1$. Now by $(4-2)$ we have

$$
e(2 b d) \sum_{x \in F} e(2 b x)=\sum_{x \in F} e(2 b(x+d))=\sum_{x \in F} e(2 b x) .
$$

or

$$
(e(2 b d)-1) \sum_{x \in F} e(2 b x)=0 .
$$

Since $e(2 b d) \neq 1, \sum_{x \in F} e(2 b x)=0$. Hence by the definition (4-3), the third of (4-4) is proved.
4.2 Lemma. Let a be a nonzero element in F. Then

$$
\begin{equation*}
G(a)=\uparrow(a) G(1), \tag{4-5}
\end{equation*}
$$

where $\Psi(a)$ denotes the Legendre symbol in F, that is $, \Psi(a)=+1,-1$ or O according as a is a square, a non -square or zero in F.

Proof. From (4-3), we get

$$
G(a)=\sum_{x \in F} e\left(a x^{2}\right) .
$$

The sum

$$
T_{a}=\sum_{x \in F} \psi(x) e(2 a x)=\sum_{x_{1}} e\left(2 a x_{1}\right)-\sum_{x_{2}} e\left(2 a x_{2}\right),
$$

where x_{1} runs through the squares $\neq 0$ of F and x_{2} runs through the non-squares. On the other hand, for $a \neq 0$, the third of (4-4) implies

$$
1+\sum_{x_{1}} e\left(2 a x_{1}\right)+\sum_{x_{2}} e\left(2 a x_{2}\right)=0
$$

so that

$$
T_{a}=1+2 \sum_{x_{1}} e\left(2 a x_{1}\right)=G(a) ;
$$

hence T_{a} and $G(a)$ are identical for $a \neq 0$.
In the next place if $a=d^{2}, d \neq 0$, then we have

$$
T_{a}=\sum_{x \in F} \psi(x) e\left(2 d^{2} x\right)=\sum_{x_{1}} e\left(2 d^{2} x_{1}\right)-\sum_{x_{2}} e\left(2 d^{2} x_{2}\right)
$$

and

$$
T_{1}=\sum_{x \in F} \psi(x) e(2 x)=\sum_{x_{1}} e\left(2 x_{1}\right)-\sum_{x_{2}} e\left(2 x_{2}\right)
$$

Thus we get $T_{a}=T_{1}$. If a is a non-square, then

$$
T_{a}=\sum_{x \in F} \Psi(x) e(2 a x)=\sum_{x_{1}} e\left(2 a x_{1}\right)-\sum_{x_{2}} e\left(2 a x_{2}\right)
$$

where $a x_{1}$ is a non-square in F and $a x_{2}$ is a square in F. Hence we have $T_{a}=-T_{1}$. Now we have proved that $T_{a}=\psi(a) T_{1}$. Since $T_{a}=G(a)$ and $T_{1}=G(1)$, the lemma is now proved.
4.3 Theorem. Let $N_{s, t}(a, b)$ be the number of solutions in F of the system (4-1). Then for all $t \geqslant 1$,
(4-6) $\quad N_{s, t}(a, b)=q^{-2} \sum_{u \in F} \sum_{v \in F} K(u, v) e(-a u) e(-2 b v)$,
where

$$
K(u, v)=\sum_{x_{i} \in F} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}\right)\right) e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}\right)\right) .
$$

Proof. Consider the sum.

$$
\sum_{u \in F} \sum_{v \in F} \sum_{\substack{x_{i} \in F \\ i=1, \ldots t}} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}\right)\right)_{e}\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}\right)\right) e(-a u) e(-2 b v)
$$

For fixed point $\left(x_{1}, \ldots, x_{t}\right) \in F^{t}$ where $F^{t}=F \times F \times \ldots \times F(t$ times $)$, we have

$$
\begin{array}{rl}
\sum_{u \in F} \sum_{v \in F} e & e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}\right)\right) e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}\right)\right) e(-a u) e(-2 b v) \\
& =\sum_{u \in F} \sum_{v \in F} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}-a\right)\right) e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}-b\right)\right)
\end{array}
$$

$$
=\sum_{u \in F} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}-a\right)\right) \sum_{v \in F} e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}-b\right)\right) .
$$

Let $C=\sum_{u \in F} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}-a\right)\right)$ and $D=\sum_{v \in F} e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}-b\right)\right)$.
Then by Lemma 4.1, we have

$$
\begin{aligned}
& C= \begin{cases}q & \text { if }\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}-a\right)=0, \\
0 & \text { if }\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}-a\right) \neq 0 ;\end{cases} \\
& D= \begin{cases}q & \text { if }\left(b_{1} x_{1}+\ldots+b_{t} x_{t}-b\right)=0, \\
0 & \text { if }\left(b_{1} x_{1}+\ldots+b_{t} x_{t}-b\right) \neq 0 .\end{cases}
\end{aligned}
$$

We see that the product of C and D is q^{2} if (x_{1}, \ldots, x_{t}) is a solution of the system (4-1). Otherwise it is zero. So we have

$$
\sum_{\substack{x_{i} \in F \\ i=1, \ldots, t}} C D=q^{2} N, t(a, b)
$$

Hence $N_{s, t}(a, b)$

$$
=q^{-2} \sum_{u \in F} \sum_{v \in F} K(u, v) e(-a u) e(-2 b v) .
$$

where

$$
K(u, v)=\sum_{x_{i} \in F} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}\right)\right) e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}\right)\right)
$$

4.4 Theorem. If $1 \leqslant \mathrm{~s} \leqslant t$, then for all $t \geqslant 1$,
$(4-7)$

$$
N_{s, t}(a, b)=q^{-2}\left\{q^{t}+G^{t}(1) \psi(A) \sum_{u \in F^{*}} \psi^{t}(u) e(-a u) S\left(-\frac{B}{u},-b\right)\right\}
$$

where
(4-8)

$$
A=a_{1} \ldots a_{t} \in F^{*} \text { and } B=\frac{b_{1}^{2}}{a_{1}}+\ldots+\frac{b_{t}^{2}}{a_{t}} .
$$

Proof. There is no loss of generality in supposing b_{1}, \ldots, b_{s} to be in F^{*} and $b_{i}=0(s<i \leqslant t)$. By Theorem 4.3, we have

$$
N_{s, t}(a, b)=q^{-2} \sum_{u \in F} \sum_{v \in F} K(u, v) e(-a u) e(-2 b v),
$$

where

We write

$$
K(u, v)=\sum_{x_{i} \in F} e\left(u\left(a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}\right)\right) e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}\right)\right) .
$$

$$
\begin{equation*}
N_{s, t}(a, b)=\sum_{1}+\sum_{2}, \tag{4-9}
\end{equation*}
$$

where \sum_{1} consists of those terms in the expansion ($4-6$) for which $u=0$ and \sum_{2} those for which $u \neq 0$. We have

$$
\begin{aligned}
& K(0, v)=\sum_{x_{i} \in F} e\left(2 v\left(b_{1} x_{1}+\ldots+b_{t} x_{t}\right)\right) \\
&=1, \ldots, t \\
& i=1, \ldots, t \\
&=\prod_{x_{i} \in F} \prod_{i=1}^{t} \sum_{x_{i} \in F} e\left(2 v b_{i} x_{i}\right) \\
&=\left[\prod_{i=1} S\left(0, \ldots b_{i} x_{i}\right)\right. \\
&i=1, t)] \cdot q^{t-s} .
\end{aligned}
$$

Consequently, by Lemma 4.1, $K(0, v)=0$ if $v \neq 0$ and q^{t} if $v=0$; hence
$(4-10) \quad \sum_{1}=q^{t-2}$.
Now we want to find the value of \sum_{t} but we must first prove that $K(u, v)=\prod_{i=1}^{s} S\left(a_{i} u_{i} b_{i} v\right) \prod_{i=s+1}^{t} G\left(a_{i} u\right)$. By using the formula (4-2), we can rewrite $K(u, v)$ to be

$$
\begin{aligned}
K(u, v) & =\sum_{x_{i=F} \in \prod_{i=1} e\left(u a_{i} x_{i}^{2}+2 v b_{i} x_{i}\right)} \prod_{i=1}^{t} \sum_{i=1, \ldots, t}^{t} \sum_{x_{i} \in F} e\left(a_{i} u x_{i}^{2}+2 b_{i} v x_{i}\right) \\
& =\prod_{i=1}^{t} S\left(a_{i} u, b_{i} v\right) \\
& =\prod_{i=1}^{s} S\left(a_{i} u, b_{i} v\right) \prod_{i=s+1}^{t} S\left(a_{i} u, 0\right) \\
& \prod_{i=1} S\left(a_{i} u, b_{i} v\right) \prod_{i=s+1}^{t} G\left(a_{i} u\right) .
\end{aligned}
$$

It follows that

$$
\sum_{2}=q^{-2} \sum_{\substack{u \in F^{*} \\ v \in F}} e(-(a u+2 b v)) \prod_{i=1}^{s} S\left(a_{i} u, b_{i} v\right) \prod_{i=s+1}^{t} G\left(a_{i} u\right)
$$

By using (4-4) and (4-5), we have

$$
\begin{array}{r}
\sum_{2}=q^{-2} \sum_{u \in F^{*}} e^{(-(a u+2 b v))\left(G^{s}(1) \Psi^{s}(u) \psi\left(A_{1}\right) e\left(-v^{2} B / u\right)\right)} \\
\quad\left(G^{t-s}(1) \psi^{t-s}(u) \psi\left(A_{2}\right)\right),
\end{array}
$$

where $A_{1}=a_{1} \ldots a_{s}, A_{2}=a_{S+1} \ldots a_{t}$ and $B=\frac{b_{1}^{2}}{a_{1}}+\ldots+\frac{b_{t}^{2}}{a_{t}}$. Let $A=A_{1} A_{2}$.
Then we have, since $\psi\left(A_{1}\right) \psi\left(A_{2}\right)=\psi\left(A_{1} A_{2}\right)=\psi(A)$,
(4-11) $\quad \sum_{2}=q^{-2}{ }_{G} t^{t}(1) \Psi(A) \sum_{u \in F^{*}} \psi^{t}(u) e(-a u) S(\underset{u}{-B},-b)$,
and the theorem follows on combining (4-9), (4-10) and (4-11).
4.5 Corrollary. The value of $N_{s, t}(a, b)$ is independent of the value of s, subject to the condition, $1 \leqslant s \leqslant t$; more precisely, the value of $N_{s, t}(a, b)$ is not changed if the b_{i} in (4-1) are replaced by any set of t elements of F, not all zero, such that the value of B is left invariant.

In addition to Corollary 4.5 , we shall need the following well-known result for the number of representations $N_{t}(a)$ of an element a of F in the form,
(4-12)

$$
a_{1} x_{1}^{2}+\cdots+a_{t} x_{t}^{2}=a
$$

$$
A=a_{1} \ldots a_{t} \neq 0
$$ for fixed elements a_{1}, \ldots, a_{t} of F.

We combine the results in Theorem 3.6 and 3.7 to obtain the following theorem.
4.6 Theorem. Let $t=2 k$ or $2 k+1$ according as t is even or odd.
(i) For a $\neq 0$,
(4-13) $\quad N_{t}(a)= \begin{cases}q^{t-1}-q^{k-1} \psi\left((-1)^{k} A\right) & \text { if } t=2 k, \\ q^{t-1}+q^{k} \psi\left((-1)^{k} a A\right) & \text { if } t=2 k+1 ;\end{cases}$
(ii) if $a=0$,
(4-14) $\quad N_{t}(a)= \begin{cases}q^{t-1}+q^{k-1}(q-1) \psi\left((-1)^{k} A\right) & \text { if } t=2 k, \\ q^{t-1} & \text { if } t=2 k+1 .\end{cases}$

We are now ready to prove our main result.
4.7 Theorem. (E.Cohen [3, Theorem 2]). Let $N_{s, t}(a, b), s, A$ and B be defined as in Theorem 4.4 and let $D=b^{2}-a B$. Then we have :
(i) In case $B \neq 0, D=O$,
(4-15)

$$
N_{s, t}(a, b)= \begin{cases}q^{t-2}+q^{k-1}(q-1) \psi\left((-1)^{k} A B\right) & \text { if } t=2 k+1, \\ q-2 & \text { if } t=2 k ;\end{cases}
$$

(ii) in case $B \neq 0, D \neq 0$,
(4-16) $\quad N_{s, t}(a, b)= \begin{cases}q^{t-2}-q^{k-1} \psi\left((-1)^{k} A B\right) & \text { if } t=2 k+1, \\ q^{t-2}+q^{k-1} \psi\left((-1)^{k} A D\right) & \text { if } t=2 k ;\end{cases}$
(iii) in case $B=0, D=0, a=0$,
(4-17) $\quad N_{s, t}(a, b)= \begin{cases}q^{t-2}+q^{k-1}(q-1) \psi\left((-1)^{k} A\right) & \text { if } t=2 k, \\ q^{t-2} & \text { if } t=2 k+1 ;\end{cases}$
(iv) in case $B=0, D=0, a \neq 0$,
(4-18) $\quad N_{s, t}(a, b)= \begin{cases}q^{t-2}-q^{k-1} \psi\left((-1)^{k} A\right) & \text { if } t=2 k, \\ q^{t-2}+q^{k} \%\left((-1)^{k} a A\right) & \text { if } t=2 k+1 \text {; }\end{cases}$
(v) in case $B=0, D \neq 0, N_{s, t}(a, b)=q^{t-2}$.

Proof. We divide the proof into four parts, corresponding to special.
cases arising from the application of the Corollary 4.5 .
Part 1. Suppose $B \neq 0$ and that at least one a_{i} is such that Ba_{i} is a square ; without loss of generality suppose that $\mathrm{Ba} \mathrm{f}_{1}$ is a nonzero square of F. By Corollary $4.5, N_{s, t}(a, b)$ is in this case equal to the number of solutions of

$$
\left\{\begin{array}{l}
a=a_{1} x_{1}^{2}+\cdots+a_{t} x_{t}^{2} \tag{4-19}\\
b=B_{1} x_{1}
\end{array}\right.
$$

where B_{1} is determined so that $B=B_{1}^{2} / a_{1}$. We eliminate x_{1} between the equations of $(4-19)$, then we have

$$
a=\frac{a_{1} b^{2}}{B_{1}^{2}}+a_{2} x_{2}^{2}+\cdots+a_{t} x_{t}^{2},
$$

or equivalently,

$$
a-\frac{b^{2}}{B}=a_{2} x_{2}^{2}+\ldots+a_{t} x_{t}^{2}
$$

That is

$$
(4-20) \quad-\frac{D}{B} \quad=a_{2} x_{2}^{2}+\ldots+a_{t} x_{t}^{2} \quad(t \geqslant 2)
$$

The number of solutions of (4-19) is the same as that of (4-20). Applying Theorem 4.6 with t replaced by $t-1$, a by $-D / B$, and A by $a_{2} \ldots a_{t}$ (let we place $A^{\prime}=a_{2} \ldots a_{t}$), and using the fact that $\psi(a, B)=1$, we have for $D=0$,
$(4-21) \quad N_{t-1}(-D / B)= \begin{cases}q^{t-2}+q^{k-1}(q-1) \psi\left((-1)^{k} A^{\prime}\right) & \text { if } t-1=2 k, \\ q^{t-2} & \text { if } t-1=2 k+1 .\end{cases}$
Since $A^{\prime}=A / a_{1}$ and $\Psi\left(a_{1} B\right)=1$, we have

$$
\psi\left((-1)^{k_{A}^{\prime}}\right)=\psi\left((-1)^{\frac{k_{A}}{a}}{ }_{1} \psi\left(a_{1} B\right)=\psi\left((-1)^{k_{A B}}\right) .\right.
$$

Then equation (4-21) becomes

$$
N_{t-1}(-D / B)= \begin{cases}q^{t-2}+q^{k-1}(q-1) & \psi\left((-1)^{k} A B\right) \\ \text { if } t=2 k+1, \\ \text { if } t=2 k .\end{cases}
$$

For $D \neq 0$,
(4-22) $\quad N_{t-1}(-D / B)= \begin{cases}q^{t-2}-q^{k-1} \psi\left((-1)^{k_{A}^{\prime}}\right) & \text { if } t-1=2 k, \\ q^{t-2}+q^{k} \psi\left((-1)^{k+1} \frac{D}{B} A^{\prime}\right) & \text { if } t-1=2 k+1 .\end{cases}$
Since $\psi\left(\frac{D}{B} A^{\prime}\right)=\psi\left(\frac{D}{B} A^{\prime}\right) \psi\left(a_{1} B\right)=\psi(D A)$, the equation (4-22) becomes

$$
N_{t-1}(-D / B)= \begin{cases}q^{t-2}-q^{k-1} \psi\left((-1)^{k} A B\right) & \text { if } t=2 k+1, \\ q^{t-2}+{ }_{q}^{k-1} \psi\left((-1)^{k} D A\right) & \text { if } t=2 k .\end{cases}
$$

Hence the formulas (4-15) and (4-16) result in this case provided $t \neq 1$. In the special case $t=1$, we have equations $a=a_{1} x_{1}^{2}$ and $b=B_{1} x_{1}$. Since $A=a_{1}$ and $B=B_{1}^{2} / a_{1}, A B=a_{1} \cdot \frac{B_{1}^{2}}{a_{1}}=B_{1}^{2}$ which is a square in F. Therefore the formulas (4-15) and (4-16) with $s=t=1$, $\mathrm{k}=0$, agree with the obvious result,

$$
N_{1,1}(a, b)= \begin{cases}1 & \text { if } B \neq 0, D=0 \\ 0 & \text { if } B \neq 0, D \neq 0\end{cases}
$$

Part 2. Suppose $B \neq 0$ and $a_{i} B$ is a non-square in F for every $i \leqslant t$. These conditions imply that $t>1$ and that $a_{1} a_{2}$ is a square in F; for if $t=1$, we have $s=1$ and so $a_{1} B$ is a square which is not possible; moreover if $a_{1} a_{2}$ is a non-square, then $a_{1} B \cdot a_{2} B=a_{1} a_{2} B^{2}$ is a non-square which contradicts the fact that $a_{1} B$ and $a_{2} B$ are both non-square, thus $a_{1} a_{2}$ must be a square in F. By Theorem 3.5, there exists a pair of elements B_{1}, B_{2} of F such that $B=B_{1}^{2} / a_{1}+B_{2}^{2} / a_{2}$ and $B_{1} \neq 0 \neq B_{2}$. Choosing a fixed pair of such elements B_{1}, B_{2}, it results from Corollary 4.5 that $N_{s, t}(a, b)$ is in the present case equal to the number of solutions of

$$
\left\{\begin{array}{l}
a=a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2} \tag{4-23}\\
b=B_{1} x_{1}+B_{2} x_{2}
\end{array}\right.
$$

Let d be an element of F such that $d^{2}=a_{1} a_{2}$. We eliminate x_{1} between the equations of $(4-23)$ by substituting $x_{1}=\frac{b-B_{2} x_{2}}{B_{1}}$ from the second equation of (4-23) into the first one, then we have

$$
\begin{aligned}
a & =a_{1}\left[\frac{b-B_{2} x_{2}}{B_{1}}\right]^{2}+a_{2} x_{2}^{2}+\cdots+a_{t} x_{t}^{2} \\
& =\frac{1}{B_{1}^{2}}\left[a_{1} b^{2}-2 b a_{1} B_{2} x_{2}+\left(a_{1} B_{2}^{2}+a_{2} B_{1}^{2}\right) x_{2}^{2}\right]+a_{3} x_{3}^{2}+\cdots+a_{t} x_{t}^{2} \\
& =\frac{1}{B_{1}^{2}}\left[a_{1} b^{2}-2 b a_{1} B_{2} x_{2}+a_{1} a_{2} B x_{2}^{2}\right]+a_{3} x_{3}^{2}+\cdots+a_{t} x_{t}^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{B}{B_{1}^{2}}\left[a_{1} a_{2} x_{2}^{2}-\frac{2 b a_{1} B_{2}}{B} x_{2}+\frac{b^{2} a_{1}^{2} B_{2}^{2}}{B^{2} a_{1} a_{2}}-\frac{b^{2} a_{1} B_{2}^{2}}{B^{2} a_{2}}+\frac{a_{1} b^{2}}{B}\right] \\
& +a_{3} x_{3}^{2}+\cdots+a_{t} x_{t}^{2} \\
= & \frac{B}{B_{1}^{2}}\left[\left(\sqrt{a_{1}^{2}} x_{2} x_{2}-\frac{b a_{1} B_{2}}{\frac{B \sqrt{a_{1} a_{2}}}{}}\right)^{2}+\frac{\left.a_{1} b^{2}-\frac{a_{1} b^{2}\left(B-B_{1}^{2}\right)}{B^{2}} \frac{a_{1}}{a_{1}}\right]}{}\right. \\
& +a_{3} x_{3}^{2}+\cdots+a_{t} x_{t}^{2} \\
= & \frac{B}{B_{1}^{2}}\left[\left(\sqrt{a_{1} a_{2}} x_{2}-\frac{b a_{1} B_{2}}{B \sqrt{a_{1} a_{2}}}\right)^{2}+\frac{b^{2_{B}^{2}}}{B^{2}}\right]+a_{3} x_{3}^{2}+\ldots+a_{t} x_{t}^{2},
\end{aligned}
$$

or equivalently,

$$
a-\frac{b^{2}}{B}=\frac{B}{B_{1}^{2}}\left({\sqrt{a_{1}{ }^{a}} 2^{x}-\frac{b a_{1} B_{2}}{B \sqrt{a_{1}{ }^{a}} 2}}_{)^{2}}{ }^{2}+a_{3} x_{3}^{2}+\ldots+a_{t} x_{t}^{2} .\right.
$$

Thus by involving completing a square, the equations (4-23) lead to the single equation,
(4-24) $-\frac{D}{B}=B Z^{2}+a_{3} x_{3}^{2}+\cdots+a_{t} x_{t}^{2}$,
where $z=\frac{1}{B_{1}}\left(d x_{2}-\frac{b a_{1} B_{2}}{B d}\right)$. Therefore, the number of solutions of (4-24) is given by $N_{s, t}(a, b)$. Application of Theorem 4.6 with t replaced by $t-1$, a by $-D / B$ and A by $B a_{3} \ldots a_{t}$ (by B if $t=2$), in connection with the observation, $\psi\left(a_{1} a_{2}\right)=1$, leads to the formulas ($4-15$) and ($4-16$). Notice that the equation (4-24) and equation (4-20) have the same type, so the number of solutions of
(4-24) is the same as that of solutions of (4-20), that is, the formulas (4-15) and (4-16).

Cases(i) and (ii) of the theorem are now completely established; that is, the theorem is now proved in the case $B \neq 0$. In the remainder of the proof, B has the value 0 and $t>1$.

Part 3. Let us suppose now that $B=0$ and that integers i, j exist, $i \neq j, 1 \leqslant i, j \leqslant t$, such that $-a_{i} a_{j}$ is a square of F. Without loss of generality suppose that $-a_{1} a_{2}$ is a square. It follows that we can pick non-zero elements B_{1}, B_{2} of F such that $0=B_{1}^{2} / a_{1}+B_{2}^{2} / a_{2}$; for any such pair $B_{1}, B_{2}, N_{s, t}(a, b)$ is in this case equal to the number of solutions of (4-23). Eliminate of x_{1} from (4-23) yields the equation,
(4-25) $\frac{B_{1}^{2} a-a_{1} b^{2}}{B_{1}^{2}}=\frac{-2 b a_{1} B_{2}}{B_{1}^{2}} x_{2}+a_{3} x_{3}^{2}+\ldots+a_{t} x_{t}^{2}$,
the number of whose solutions is $N_{s, t}(a, b)$. If $b \neq 0, x_{2}$ in (4-25) is determined on assigning arbitrary values to x_{3}, \ldots, x_{t}; hence in case $D \neq 0$ (because $D=b^{2}-a B$, and $b \neq 0, B=0$), $N_{s, t}(a, b)=q^{t-2}$ (Case (v)). If $\mathrm{b}=0, \mathrm{x}_{2}$ can be chosen arbitrarily in (4-25) provided $t>2$, so that $N_{s, t}(a, 0)=q L(a)$, where $L(a)$ is the number of solutions of $a=a_{3} x_{3}^{2}+\ldots+a_{t} x_{t}^{2}$. Applying Theorem 4.6 with t replaced by $t-2$ and the fact that $\psi\left(-a_{1} a_{2}\right)=1, A^{\prime}=a_{3} \ldots a_{t}=A / a_{1} a_{2}$, we have $L(a)$ as follows :
if $a=0, L(a)= \begin{cases}q^{t-3}+q^{k-1}(q-1) \psi\left((-1)^{k} A^{\prime}\right) & \text { if } t-2=2 k, \\ q^{t-3} & \text { if } t-2=2 k+1 ;\end{cases}$
if $a \neq 0, L(a)= \begin{cases}q^{t-3}-q^{k-1} \psi\left((-1)^{k} A^{\prime}\right) & \text { if } t-2=2 k, \\ q^{t-3}+q^{k} \psi\left((-1)^{k} a A^{\prime}\right) & \text { if } t-2=2 k+1 .\end{cases}$
Put $k+1=k^{\prime}$, we have
if $a=0, L(a)= \begin{cases}q^{t-3}+q^{k^{\prime}-2}(q-1)^{*} \psi^{\prime}(-1)^{\left.k_{A}^{\prime}\right)} & \text { if } t=2 k^{\prime}, \\ q^{t-3} & \text { if } t=2 k^{\prime}+1 ;\end{cases}$
if $a \neq 0, L(a)= \begin{cases}q^{t-3}-q^{k^{\prime}-2 \psi\left((-1)^{k_{A}^{\prime}},\right.} & \text { if } t=2 k^{\prime}, \\ q^{t-3}+q^{k-1} \psi\left((-1)^{k^{\prime}} a A\right) & \text { if } t=2 k^{\prime}+1 .\end{cases}$
Therefore if $a=0$,

$$
N_{s, t}(a, 0)=q L(a)= \begin{cases}q^{t-2}+q^{k-1}(q-1) \psi\left((-1)^{k_{A}^{\prime}} A\right. & \text { if } t=2 k^{\prime} \\ q^{t-2}\end{cases}
$$

if $a \neq 0$,

$$
N_{s, t}(a, 0)=q L(a)= \begin{cases}q^{t-2}-q^{k^{\prime}-1} \psi\left((-1)^{k_{A}^{\prime}}\right) & \text { if } t=2 k^{\prime} \\ q^{t-2}+q^{k^{\prime}} \psi\left((-1)^{k^{\prime}} a A\right) & \text { if } t=2 k^{\prime}+1\end{cases}
$$

Hence we get ($4-17$) and ($4-18$) provided $t \neq 2$. In case $b=0, t=2$, $(4-25)$ reduces to $a=0 \cdot x_{2}$, so that

$$
N_{s, 2}(a, 0)= \begin{cases}a & \text { if } a=0, \\ 0 & \text { if } a \neq 0 .\end{cases}
$$

This agrees with (4-17) and (4-18), in case $t=2, k=1$. Cases (iii) and (iv), for which $D=0$, are therefore completed from this part of the proof.

Part 4. There remains to consider the case in which $B=0$ and $-a_{i} a_{j}$ is a non-square of F for all $1 \neq j ; 1 \leqslant i, j \leqslant t$. These conditions imply that $t \geqslant 3$. For if $t=2$, then there exists a pair of elements B_{1}, B_{2} of F such that

$$
\frac{B_{1}^{2}}{a_{1}}+\frac{B_{2}^{2}}{a_{2}}=0
$$

Then

$$
B_{1}^{2}=-\frac{a_{1}}{a_{2}} B_{2}^{2}=-a_{1} a_{2} \frac{B_{2}^{2}}{a_{2}^{2}} \cdot
$$

Therefore

$$
-a_{1} a_{2}=\left(\frac{B_{1} a_{2}}{B_{2}}\right)^{2}
$$

This is impossible since $-a_{1} a_{2}$ is a non-square of F by the assumption, if $t=1$, then $i=1=j$. Thus it is not in the case. Let us choose non-zero elements B_{1}, B_{2}, B_{3} of F such that $B_{1}^{2} / a_{1}+B_{2}^{2} / a_{2}+B_{3}^{2} / a_{3}=0$; this is possible by an argument used in Part 2. It follows then as before that $N_{s, t}(a, b)$ is in the present case the same as the number of solutions of
$(4-26)$

$$
\left\{\begin{array}{l}
a=a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2} \\
b=B_{1} x_{1}+B_{2} x_{2}+B_{3} x_{3}
\end{array}\right.
$$

If we eliminate x_{1} and simplify the resulting equation by completion of squares, $(4-26)$ is replaced by the single equation,
(4-27) $a-\frac{a_{1} a_{2} b^{2}}{P}=P Z^{2}-\frac{\left(2 b_{1} a_{2} B_{3}\right)}{P} x_{3}+a_{4} x_{4}^{2}+\ldots+a_{t} x_{t}^{2}$,
where $P=B_{1}^{2} a_{2}+B_{2}^{2} a_{1}=-a_{1} a_{2} a_{3}^{-1} B_{3}^{2} \neq 0$ and $Z=\left(x_{2}+a_{1} B_{2} B_{3} P^{-1} x_{3}-b a_{1} B_{2} P^{-1}\right) / B_{1}$. If $b=0$, that is, in case $D=0, N_{s, t}(a, 0)=q I^{\prime}(a)$, where $L^{\prime}(a)$ is the number of solutions of $a=P Z_{1}^{2}+a_{4} x_{4}^{2}+\ldots+a_{t} x_{t}^{2}$, where $Z_{1}=\left(x_{2}+a_{1} B_{2} B_{3} p^{-1} x_{3}\right) / B_{1}$. By Theorem 4.6 on replacing A by $\mathrm{Pa}_{4} \ldots a_{t}\left(\right.$ let $A^{\prime}=\mathrm{Pa}_{4} \ldots a_{t}$) and t by $t-2$ and noting that $\Psi(P)=\Psi\left(-a_{1} a_{2} a_{3}\right)$, then we have
if $a=0, \quad L^{\prime}(a)= \begin{cases}q^{t-3}+q^{k-1}(q-1) & \psi\left((-1)^{k} A^{\prime}\right) \\ q^{t-3} & \text { if } t-2=2 k,\end{cases}$ if $a \neq 0, \quad L^{\prime}(a)= \begin{cases}q^{t-3}-q^{k-1} \psi\left((-1)^{k} A^{\prime}\right) & \text { if } t-2=2 k, \\ q^{t-3}+q^{k} \psi\left((-1)^{k} a A^{\prime}\right) & \text { if } t-2=2 k+1 .\end{cases}$ Since $A^{\prime}=P a_{4} \ldots a_{t}, \psi\left((-1)^{k_{A}^{\prime}}\right)=\psi\left((-1)^{k} P a_{4} \ldots a_{t}\right)$ $=\psi\left((-1)^{k} a_{4} \ldots a_{t}\right) \psi(P)=\psi\left((-1)^{\left.k_{a_{4}} \ldots a_{t}\right) \psi\left(-a_{1} a_{2} a_{3}\right)}\right.$ $=\psi\left((-1)^{k+1} a_{1} a_{2} a_{3} a_{4} \ldots a_{t}\right)=\psi\left((-1)^{k+1} A\right) . \quad$ Put $k+1=k^{\prime}$,
then we have
if $a=0$,

$$
\begin{aligned}
& \text { if } a=0, \quad L^{\prime}(a)= \begin{cases}q^{t-3}+q^{k^{\prime}-2}(q-1) \psi\left((-1)^{k_{A}^{\prime}}\right) & \text { if } t=2 k^{\prime}, \\
q^{t-3}, & \text { if } t=2 k^{\prime}+1 ;\end{cases} \\
& \text { if } a \neq 0, \quad L^{\prime}(a)= \begin{cases}q^{t-3}-q^{k^{\prime}-2} \psi\left((-1)^{k_{A}^{\prime}}\right) & \text { if } t=2 k^{\prime}, \\
q^{t-3}+q^{k^{\prime}-1} \psi\left((-1)^{k^{\prime}} a A\right) & \text { if } t=2 k^{\prime}+1\end{cases}
\end{aligned}
$$

Using the fact that $\mathbb{N}_{s, t}(a, 0)=q I^{\prime}(a)$, cases (iii) and (iv) are therefore completed. If $b \neq 0$ (or equivalently, $D \neq 0$), z, x_{4}, \ldots, x_{t} in (4-27) can be assigned arbitrarily from which case (v) results. This completes the proof of the theorem.

Examination of Theorem 4.7 leads almost immediately to the following.
4.8 Corollary. $N_{s, t}(a, b)>0$ for all $t \geqslant 4$, and $N_{s, 3}(a, b)=0$
if and only if $a \neq 0, b=B=0$ and $\Psi(-a A)=-1$; moreover, $N_{s, t}(0,0)>1$ for all $t \geqslant 4$, while $N_{s, 3}(0,0)=1$ if and only if $B \neq 0$ and $\psi(-A B)=-1$.
4.9 Corollary. The formula, $N_{s, t}(a, b)=q^{t-2}$, holds if and only if one of the following sets of conditions is satisfied :
(i) $B \neq O, D=O$, t is even,
(ii) $B=D=a=0$, t is odd,
(iii) $B=0, D \neq 0$.

