QUADRICS OVER A FINITE FIELD

In this chapter, we determine the number of solutions in a finite field F of the equation

$$
a_{1} x_{1}^{2}+\ldots+a_{t} x_{t}^{2}=a
$$

where a_{1}, \ldots, a_{t} are nonzero elements in F and $a \in F$. Every finite field considered from now on is of characteristic $p>2$, where p is a prime number. The materials of this chapter are based on L.E. Dickson $[5, \$ 961-66]$
3.1 Definition. A non-zero element x of the $G F\left[p^{n}\right]$ is called a square in $G F\left[p^{n}\right]$ if and only if there exists $y \in G F\left[p^{n}\right]$ satisfying $x=y^{2}$. Otherwise, x is called a non-square.
3.2 Theorem. Let $F=G F\left[p^{n}\right]$. Then the number of squares in F is $\left(p^{n}-1\right) / 2$ and the number of non-squares in F is also $\left(p^{n}-1\right) / 2$. Proof. By Theorem 2.13, F^{*} is cyclic with $\mathrm{p}^{\mathrm{n}}-1$ elements and say with generator u. Then $F^{*}=[u]=\left\{u, u^{2}, \ldots, u^{p^{n}-1}=1\right\}$. Since p is an odd prime, p^{n} is odd and thus $p^{n}-1$ is even. Hence $2 \mid p^{n}-1$.

We claim that

$$
\begin{equation*}
\frac{p^{n}-1}{2} \tag{3-1}
\end{equation*}
$$

$$
=-1 .
$$

Since $u^{\frac{p^{n}-1}{2}} \cdot u^{p^{n}-1} 2=\frac{p^{n}-1}{2}+\frac{p^{n}-1}{2}=u^{p^{n}}-1=1$, we have

$$
\left(u^{p^{n}-1}\right)^{2}-1=0
$$

or

$$
\left(u^{p^{n}-1} \frac{p^{n}-1}{2}-1\right)\left(u^{2}+1\right)=0
$$

Since each element in F^{*} is of the form u^{k} and if $k \neq r, u^{k} \neq u^{i}$,
 Consequently, we have $\left.(u)^{\frac{p^{2}}{2}}+1\right)=0$, that is, $u^{\frac{p^{n}-1}{2}}=-1$ and the claim is proved.

If $x \in F$ is of the form $u^{2 h}$ for some h such that $1 \leqslant 2 h \leqslant p^{n}-1$, we have $x=\left(\pm u^{h}\right)^{2}$. Thus x is a square. Hence every element of F which is the even power of u is a square in F. Moreover, if x is an element of F which is the odd power of u, then x is a non-square. For if $u^{2 h+1}=x^{2}$, then

$$
\begin{aligned}
\frac{(2 n+1)\left(p^{n}-1\right)}{2} & =u^{n\left(p^{n}-1\right)} \cdot u^{\frac{p^{n}-1}{2}} \\
& =\left(u^{p^{n}-1}\right)^{h} \cdot(-1) \\
& =1 \cdot(-1)=-1
\end{aligned}
$$

by virtue of $(3-1)$. On the other hand,

$$
\begin{aligned}
\frac{(2 h+1)\left(p^{n}-1\right)}{2} & =\left(u^{2 h+1}\right)^{\frac{p^{n}-1}{2}} \\
& =x^{p^{n}-1} \\
& =1
\end{aligned}
$$

Consequently, we have $1=-1$ and thus $1+1=0$ which is not possible since characteristic of F is $p>2$. Hence the odd powers of u are non-squares in F.

Therefore there are $\left(p^{n}-1\right) / 2$ squares and as many non-squares in F .
3.3 Lemma. The sum of m odd positive integers is odd or even according as m is an odd or even positive integer.

Proof. Let s be the sum of m odd positive integers. Since each odd integer can be written as $2 n_{i}+1, i=1, \ldots, m$, it follows that

$$
\begin{aligned}
s & =\left(2 n_{1}+1\right)+\left(2 n_{2}+1\right)+\ldots+\left(2 n_{m}+1\right) \\
& =2\left(n_{1}+n_{2}+\cdots+n_{m}\right)+\underbrace{(1+1+\cdots+1)}_{m \text { times }} \\
& =2\left(n_{1}+n_{2}+\cdots+n_{m}\right)+m
\end{aligned}
$$

But since the first term of s is even, s is therefore odd or even according as m is odd or even.
3.4 Theorem. The non-squares of any $G F\left[p^{n}\right]$ are non-squares or squares in the $G F\left[p^{n m}\right]$ according as m is odd or even. Proof. Let $F=G F\left[p^{n}\right]$ and $L=G F\left[p^{n m}\right]$. Let u be a generator of L^{*}. Then $L^{*}=[u]$ with $u^{p^{n m}-1}=1$. Since $\left|F^{*}\right|=p^{n}-1$, where $\left|F^{*}\right|$ denotes the number of elements in F^{*}, and F^{*} is a subgroup of $L^{*},\left(p^{n}-1\right) \mid\left(p^{n m}-1\right)$. Let $r=\left(p^{n m}-1\right) /\left(p^{n}-1\right)$. Then $v=u^{r}$ is a generator of ${ }^{*}$. Hence the non-zero elements of F^{*} are given by the formula

$$
\mathrm{v}^{\mathrm{s}}=\mathrm{u}^{r s},
$$

where $s=1, \ldots, p^{n}-1$. Let v^{k} be a non-square in F, so that k is odd. It will be a non-square or a square in I according as kr is odd or even, that is, according as r is odd or even. But

$$
\begin{aligned}
r & =\frac{p^{n m}-1}{p^{n}-1} \\
& =\frac{1-\left(p^{n}\right)^{m}}{1-p^{n}} \\
& =\frac{\left(1-p^{n}\right)\left(1+p^{n}+\ldots+\left(p^{n}\right)^{m-1}\right)}{1-p^{n}} \\
& =1+p^{n}+\cdots+p^{(m-1) n} .
\end{aligned}
$$

Thus r is the sum of m odd positive integers. Hence by Lemma 3.3 r is odd or even according as m is odd or even.

The theorem is now proved.
3.5 Theorem. Let a_{1}, a_{2} be non-zero elements of $G F\left[p^{n}\right]$ and let a $\in G F\left[p^{n}\right]$. Then the number of solutions of the equation

$$
\begin{equation*}
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=a \tag{3-2}
\end{equation*}
$$

is $p^{n}-\theta$ or $p^{n}+\left(p^{n}-1\right) \theta$ according as $a \neq 0$ or $a=0$, where $\theta=+1$ or -1 according as $-a_{1} a_{2}$ is a square or a nonsquare in $G F\left[p^{n}\right]$.

Proof: Consider the equation (3-2)

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=a_{0}
$$

Setting $a_{1} x_{1}=y$ and multiplying a_{1} to (3-2), the equation becomes

$$
\begin{equation*}
y^{2}+a_{1} a_{2} x_{2}^{2}=a_{1} a_{0} \tag{3-3}
\end{equation*}
$$

We divide into two cases according as $-a_{1} a_{2}$ is a square or a non-square.

$$
\text { Case 1. If }-a_{1} a_{2} \text { is a square in } G F\left[p^{n}\right] \text {, say }-a_{1} a_{2}=b^{2}
$$

then we have

$$
\begin{equation*}
y^{2}-b^{2} x_{2}^{2}=a_{1} \tag{3-4}
\end{equation*}
$$

We set $y+b x_{2}=z_{1}, y-b x_{2}=z_{2}$, then

$$
y=\frac{1}{2}\left(z_{1}+z_{2}\right) \text { and } x_{2}=\frac{1}{2 b}\left(z_{1}-z_{2}\right)
$$

Substitute y and x_{2} in $(3-4)$, the equation becomes

$$
\left[\frac{1}{2}\left(z_{1}+z_{2}\right)\right]^{2}-b^{2}\left[\frac{1}{2 b}\left(z_{1}-z_{2}\right)\right]^{2}=a_{1} a,
$$

multiply the equation out we obtain

$$
\frac{1}{4}\left(z_{1}^{2}+2 z_{1} z_{2}+z_{2}^{2}\right)-\frac{1}{4}\left(z_{1}^{2}-2 z_{1} z_{2}+z_{2}^{2}\right)=a_{1} a,
$$

or

$$
\begin{equation*}
z_{1} z_{2}=a_{1} a_{0} \tag{3-5}
\end{equation*}
$$

If $a \neq 0$, we can assign to z_{2} any one of the $p^{n}-1$ non-zero elements in $G F\left[p^{n}\right]$, and the corresponding value of z_{q} is determined by equation $(3-5)$. There are in this case $p^{n}-1$ sets of solutions x_{1}, x_{2} in the field of the given equation.

If $a=0$, then we get $z_{1} z_{2}=0$. Thus $z_{1}=0$ or $z_{2}=0$. For $z_{1}=0$, we have $y+b x_{2}=0$ and since $y=a_{1} x_{1}$, we have $a_{1} x_{1}=-b x_{2}$. There are in this case $p^{n}-1$ sets of solutions x_{1}, x_{2}.

For $z_{2}=0$, we have $y-b x_{2}=0$ and then $a_{1} x_{1}=b x_{2}$. There are also $p^{n}-1$ sets of solutions x_{1}, x_{2}. Another solution of the equation $z_{1} z_{2}=0$ is $z_{1}=0$ and $z_{2}=0$, that is $\left(x_{1}, x_{2}\right)=(0,0)$ is one of the solutions of $(3-2)$. Hence all together there are $1+\left(p^{n}-1\right)+\left(p^{n}-1\right)=1+2\left(p^{n}-1\right)$ sets of solutions of the equation (3-2) in this case.

Case 2. If $-a_{1} a_{2}$ is a non -square in the $G F\left[p^{n}\right]$, then the equation

$$
\begin{equation*}
x^{2}=-a_{1} a_{2} \tag{3-6}
\end{equation*}
$$

is irreducible in the field; for if $x^{2}+a_{1} a_{2}=0$ is reducible, then we can write $x^{2}+a_{1} a_{2}=x^{2}-\left(-a_{1} a_{2}\right)=(x-d)(x+d)=x^{2}-d^{2}$ for some $d \in G F\left[p^{n}\right]$, and therefore $-a_{1} \dot{a}_{2}=d^{2}$, this is impossible since $-a_{1} a_{2}$ is a non-square in $G F\left[p^{n}\right]$. Now $f(x)=x^{2}+a_{1} a_{2}$ is irreducible polynomial over $F=G F\left[p^{n}\right]$. Let F^{\prime}, be the splitting field of $f(x)$ over F. Let i be a root of $f(x)$. Then i ϵF^{\prime}. Let $E=F(i)$. Consequently, $E=G F\left[p^{2 n}\right]$ by Theorem 2.19. Now $\pm i$ are roots of $(3-6)$ and by Corollary $2.24, i^{p^{n}}=-i$. We therefore have the identity

$$
\begin{aligned}
y^{2}+a_{1} a_{2} x_{2}^{2} & =\left(y+i x_{2}\right)\left(y+i p^{n} x_{2}\right) \\
& =\left(y+i x_{2}\right)\left(y^{p^{n}}+i i^{n} x_{2}^{p^{n}} \quad \text { [by Lemma } 2 \cdot 3\right] \\
& =\left(y+i x_{2}\right)\left(y+i x_{2}\right) p^{n} \quad \text { [by Theorem 2.9] } \\
& =\left(y+i x_{2}\right)^{p^{n}+1}
\end{aligned}
$$

Then the equation (3-3) becomes

$$
\begin{equation*}
\left(y+i x_{2}\right)^{p^{n}+1}=a_{1} a \tag{3-7}
\end{equation*}
$$

Let $z=y+i x_{2}$, then the equation $(3-7)$ becomes

$$
\begin{equation*}
z^{p^{n}+1}=a_{1} a \tag{3-8}
\end{equation*}
$$

If $a=0$, then $z=0$ and therefore a single set of solutions
is $\left(x_{1}=0, x_{2}=0\right)$.
If $a \neq 0$, let R be a generator of the $G F\left[p^{2 n}\right]$ and set
$a_{1} a=R^{k}$, where k is an integer, then

$$
R^{k\left(p^{n}-1\right)}=(a, a)^{p^{n}-1}=1
$$

So $k\left(p^{n}-1\right)$ is divisible by $p^{2 n}-1$. We may therefore set $k=r\left(p^{n}+1\right)$, where r is a suitable positive integer. Since $z=y+i x_{2} \in \operatorname{GF}\left[p^{2 n}\right]$, we may set $Z=R^{t}$. The equation (3-8) becomes

$$
R^{t\left(p^{n}+1\right)}=R^{r\left(p^{n}+1\right)}
$$

Hence $t\left(p^{n}+1\right) \equiv \dot{r}\left(p^{n}+1\right) \quad\left(\bmod \left(p^{2 n}-1\right)\right)$. This congruence has $p^{n}+1$ distinct solutions for t, namely,

$$
t=\dot{r}, r+p^{n}-1, \dot{r}+2\left(p^{n}-1\right), \ldots, r+p^{n}\left(p^{n}-1\right)
$$

The corresponding values of $R^{t}=Z=y+i x_{2}$ give $p^{n}+1$ distinct sets of solutions x_{1}, x_{2} of the given equation.
3.6 Theorem. The number of solutions $\left(x_{1}, \ldots, x_{2 m}\right)$ in the $G F\left[p^{n}\right]$ of the equation

$$
\begin{equation*}
a_{1} x_{1}^{2}+\ldots+a_{2 m} x_{2 m}^{2}=a_{1} \tag{3-9}
\end{equation*}
$$

where every a_{j} is a non-zero element in the field, is

$$
\begin{array}{ll}
p^{n(2 m-1)}-\theta p^{n(m-1)} & \text { if } a \neq 0 \\
p^{n(2 m-1)}+e\left(p^{n m}-p^{n(m-1)}\right) & \text { if } a=0,
\end{array}
$$

where θ is +1 or -1 according as $(-1)^{m} a_{1} \ldots a_{2 m}$ is a square or a non-square in the field.

Proof. By Theorem 3.5, the theorem is true if $m=1$. To prove the theorem by induction, we suppose it true for equations in $2(\mathrm{~m}-1)$ variables. The equation $(3-9)$ is equivalent to the system of two equations

$$
\begin{align*}
& a_{1} x_{1}^{2}+a_{2} x_{2}^{2} \tag{3-10}\\
& a_{3} x_{3}^{2}+\cdots+a_{2 m} x_{2 m}^{2}=a^{2}, \eta .
\end{align*}
$$

Case 1. Let $a \neq 0$. For each of the $p^{n}-2$ values of η different from a and 0 , the equation $(3-10)$ has $p^{n}-\beta$ sets of solutions, while by hypothesis the equation (3-11) has $p^{n(2 m-3)}-\mu p^{n(m-2)}$, where $\beta= \pm 1$ according as $-a_{1} a_{2}$ is a square or a non-square and $\mu= \pm 1$ according as $(-1)^{m-1} a_{3} \ldots a_{2 m}$ is a square or a non-square. For $\eta=0$, the equations become

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=0 \quad \text { and } a_{3} x_{3}^{2}+\cdots+a_{2 m} x_{2 m}^{2}=a_{0}
$$

They have respectively, by Theorem 3.5 and hypothesis, $p^{n}+\left(p^{n}-1\right) \beta$
and $p^{n(2 m-3)}-\mu p^{n(m-2)}$ sets of solutions. Finally, for $\eta=a$, we have

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=a \quad \text { and } \quad a_{3} x_{3}^{2}+\cdots+a_{2 m} x_{2 m}^{2}=0
$$

They have respectively $p^{n}-\beta$ and $p^{n(2 m-3)}+\mu\left(p^{n(m-1)}-p^{n(m-2)}\right.$) sets of solutions. The total number of sets of solutions is therefore

$$
\begin{aligned}
&\left(p^{n}-2\right)\left(p^{n}-\beta\right)\left(p^{n(2 m-3)}-\mu p^{n(m-2)}\right)+\left\{p^{n}+\left(p^{n}-1\right) \beta\right\}\left\{p^{n(2 m-3)}-\mu p^{n(m-2)}\right\} \\
&+\left(p^{n}-\beta\right)\left\{p^{n(2 m-3)}+\mu\left(p^{n(m-1)}-p^{n(m-2)}\right)\right\} \\
&= p^{n(2 m-3)\left\{\left(p^{n}-2\right)\left(p^{n}-\beta\right)+\left(p^{n}+\left(p^{n}-1\right) \beta\right)+p^{n}-\beta\right\}+p^{n(m-1)}\left\{\mu\left(p^{n}-\beta\right)\right\}} \\
&+p^{n(m-2)}\left\{-\mu\left(p^{n}-2\right)\left(p^{n}-\beta\right)-\mu\left(p^{n}+\left(p^{n}-1\right) \beta\right)-\mu\left(p^{n}-\beta\right)\right\} \\
&= p^{n(2 m-1)}-\beta \mu p^{n(m-1)} .
\end{aligned}
$$

Since the product of two squares or of two non-squares is again a square; but the product of a square by a non-square is a non-square. $\beta \mu=0$. Hence the induction is complete.

Case 2. Let $a=0$. For each of the $p^{n}-1$ values of $\eta \neq 0$, the equation $(3-10)$ has $p^{n}-\beta$ sets of solutions, while the equation $(3-11)$ has $p^{n(2 m-3)}-\mu p^{n(m-2)}$, where $\beta= \pm 1$ according as $-a_{1}{ }^{a} 2$ is a square or a non-square and $\mu= \pm 1$ according as $(-1)^{m-1} a_{3} \ldots a_{2 m}$ is a square or a non-square. For $\eta=0$, the equations become

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=0 \quad \text { and } \quad a_{3} x_{3}^{2}+\ldots+a_{2 m} x_{2 m}^{2}=0
$$

Thus they have respectively $p^{n}+\left(p^{n}-1\right) \beta$ and $p^{n(2 m-3)}+p\left(p^{n(m-1)}-p^{n(m-2)}\right.$), sets of solutions. We find the total number of solutions to be

$$
\begin{aligned}
\left(p^{n}-1\right)\left(p^{n}-\beta\right) & \left\{p^{n(2 m-3)}-\mu p^{n(m-2)}\right\}+\left\{p^{n}+\left(p^{n}-1\right) \beta\right\}\left\{p^{n(2 m-3)}+\mu\left(p^{n(m-1)}-p^{n(m-2)}\right)\right\} \\
= & p^{n(2 m-3)}\left\{\left(p^{n}-1\right)\left(p^{n}-\beta\right)+\left(p^{n}+\left(p^{n}-1\right) \beta\right)\right\}+p^{n(m-2)}\left\{-\mu\left(p^{n}-1\right)\left(p^{n}-\beta\right)\right. \\
& \left.-\mu\left(p^{n}+\left(p^{n}-1\right) \beta\right)\right\}+p^{n(m-1)}\left\{\mu\left(p^{n}+\left(p^{n}-1\right) \beta\right)\right\} \\
= & p^{n(2 m-1)}+\beta \mu\left(p^{n m}-p^{n(m-1)}\right) \\
= & p^{n(2 m-1)}+\theta\left(p^{n m}-p^{n}(m-1)\right) .
\end{aligned}
$$

Hence the theorem is proved.
3.7 Theorem. The number of solutions in the $G F\left[p^{n}\right]$ of the equation

$$
\begin{equation*}
a_{1} x_{1}^{2}+\ldots+a_{2 m+1} x_{2 m+1}^{2}=a \tag{3-12}
\end{equation*}
$$

where each a_{j} is a nonzero element in the field and a belongs to the field, is $p^{2 n m}+\omega^{n m}$, where $\omega=+1$, -1 or 0 according as $(-1)^{m} a_{1} \ldots a_{2 m+1}$ is a square, a non-square or zero in the field.

Proof. Consider the equivalent system of equations

$$
\begin{equation*}
a_{1} x_{1}^{2} \quad=\eta \tag{3-13}
\end{equation*}
$$

(3-14) $\quad a_{2} x_{2}^{2}+\cdots+a_{2 m+1} x_{2 m+1}^{2}=a-\eta$.
If $\eta=0$, then $(3-13)$ has only one solution $x_{1}=0$.
If $\eta \neq 0$, we have $x_{1}^{2}=\eta / a_{1}$ and then (3-13) has two or no solutions according as η / a_{1} is a square or a non-square, that is, according as $a_{1}^{2} \eta / a_{1}=a_{1} \eta$ is a square or a non-square. Let

$$
\mu=\left\{\begin{aligned}
+1 & \text { if } a_{1} a \text { is a square } \\
-1 & \text { if } a_{1} a \text { is a non*square } \\
0 & \text { if } a=0
\end{aligned}\right.
$$

We may express the number of solutions of the equation (3-14) by Theorem 3.6 , if we set $e= \pm 1$ according as $(-1)^{m} a_{2} \ldots a_{2 m+1}$ is a square or a non-square. Evidently we have $\mu \theta=\omega$, that is, $\omega=+1,-1$ or 0 according as $(-1)^{m}$ aa, $\ldots a_{2 m+1}$ is a square, a nonsquare or zero in the field.

$$
\begin{aligned}
& \text { Case 1. }(\mu=0) \text {. For } \eta=0 \text {, we get } \\
& a_{1} x_{1}^{2}=0 \text { and } a_{2} x_{2}^{2}+\ldots+a_{2 m+1} x_{2 m+1}^{2}=0 .
\end{aligned}
$$

The first equation has one solution while the second has $p^{n(2 m-1)}+\theta\left(p^{n m}-p^{n(m-1)}\right)$. For $\eta \neq 0$, the equations become

$$
a_{1} x_{1}^{2}=\eta \quad \text { and } \quad a_{2} x_{2}^{2}+\ldots+a_{2 m+1} x_{2 m+1}^{2}=-\eta
$$

The first equation has solution only when $a_{1} \eta$ is a square and there are $\left(p^{n}-1\right) / 2$ values of such η since the number of squares in $G F\left[p^{n}\right]$ is $\left(p^{n}-1\right) / 2$ by Theorem 3.2. Thus for each of the $\left(p^{n}-1\right) / 2$ values of η, the first equation has two solutions while the second has $p^{n(2 m-1)}-\theta p^{n(m-1)}$. Hence according as $\mu=0$, the total number of solutions of the pair of equations is

$$
\begin{aligned}
& \text { 1. }\left\{p^{n(2 m-1)}+\theta\left(p^{n m}-p^{n(m-1)}\right)\right\}+2 \cdot \frac{\left(p^{n}-1\right)}{2}\left\{p^{n(2 m-1)}-6 p^{n(m-1)}\right\} \\
& =p^{n(2 m-1)}\left\{1+p^{n}-1\right\}+\theta p^{n m}-p^{n(m-1)}\left\{\theta+\theta\left(p^{n}-1\right)\right\} \\
& =p^{2 n m} .
\end{aligned}
$$

Case 2. ($\mu=+1$). For $\eta=0$, the equation $(3-13)$ has only one solution while the equation $(3-14)$ has $p^{n(2 m-1)}-\theta p^{n(m-1)}$.

For $\eta=a$, we get

$$
a_{1} x_{1}^{2}=a \text { and } a_{2} x_{2}^{2}+\ldots+a_{2 m+1} x_{2 m+1}^{2}=0
$$

Since a_{1} a is a square, the first equation has two solutions. At the same time, there are $p^{n(2 m-1)}+\theta\left(p^{n m}-p^{n(m-1)}\right)$ sets of solutions for the second equation. For each of the $\left[\left(p^{n}-1\right) / 2\right]-1=\left(p^{n}-3\right) / 2$ values of η different from 0 and 2 , the equation $(3-13)$ has two solutions while the equation $(3-14)$ has $p^{n(2 m-1)}-\theta p^{n(m-1)}$. Hence according as $\mu=+1$, the total number of solutions of the pair of equations is

$$
\text { 1. }\left\{p^{n(2 m-1)}-6 p^{n(m-1)}\right\}+2 \cdot\left\{p^{n(2 m-1)}+\theta\left(p^{n m}-p^{n(m-1)}\right)\right\}+2 \cdot \frac{\left(p^{n}-3\right)}{2}\left\{p^{n(2 m-1)}\right.
$$

$$
\begin{aligned}
& =p^{n(2 m-1)}\left\{1+2+p^{n}-3\right\}+p^{n(m-1)}\left\{-\theta-2 \theta-\theta p^{n}+3 \theta\right\}+2 \theta p^{n m} \\
& =p^{2 n m}+\theta p^{n m}
\end{aligned}
$$

Case 3. ($\mu=-1$). For $\eta=0$, the equation $(3-13)$ has only one solution while the equation $(3-14)$ has $p^{n(2 m-1)}-\epsilon p^{n(m-1)}$. For $\eta=a$, we have $a_{1} x_{1}^{2}=a$. This equation has solution only when a / a_{1} is a square, that is, a and a_{1} are both square or non-square, but this is not possible since $a_{1} a$ is non-square. Thus for $\eta=a$, the equation (3-13) has no solution. For $\eta \neq 0$, the equation (3-13) is $a_{1} x_{1}^{2}=\eta \neq 0$. Then for each of the $\left(p^{n}-1\right) / 2$ values of η, it hes
two solutions according as $a_{1} \eta$ is a square. Since $a_{1} a$ is a non-square and $a_{1} \eta$ is a square, $a \neq \eta$, that is, $a-\eta \neq 0$. Therefore the equation $(3-14)$ has $p^{n(2 m-1)}-6 p^{n(m-1)}$ sets of solutions. Hence the total number of solutions of the pair of equations for $\mu=-1$ is

$$
\text { 1. } \begin{aligned}
&\left\{p^{n(2 m-1)}-\theta p^{n(m-1)}\right\}+2 \cdot\left(p^{n}-1\right) \\
& 2\left\{p^{n(2 m-1)}-\theta p^{n(m-1)}\right\} \\
&=p^{n(2 m-1)}\left\{1+p^{n}-1\right\}+p^{n(m-1)}\left\{-\theta-\theta p^{n}+\theta\right\} \\
&=p^{2 n m}-\theta p^{n m} .
\end{aligned}
$$

Therefore there are $p^{2 n m}+\omega p^{n m}$ sets of solutions of $(3-12)$ where $\omega=+1,-1$ or 0 according as $(-1)^{m} a_{1} \ldots a_{2 m+1}$ is a square, a non-square or zero in the GF[$\left.\mathrm{p}^{\mathrm{n}}\right]$.

