CHAPTER YV
SOLUTION PROCEDURE OF SECURITY
CONSTRAINED OPTIMAL POWER FLOW

5.1 Introduction

The formulation of security constrained optimal power flow (SCOPF) problem is
presented in this chapter. Then, the sequential and the parallel of SADE_ALM for solving the
SCOPF problems are presented, followed by numerical test results. The conclusion is provided in

the last section.

5.2 Security Constrained Optimal Power Flow (SCOPF) Problem Formulation
The security constrained optimal power flow (SCOPF) problem is to optimize the total
generator fuel cost function subject to power balance constraints and inequality constraints of the
base-case state as well as the contingency-case states. Mathematically, the SCOPF problem can
be formulated as follows:
Min J(X,U) (5.1)

subject to

1) equality and inequality constraints of the base-case state

h(x,U)=0 (5.2)
g(x,U)<o0 (5.3)
2) equality and inequality constraints of the contingency-case states
n*(x,U*)=0, R=1,..NO (5.4)
g"(x.u*)<0, R=1,.,NO (5.5)

where

U and U" are the vectors of state variables of the base-case and the contingency-case states
respectively, consisting of real power of slack generator PG, , voltage magnitude of load bus V,,
reactive power of all generators J; , transformer and transmission line loadings S,. Therefore, U
(or U") can be expressed as U(or UR)= [Fg; ViV 196, 1496, 151, 1St gn J" where NL,

NG, NBR, and NO are number of load buses, number of generators, number of transformers and
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transmission lines, and numbers of contingency constraints to be considered, e.g. N-1
transmission line outages respectively.

X is the vector of control variables consisting of real power of all generators excluding slack
generator, voltage magnitude of all generators ¥, and transformer tap settings 7. Therefore, X
can be expressed as X =[Py ,....P; Vg, Vo, TjrTyr ]| where NT is the number of

regulating transformers.

h(X,U) and hR(X, v ) are the equality constraints of the base-case and the contingency-case
states respectively, representing typical power flow equations.

g, U) and gR(X, v ) are the inequality constraints of the base-case and the contingency-case
states respectively, representing system operating constraints.

J(X,U) is the objective function to be minimized. Generally, in the SCOPF problem, the

objective function J is the total generator fuel cost, i.e.

J=§ff(PG}) (5.6)

i=l
where f; () is the fuel cost function of the ith generator.

The fuel cost function is typically represented by simple quadratic function as in (5.7).

£i(P;)=aP2 +b,P; +c, .7)

where PG, is the real power of the ith generator, and a, b, and ¢, are the fuel cost coefficients.

The system operating constraints of both base-case state and contingency-case states can be
described below.

1) Generation constraints: Real and reactive power outputs, and voltage magnitude of

generators are restricted by the lower and upper limits, i.e.
V&:""' Vg Vg™, ieNG (5.8)

PI" <P; <P, ieNG (5.9)
Qs <Qg <QG . i€eNG (5.10)
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2) Transformer constraints: Transformer tap settings are restricted by the lower and upper

limits as follows:

T"™ <T,<T"™, ieNT (5.11)
3) Security constraints: These include the constraints of voltage magnitude at load buses and

power flow through transformers and transmission line (MVA loading) as follows:

Vi sv, sV, ieNL (5.12)
S, <S8, i€ NBR (5.13)

As in chapter 4, the inequality constraints of the state variables of the base-case and the
contingency-case states are handled using the augmented lagrange multiplier (ALM) method to

avoid ill-conditioning of the traditional penalty function method as show below [1, 2].

L, =f(x.U)+
A i{max l:gj(X,U), - 571-} +io:i{max |:gf (X,UR) _fo]} + (5.19)
gﬂJHmax |ig}. (x,u) - —z—r—_’;—:} s Eg{mm’ [gf(X.UR) - %]H

where

g, () ,Jj=12,..., m, m = 2*(1+NL+NG)+NBR are the m-inequality constraints of the state
variables of the base-case state,

g%() .R=1,...NO, j = 1,2,..., m, m = 2*(1+NL+NG)+NBR are the m-inequality constraints
of the state variables of the contingency-case states,

r, is the positive penalty multiplier, and

ﬂjs are the lagrange multipliers of the inequality constraints of the base-case and the
contingency-case states.

The inequality constraints of base-case state and contingency-case states can be defined as
follows:

1) real power of slack generator,

g =2, +P) (5.15)
g = (Pc. = Pc'j“") (5.16)
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2) voltage magnitude of load buses V:.‘ ,i=1,..,NL

g =(v, +vm) (5.18)
g =W, -V=) (5.19)

3) reactive power of generators QG’ ,i=1,...,NG

&= (— Q; +05" ) (5.20)
g =0 -02) (5.21)

4) transformer and transmission line loadings S s i=1,..., NBR

g =8/~ S ) (5.22)

i

After the unconstrained minimization problem has been solved, the lagrange multipliers
and the penalty parameter will be updated to create the new augmented lagrange function L, as

follows [1, 2]:

| i NO 4
= Bl 2, Hmax {g ,(xU) - f—’}} + g{max [8f (r.u®)- %JH (5:23)

Te g
i . [}
: AN S o
r;" Y Sy (5.24)
Temax» Otherwise

where c, is the positive constant increasing rate, and r, . is the maximum penalty multiplier.

The lagrange multipliers ,Qs in (5.23) are deterministically updated using the inequality
constraint functions evaluated from the previous solution of the unconstrained minimization
problem, while the penalty parameter 7, is increased by a constant rate until it reaches the
predetermined maximum value as shown in (5.24). The algorithm is then repeated until

termination. The detail of the proposed algorithms will be described in the next section.

5.3 SADE_ALM based security constrained optimal power flow (SADE_ALM-SCOPF)

As in section 4.3 of chapter 4, the proposed self-adaptive differential evolution with
augmented lagrange multiplier method (SADE_ALM) consists of two iterative loops, i.e. the
inner loop and the outer loop. The inner loop solves the unconstrained minimization problem

through the augmented lagrange function L, using self-adaptive differential evolution (SADE).
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After the unconstrained minimization problem has been solved, the outer loop will update the
lagrange multipliers s and the penalty parameter r, by the ALM method, to create the new
augmented lagrange function L. The algorithm is then repeated until a termination criterion, i.e.
1) maximum number of iterations, or 2) convergence of the optimal solution, is reached. The

flowchart of the SADE_ALM when applied to solve the SCOPF problems is shown in Figure 5.1.
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Figure 5.1 Flowchart of SADE_ALM-SCOPF

5.3.1 The inner loop iteration

The inner loop solves the augmented lagrange function L using self-adaptive differential
evolution (SADE). The algorithm of the inner loop iteration is the same as in section 4.3.1 of
chapter 4. However, it is important to note that power flow solutions in step 2) of the inner loop
iteration have to calculate both the base case and contingency case states to determine all the state

variables of the associated individual X, If the power flow of any individual fails to converge,
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such individual will be removed and replaced by new randomly generated individuals. This
process is repeated until the power flow calculations of such individuals are converged. In
addition, in the evaluation and selection of step 6), the fitness value (i.e., the augmented objective
value) of the trial vector X :{G) is compared with its parent vector X }G) using (5.14) instead of

(4.15).

5.3.2 The outer loop iteration

After the inner loop has converged, the outer loop is started by using the ALM method to
handle the inequality constraints of the state variables. The details of the outer loop iteration are
described as in the following.

1) Initialization

Set maximum iteration of the outer loop (V,), the constrain violation tolerance (E5y0), the
lagrange multiplier fs, and the penalty parameters rpincluding c,,and r, ..
2) Verifying constrain violation

The constrain violation of the optimal solution obtained from the inner loop (e ;P,) is

verified through the sum of the violated constraints (SVC) index as shown in (5.25) and (5.26).

SVC < £gye (5.25)
NO m

SVC = Z{max le, (x5 ) 0+ >3 fmae o2 (x,,) o] (5.26)
R=1j=1

where g (), and gf() .R=1,..NO, j = 12,.... m , m = 2*(1+NL+NG)+NBR are the m-
inequality constraints of the state variables of the base-case and the contingency-case states
respectively as explained in section 5.2.

3) Creating a new unconstrained minimization problem

To create a new unconstrained minimization problem for the next inner loop iteration, the
new augmented lagrange function L, is created by updating the lagrange multiplier fs and the
penalty parameter r, according to (5.23), and (5.24) respectively.

4) Appling the most feasible elitism

To improve the efficiency of the proposed algorithm, the most feasible elitism ( X ) 18

employed by replacing the worst individual X, which has the highest fitness value for the next

inner loop iteration. The elitist member is initialized by using the optimal solution obtained from
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the first outer loop iteration. Then, it is updated according to the extent of the violated SVC value
and the total generator fuel cost in (5.6) as described in section 4.3.2 of chapter 4. The outer loop
will be terminated according to the same two criteria as defined for the inner loop, i.e. 1)

maximum iteration number of the outer loop (¥,), and 2) convergence of the optimal solution.

5.4 Parallel SADE_ALM Based Security Constrained Optimal Power Flow
(pPSADE_ALM-SCOPF)

As in section 4.4 of chapter 4, the proposed pPSADE_ALM is a modified version of
sequential self-adaptive differential evolution (SADE_ALM) [1, 2] by exploiting parallel
processing techniques to increase the search capability of the algorithm via PC cluster 3x2.8 GHz
Pentium IV processors arranged in master-slave structure with 256 MB RAM for each PC.

The proposed pSADE_ALM consists of two iterative loops, i.e. the inner loop, and the
outer loop. The inner loop iteration is implemented independently by all ‘PCs with three DE’s
strategies, i.e. DE/rand/1/bin, DE/rand-to-best/1/bin, and DE/best/2/bin are assigned to slave node
1, slave node2, and master node respectively. For each PC, the inner loop iteration solves the
unconstrained minimization problem through the augmented lagrange function L_ using self-
adaptive differential evolution (SADE). After the unconstrained minimization problem has been
solved independently by all PCs, the master node will implement the outer loop iteration. Firstly,
the master node will compare and determine the best optimal result from all PCs based on the
extent of the constraint violation and the total generator fuel cost. Then, the master node will
update the lagrange multipliers fs and the penalty parameter r, to create the new augmented
lagrange function L, The algorithm is then repeated until a termination criterion, i.e. maximum
number of iterations or convergence of the optimal solution, is reached. The flowchart of the

pSADE_ALM when applied to solve the SCOPF problems is shown in Figure 5.2.

5.4.1 The inner loop iteration

For each PC, the inner loop solves the augmented lagrange function L, using self-
adaptive differential evolution (SADE) based on its DE’s strategy. The algorithm of the inner
loop iteration is described in section 4.4.3 of chapter 4. However, power flow solutions in step 2)
of the inner loop iteration of each PC have to calculate both the base case and contingency case

states to determine all the state variables of the associated individual X. If the power flow of any
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Figure 5.2 Flowchart of pPSADE_ALM-SCOPF

individual fails to converge, such individual will be removed and replaced by new randomly

generated individuals. This process is repeated until the power flow calculations of such

individuals are converged. In addition, in the evaluation and selection of step 6), the fitness value

(i.e., the augmented objective value) of the trial vector X "(6) is compared with its parent vector
g y p p

X using (5.14) instead of (4.15).

5.4.2 The outer loop iteration

After all PCs have finished the inner loop iteration, the master node starts the outer loop

iteration by using the ALM method to handle the inequality constraints of the state variables. The

details of the outer loop can be described as shown below.
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1) Initialization

Set maximum iteration of the outer loop (N,), the constrain violation tolerance (SS,C), the
lagrange multiplier fs, and the penalty parameters ryincluding c,,and r, ..

2) Determined the best optimal inner loop iteration

The master node will determine the best optimal inner loop iteration (X'op,m'v) by
comparing the final result of all PCs based on the extent of the sum of the violated constraints
(SVC) index in (5.25) and (5.26) and the total generator fuel cost in (5.6).

3) Verifying constrain violation

The constrain violation of the best optimal inner loop iteration (X .op,) is verified through
the sum of the violated constraints (SV'C) index as shown in (5.25) and (5.26).

4) Creating a new unconstrained minimization problem

A new unconstrained minimization problem through the new augmented lagrange
function L, is created by updating the lagrange multiplier fs and the penalty parameter r;
according to (5.23), and (5.24) respectively.

5) Appling the most feasible elitism

To improve the efficiency of the proposed algorithm, the most feasible elitism (X, ) is
employed by replacing the worst individual X, which has the highest fitness value for the next
inner loop iteration. The elitist member is initialized by using the optimal solution obtained from
the first outer loop iteration. Then, it is updated according to the extent of the violated SVC value
and the total generator fuel cost in (5.6) as described in section 4.4.2 of chapter 2. The outer loop

will be terminated according to the same two criteria as defined for the inner loop, i.e. 1)

maximum iteration number of the outer loop (¥,), and 2) convergence of the optimal solution.

5.5 Numerical Results

Both SADE_ALM and pSADE_ALM were implemented to solve the SCOPF problems
based on the IEEE-30 bus system [65] given in Appendix D. The effectiveness of both algorithms
has been tested and compared with other approaches, i.e. gradient based approach [65] and
evolutionary programming (EP) [13] based on quadratic cost curve model as in case 4.1 of
chapter 4. In addition, the SCOPF problems for the IEEE 57 and 118 bus system [66] were also
implemented. The bus, generator, and branch data for the IEEE 57 and 118 bus system are

presented in Appendix E and F respectively. The in-phase transformers for both test systems were
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assumed to be adjustable tap setting in ranges of & 10%. For each case, 10 independent runs were
conducted. The parameters of SADE_ALM and pSADE_ALM for all test cases used the same
setting as in section 4.5 of chapter 4. The programs were developed based on free numerical
software SCILAB 4.0 [61] on PC Cluster 3x2.8 GHz Pentium IV processors with 256 MB RAM
for each PC.

5.5.1 Case 5.1: The SCOPF with nine single-line outages for the IEEE 30 Bus System.

The SCOPF problems based on nine single-line outages (i.e., transmission lines
numbered 1, 2, 4, 5, 7, 33, 35, 37, and 38) of the base-case OPF in case 4.1 of chapter 4 are
considered in this case. The simulation results are shown in Table 5.1 and the convergence

characteristic of pPSADE_ALM and SADE_ALM is shown in Figure 5.3.

Table 5.1 Comparison of the total generator fuel costs for case 5.1

Fuel Cost ($/hr.) Average
Algorithm Average | Worst | S.D. of | computational
Best cost : :
cost cost cost time (minutes)
Gradient [65] | 813.740| N/A N/A N/A N/A
SADE ALM | 834.547 | 853.244 | 878.914 | 13.898 82.932
pSADE ALM | 826.978 | 826.978 | 826.978 | 0.000 157.401
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Figure 5.3 Convergence characteristic of pPSADE_ALM and SADE_ALM in case 5.1
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5.5.2 Case 5.2: The SCOPF with five single-line outages for the IEEE 30 Bus System.
As in case 5.1, the single-line outages of transmission lines numbered 1, 2, 3, 5, and 7 are
considered as five contingency-case states. The simulation results are shown in Table 5.2 and the

convergence characteristic of pPSADE_ALM and SADE_ALM is shown in Figure 5.4.

Table 5.2 Comparison of the total generator fuel costs for case 5.2

Fuel Cost ($/hr.) Average
Algorithm Best cost Average | Worst | S.D. of c.ornputz?tlonal
cost cost cost time (minutes)
EP [13] 813.730| N/A N/A N/A N/A
SADE ALM | 826.979 | 829.495 | 832.009 | 1.905 46.896
pSADE ALM | 826.242 | 826.242 | 826.242 | 0.000 119.812
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Figure 5.4 Convergence characteristic of pSADE_ALM and SADE_ALM in case 5.2

5.5.3 Case 5.3: The SCOPF for the IEEE 57 and 118 Bus System.

For this case, the SCOPF problems based on three single-line outages for the IEEE 57
bus system (i.e., transmission lines numbered 1, 3, and 7), and two single-line outages for the
IEEE 118 bus system (i.e., transmission lines numbered 1, and 3) of the base-case OPF in case 4.5
of chapter 4 are considered in this case. The simulation results are shown in Table 5.3 and the
convergence characteristic of pSADE_ALM and SADE_ALM for the IEEE 57 and 118 bus

system are shown in Figure 5.5 and 5.6 respectively.



Table 5.3 Comparison of the total generator fuel costs for case 5.3

Fuel Cost ($/hr.) &
Test Algorithm ekl
gori Average computation
System Best cost Vit Worst cost | S.D. of cost time (minutes)
57 Bus |-SADE_ALM | 41914.318 | 43519.361 | 49513.808 | 2335.130 46.686
pSADE ALM | 41724.443 | 41724.443 | 41724.443 |  0.000 180.496
118 Bus | -SADE_ALM | 145557.494] 157279294 186960.715] 12630.824 59.963
pSADE_ALM | 132022.765] 132022.765] 132022.765  0.000 210.770
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Figure 5.5 Convergence characteristic of SADE_ALM and pSADE_ALM for case 5.3 (the IEEE

57 bus system)
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Figure 5.6 Convergence characteristic of SADE_ALM and pSADE_ALM for case 5.3 (the [EEE
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Based on the IEEE 30 bus system, numerical results in case 5.1 and 5.2 show that the best,
the average, the worst and the S.D. of secure optimal solutions of pSADE_ALM are better than
SADE_ALM as shown in Table 5.1 and 5.2 respectively. This reveals that the robustness of the
secure optimal solutions determined from pSADE ALM are better than SADE ALM.
Additionally, it has been found that the secure optimal solutions determined from both algorithms
do not violate any constraints, whereas other approaches, i.e. conventional gradient method [65],
and EP [13] violate line loading limit of their associated contingency constraints. For example, in
case 1, the secure optimal solution reported by Alsac and Stott [65] violates line loading limit for
four contingency cases, i.e. violates line loading limit of line 2 and 4 by +13.04% and 8.4 %
respectively for outage of line 1, violates line loading limit of line 1 by +9.32% for outage of line
2, violates line loading limit of line 1 by +7.23% for outage of line 4, and violates line loading
limit of line 6 and 8 by +3.74% and 9.97 % respectively for outage of line 5. In case 2.2, the
secure optimal solution of EP reported by P. Somasundaram et.al. [13] also violates line loading
limit for three contingency cases, i.e. violates line loading limit of line 2 and 4 by +13.08% and
+8.30% for outage of line 1, violates line loading limit of line 1 by +9.45% for outage of line 2,
and violates line loading limit of line 6 and 8 by +3.47% and +10.84% for outage of line 5.

The secure optimal values of the best solution given by both algorithms for case 5.1 and
5.2 are shown in Table 5.4. Tables G.1-G.4 in Appendix G show power flow results of
SADE_ALM and pSADE_ALM based on the associated best secure optimal solution for case 5.1
and 5.2.

Using the same parameter setting, numerical results for case 5.3 reveal that
pPSADE_ALM also provide the best, the average, the worst, and the S.D. of secure optimal results
better than SADE_ALM for higher system, i.e. the IEEE 57 and 118 bus systems as shown in
Table 5.5. In addition, for all ten test runs, pPSADE_ALM provides the same optimal solution for
all trial runs without violating any constraints, whereas SADE_ALM violates constraints slightly
in trial no. 2, 3, 4, 5, 7, 8, and 9 for 57 bus system, and all trials for 118 bus system as shown in
Table 5.6.

The secure optimal values of the best solution given by SADE_ALM and pSADE_ALM
for the IEEE 57 and 118 bus system are shown in Table H.1 and 1.1 in Appendix H and I

respectively. In addition, Tables H.2-H.3 and 1.2-1.3 in Appendix H and I show power flow
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results of SADE_ALM and pSADE_ALM based on the associated best secure optimal solution

for 57 and 118 bus system respectively.

Table 5.4 The best secure optimal solutions given by SADE_ALM and pSADE_ALM in case 5.1

and 5.2
Secure optimum point (SCOPF) for the IEEE 30 Bus System
Optimal Solution Case | Case 2
SADE_ ALM | pSADE_ALM | SADE_ ALM | pSADE_ ALM

P (MW) 122.4151 123.6109 123.4114 123.5861
Pg: (MW) 60.9828 61.9204 60.9517 62.0803
Pgs (MW) 33.0807 30.3969 28.6305 28.4438
Pgs (MW) 35.0000 34.7396 35.0000 35.0000
PG (MW) 25.7310 20.6554 21.4728 20.7483
Pgis (MW) 12.8100 18.2952 20.3961 19.9315
Vi (pu.) 1.0500 1.0500 1.0462 1.0500
Vg2 (p-u.) 1.0357 1.0372 1.0349 1.0380
Vgs (p.u.) 0.9729 1.0051 0.9852 0.9967
Vs (p-u.) 0.9871 1.0269 1.0169 1.0326
Ve (p.u.) 1.1000 1.0925 1.0945 1.0979
Vi (pu.) 1.0374 1.0770 1.0452 1.0812

t 0.9916 1.0603 1.0887 1.0696

t> 0.9000 0.9034 0.9482 0.9361

tys 0.9252 0.9973 1.0051 1.0039

ta6 0.9296 0.9614 0.9574 0.9582
Fuel Costs ($/hr.)|  834.547 826.978 826.979 826.242

Table 5.5 Secure optimal results for the IEEE 57 and 118 bus system given by SADE_ALM and

pSADE_ALM for each trial run in case 5.3

|EEE 57 bus system IEEE 118 bus system
Trial SADE_ALM pSADE_ALM SADE_ALM pSADE_ALM
No. |"Fuel Cost sSvC Fuel Cost SvC Fuel Cost SvC Fuel Cost svC
($/hr.) index ($/hr.) index ($/br.) index ($/hr.) index

155970.067| 10.8821 | 132022.765 0
186960.715]| 9.7227 |132022.765
145557.494| 5.9813 [132022.765
157516.065| 5.4975 [132022.765
152323.295| 17.1330 | 132022.765
147645.613| 21.3875 |132022.765
149256.653| 18.2195 | 132022.765
148295.650| 11.2063 [132022.765
159886.623| 11.5467 | 132022.765
169380.761| 4.5246 |132022.765

41914.318 | 0.0000 | 41724.443
49513.808 | 0.1875 | 41724.443
42035.006 | 0.0022 | 41724.443
43278.048 | 0.0563 | 41724.443
43954.582 | 0.0311 41724.443
42077.328 | 0.0000 | 41724.443
44743.635 | 0.0120 | 41724.443
43642.652 | 0.0159 | 41724.443
42080.322 | 0.0609 | 41724.443
41953.914 | 0.0000 | 41724.443

ole|e[~|o|u|a v
ololololololololele
olo|o|olo|olololo
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5.6 Conclusion

The sequential self-adaptive differential evolution with augmented lagrange multiplier
method (SADE_ALM) and parallel SADE_ALM called pSADE_ALM were applied to solve the
SCOPF problems. The effectiveness of both algorithms has been tested based on the IEEE 30, 57,
and 118 bus test system. Numerical results show that the pSADE_ALM is successfully and
effectively implemented to find the global or quasi-global optimum for the SCOPF problems
without violating any constraints compared with other approaches. In addition, the robustness of
the optimal results determined from each trial for all test cases of pSADE_ALM is significantly
better than SADE_ALM. However, the average computational time of pSADE_ALM for all test
cases is higher than SADE_ALM. As in chapter 4, the main reason for this is that the
computational time for inner loop iteration of pSADE_ALM are higher than SADE_ALM since
the master node has to wait the elite members from every nodes including the master node before
proceeding the outer loop iteration, whereas the SADE_ALM can proceed the outerloop iteration
immediately without idle time. This drawback is still needed to be improved for future research.

In the next chapter, we will describe the mixed-integer SADE _ALM called
MISADE_ALM. Since, in practical situation of the OPF problems, the optimal settings of control
variables (e.g., shunt capacitors/reactors, and transformer tap-settings) are discrete in nature. The
SADE_ALM may possibly provide the local optimal solutions after the continuous control
variables are modified to the nearest discrete control variables. The details of the MISADE_ALM

with numerical results are presented in the following chapter.
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