CHAPTER 1V
SOLUTION PROCEDURE OF OPTIMAL POWER FLOW

4.1 Introduction
The formulation of optimal power flow (OPF) is firstly introduced in this chapter. Then,
the sequential and the parallel of SADE_ALM for solving the OPF problems are presented,

followed by numerical results and discussion. Conclusion is provided in the last section.

4.2 Optimal Power Flow (OPF) Problem Formulation
The optimal power flow (OPF) problem is to minimize the total generator fuel cost
function subject to power balance constraints and inequality constraints imposed on the operation

of power system. Mathematically, the OPF problem can be formulated as follows:

Min J(X,U) 4.1)
subject to

WX, U)=0 (4.2)

g(x,U)<0 (4.3)

where U is the vector of state variables consisting of real power of slack generator P, , » voltage
magnitude of load buses V|, reactive power of all generators (J; , transformer and transmission
line loadings S, Therefore, U can be expressed as U’ =/ Fe, Vi,V 1e+-s06, 18, +-1S e ]
where NL, NG, and NBR are number of load buses, number of generators, and number of
transformers and transmission lines.

X is the vector of control variables consisting of real power of all generators excluding
slack generator, voltage magnitude of all generators ¥, and transformer tap settings 7. Therefore,
X can be expressed as X = [Fo,r P66 V6, V6,5 ) Ty ] where NT is the number of
regulating transformers.

J(X,U) is the objective function to be minimized. Generally, in the OPF problem, the

objective function J is the total generator fuel cost, i.e.

NG
7= 1(7) (4.4)
i=]

where f, (PG, ) is the fuel cost function of the ith generator.
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h(X,U) is the equality constraints and represent typical power flow equations.

g(X,U) is the system operating constraints.

The system operating constraints can be described below,

1) Generation constraints: Real and reactive power outputs, and voltage magnitude of

generators are restricted by the lower and upper limits, i.e.

Vet SV <V, jeNG (4.5)
B <P, sB™, 1eNG (4.6)
0f" <Q; SO5™, ieNG (4.7

2) Ramp-rate constraints: The ramp-rate constraint restricts the operating range of the
physical lower and upper limit to the effective lower limit PGTi"(R} and upper limit PGT“(R)

respectively [62]. These limits can be defined as

P(;::m(R) L max[P(;""",P(gi . DR‘] (4.8)
PZ™®) = min[ PZ* P2 +UR, ] (4.9)

where P(_: is the power generation of ith unit at previous hour, and DR, and UR, are the
decreasing and increasing ramp-rate limits of ith unit respectively. Therefore, the ramp rate

constraint can be defined as
PN < b < Presh) (4.10)

3) Transformer constraints: Transformer tap settings are restricted by the lower and upper

limits as follows:
™ sTsT™,. jeNT (4.11)

4) Securities constraints: These include the constraints of voltage magnitude at load

buses and power flow through transformers and transmission line (MVA loading) as follows:

V"<V, SV™, ieNL (4.12)
S, <8, i€ NBR (4.13)

Four cases of the generator fuel cost function are used to verify the ability and robustness

of the proposed algorithms to solve the OPF problems, They are listed below.
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1) Quadratic cost curve model,

2) Piecewise quadratic cost curve model (multiple fuels),

3) Quadratic cost curve with rectified sine component model (valve-point effects), and

4) Combined multiple fuels, valve-point effects, and combined cycle cogeneration plant

(CCCP) model.

The conventional quadratic fuel cost function, the piecewise quadratic cost function, and
the quadratic cost function with rectified sine component are given by (3.1), (3.2), and (3.3) in
chapter 3 respectively.

For combined cycle co-generation plant, the fuel cost characteristic of the CCCP is also
non-smooth and non-differentiable form. In CCCP, gas and steam turbines are working in
combination to generate electric power. Specifically, if the configuration of the CCCP is a
topping cycle, the steam turbines can generate electric power from the wasted heat of gas turbine
units [63]. Figure 4.1 shows an example of the fuel cost curve of a CCCP with two gas turbines

and one steam turbine where mathematical description of the fuel cost function can be simplified

as follows [3]:

b,Fg, +c;, linearregion (8/hr.)

f,-(Pc,)={ (4.19)

K, constant region (8/hr.)

where b, and c; are cost coefficients of CCCP in linear region and K is the cost coefficient of

CCCP in constant region.

Fuel Cost ($/hr)

\ 4

Prin Output, P (MW) Prnax

GT1, GT2: Gas Turbine Generator Unit No. 1&2, ST: Steam Turbine Generator

Figure 4.1 Fuel-cost characteristic of CCCP with two gas turbines and one steam turbine
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The regions of B-C and E-F shown in the Figure 4.1 are produced from the steam turbine
which is driven from the exhausted heat of the gas turbines; thereby no additional fuel costs are
required in these regions.

It is worth mentioning that the inequality constraints of the control variables are self-
constrained. In this paper, the inequality constraints of the state variables are handled using the
augmented lagrange multiplier (ALM) method. Generally, the penalty function is the most
popular method for handling inequality constraints, due to its simple concept and convenience to
implementation. However, the penalty function method does suffer from the complication that as
the penalty parameter is increased toward infinity; the structure of the unconstrained problem
becomes increasing ill-conditioned. Therefore, each unconstrained minimization problem
becomes more difficult to solve, which has the effect of slowing the convergence rate of the
overall optimization process. On the other hand, if the penalty parameters are too small, the
constraint violation will not impose a high cost on the penalty function. Thus the optimal solution
based on the penalty function may not be feasible, whereas the ALM method can be employed
easily to handle inequality constraints without those difficulties as already described in chapter 2.

The unconstrained minimization problem through the augmented lagrange function L,
can be defined by augmented the m-inequality constraints of the state variables with the objective

function as shown below [1, 2].

2
L, = f(x,U)+ rgZ{max [gj (x.0), __@_]} +
J=1 2r, g
(4.15)
B/l -2]
J=1 Te

where g, () J =1,2,...,mym = 2(1+NL+NG)+NBR are the m-inequality constraints of the state
variables which can be defined as follows:

1) Real power of slack generator,

g =B +P3") (4.16)
g = (Pc. = ) 4.17)
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2) Voltage magnitude of load buses V‘ ,i=1,...,NL

&= (_ VL, T VL':““ ) (4.18)
g =, -V™) 4.19)

3) Reactive power of generators QG, ,i=1,.,NG

g =(-0; +0m) (4.20)
gin = (QG, _QE:“) (4.21)

4) Transformer and transmission line loadings S,.‘ ,i=1,..., NBR
g =(8,=sm™) 4.22)

r, is the positive penalty multiplier, and

ﬂ}s are the lagrange multipliers of the associated inequality constraints.

After the unconstrained minimization problem has been solved, the lagrange multipliers
ﬁJs and the penalty parameter r, will be updated to create the new augmented lagrange function L,

as follows [1, 2]:

i+l = B+ 2r {max [gj (x.U), -E—J—J (4.23)
rS
o [ee X S o
§ Fomax» Otherwise

where c, is the positive constant increasing rate, and r,,,,, is the maximum penalty multiplier.
From (4.23), it can be seen that the lagrange multipliers ﬁJs are deterministically updated
using the inequality constraint functions evaluated from the previous solution of the
unconstrained minimization problem, while the penalty parameter r, is increased by a constant
rate until it reaches the predetermined maximum value as shown in (4.24). The algorithm is then

repeated until termination. The detail of the proposed algorithms will be described in the next

section.



48

4.3 SADE_ALM Based Optimal Power Flow (SADE_ALM-OPF)

The proposed self-adaptive differential evolution with augmented lagrange multiplier
method (SADE_ALM) for solving the OPF problems consists of two iterative loops, i.e. the inner
and the outer loops. The inner loop solves the unconstrained minimization problem through the
augmented lagrange function L, using self-adaptive differential evolution (SADE). After the
unconstrained minimization problem has been solved, the outer loop will update the lagrange
multipliers fs and the penalty parameter r, by the ALM method to create the new augmented
lagrange function L. The algorithm is then repeated until a termination criterion, i.e. maximum
number of iterations or convergence of the optimal solution, is reached. The flowchart of the
SADE_ALM when applied to solve the OPF problems is shown in Figure 4.2. Details of the

proposed algorithm can be summarized hereafter.

4.3.1 The inner loop iteration
The details of the outer loop can be described as shown below.
1) Initialization
Set maximum iteration number of the inner loop (), convergence tolerance (€4,), and

then create the initial population size, NP, associated with their lower and upper limits as follows:

Xy = Xy + Py X (xw". —xg‘,w) (4.25)
Fj = F:a..'mv TP % (Fj.m' = FJJOW) (4.26)
CR}' 5 CRJJQW + P2 % (CR}JH . CRJJOWJ (4.27)

where
x; is the OPF control variable i of the n-dimensional parent vector X,
X; 10w and x,,,, are the lower and upper limits of x;,
F} is the mutation factor for individual .X;,

F

" ow and F,, are the lower and upper limits of F,

CR, is the crossover constant for individual X,

CR,,,., and CR, ,, are the lower and upper limits of CR, and
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Figure 4.2 Flowchart of SADE_ALM-OPF

Py P, and p,,are uniformly distributed random numbers within [0,1] for individual x,,

F, and CR, respectively.

An individual X; in a population represents a candidate of OPF solution. Each individual
consists of F, CR, and OPF control variables x, including real power of all generators excluding
slack generator, voltage magnitude of all generators including slack generator, and transformer
tap settings. For generators considering ramp rate constraints, the operating range of the physical
lower and upper limit will be restricted to the effective lower and upper limit according to (4.8)

and (4.9) respectively.
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2) Power flow solution

For each individual X, the Newton-Raphson (NR) power flow is applied to determine the
state variables of the associated X.. If the power flow of any individuals fails to converge, such
individuals will be removed and replaced by new randomly generated individuals. This process is
repeated until the power flow calculations of such individuals are converged.

3) Mutation

For each individual X, a mutant vector X : is created according to the following

expression.
Xy =Xy, + ) x oy, = 3,,) (423)
F; =F,, +F, X(Ff-f; _FJ&) (4.29)
CR/ =CR,, +F,x(CR,, —CR,, ) (4.30)

where 7, r,, and r, are randomly chosen indices such that 7, r,, and 7, € (I,NP) and r, #r, #r, #
j.

4) Handling boundary constraints

In the event that mutation causes control variables, x/g, F , and CR';, exceeded their
boundary constraints, i.e. lower or upper limit, such variables will be set to the nearest boundary.

5) Crossover

To increase the diversity of the mutant vectors, crossover is introduced to create the trial

vector X ’; based on a series of n-1 binomial experiments [17] as follows:

i X, VP, SCR, or i=i,, 431)
Y | x;, otherwise 3
F!,Yp,, <CR, or i, =1
ey 4 TPy = i (4.32)
F; otherwise
ER ey 0 LU .
. {CR_,-_ otherwise KE3)

where p,, p,, and p, are the uniformly distributed random number within [0,1] for individual x ’;,
F ':, and CR ’:respectively, and i, € (1, n+2) is a generated random integer number to ensure

: . = ; ;
that the trial vector X :ls different from its associated parent vector X,
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6) Evaluation and selection
To create the new population in the next generation G+1, the fitness value or the
augmented objective value in (4.15) of the trial vector X ;{G} is compared with its parent vector

X EG) in the same way as in the classical DE as shown below.

X}GH) - {X;{G): if La (X;(G)) = La (XJ(EG}) (4.34)

X E-G], otherwise

The inner loop will be terminated according to two defined criteria, i.e. 1) maximum

iteration number of the inner loop (N)), and 2) convergence of the optimal solution as follows:

AX,, &4 (4.35)
where € 4, is a convergence tolerance value of AX, , determined by
ax,, =[x - xS0 (4.36)

where " : |Ln is the infinity-norm, X ,Ef,) and X Eg,_') are the optimal solution obtained at current

generation (G) and previous generation (G-1) respectively.

4.3.2 The outer loop iteration

After the inner loop has converged, the outer loop is started by using the ALM method to
handle the inequality constraints of the state variables. The details of the outer loop can be
described as shown below.

1) Initialization

Set maximum iteration of the outer loop (N,), the constrain violation tolerance (gg,,.), the
lagrange multiplier fs, and the penalty parameters ryincludingc,,andr, ..

2) Verifying constrain violation

The constrain violation of the optimal solution obtained from the inner loop (X ;p,) is

verified through the sum of the violated constraints (SVC) index as shown in (4.37) and (4.38).

SVC < &g 4.37)

svC = {nax [g,(x2,) 0] (438)

=
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where g, () . J = 1,2,..., m are the m-inequality constraints of the state variables as explained in
section 2.

3) Creating a new unconstrained minimization problem

To create a new unconstrained minimization problem for the next inner loop iteration, the
new augmented lagrange function L, is created by updating the lagrange multiplier fs and the
penalty parameter r, according to (4.23), and (4.24) respectively.

4) Appling the most feasible elitism

To improve the efficiency of the proposed algorithm, the most feasible elitism (X, ) is
employed by replacing the worst individual X, which has the highest fitness value for the next
inner loop iteration. The elitist member is initialized by using the optimal solution obtained from
the first inner loop iteration. Then, it is updated according to the extent of the violated SVC value

and the total generator fuel cost in (4.4) as follows:

D If SVC(xE:D)> g, then

elite

X0, i sve(x:®)s sve(x &)

ﬂpf )
X = and J(xX %)< s (x &:0) (439)

X if,-(,;"), otherwise

2)1f SVC(X%:9)< g4y, then

elite

L L0, i aoe0) al ) (4.40)
elite (g_,r) " i
Xie . Otherwise

where X S}:‘;} and X f,f,;') are the elitist members of the current (K) and previous (K-1) iteration
of the outer loop respectively, and X ;ﬁf )is the optimal solution obtained from the current (X)
iteration of the inner loop.

The outer loop will be terminated according to the same criteria as defined for the inner

loop, i.e. 1) maximum iteration number of the outer loop (V,), and 2) convergence of the optimal

solution,

4.4 Parallel SADE_ALM Based Optimal Power Flow (pSADE_ALM-OPF)
The proposed pSADE_ALM is a modified version of sequential self-adaptive differential
evolution (SADE_ALM) [1, 2] by exploiting parallel processing techniques to increase the search

capability of the algorithm via PC cluster. Due to our limited resources, the PC cluster consists of
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3x2.8 GHz Pentium IV processors arranged in master-slave structure with 256 MB RAM for each
PC, 1x4 ports KVM switch, and 1x8 ports 10/100 Fast Ethernet Switching as shown in Figure
4.3. The program was developed based on free numerical software SCILAB 4.0 [61] running on
LINUX Fedora Core 2, and the message passing interface employed a PVM parallel toolbox from
SCILAB. The PVM [64] is a software package that permits heterogeneous computers hooked
together by a network and used as a single large parallel computer. Therefore, large
computational problems can be solved more cost effectively by using the aggregated power and

memory of many computers. An overview of parallel evolutionary algorithms is described in

Appendix C.
4 PORTS
KVM SWITCH
il ] [ 0 [ ]
MONTIOR SLAVE SLAVE
MASTER NODE NODE
NODE
No. 1 No. 2
{ I ] [ ]
E:"’énl a8 \—-| 3y ’—, o
. 8 PORTS
107100

FAST ETHERNET SWITCH

Figure 4.3 Structure of PC cluster

The proposed pSADE_ALM consists of two iterative loops, i.e. the inner loop and the
outer loop. The inner loop iteration is implemented independently by all PCs with different DE’s
strategies [20]. As in section 2.3 of chapter 2, typical DE’s strategies are classified using the
following notation: DE/x/y/z, where x indicates the method for selecting the parent chromosome
or the parent vector that will form the base of the mutant vector, y indicates the number of
different vectors used to perturb the base of the mutant vector, and z indicates the recombination
or the crossover mechanism used to create the offspring or the trial vector that already described
in chapter 2. For our proposed method, three different DE’s strategies, i.e. DE/rand/1/bin,

DE/rand-to-best/1/bin, and DE/best/2/bin are assigned to slave node 1, slave node2, and master
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node respectively. Details of these strategies are described in Appendix A. For each PC, the inner
loop iteration solves the unconstrained minimization problem through the augmented lagrange
function L, using self-adaptive differential evolution (SADE) [1, 2]. After the unconstrained
minimization problem has been solved independently by all PCs, the master node will implement
the outer loop iteration. Firstly, the master node will compare and determine the best optimal
result from all PCs based on the extent of the constraint violation and the total generator fuel cost.
Then, the master node will update the lagrange multipliers fs and the penalty parameter r, to
create the new augmented lagrange function L, The algorithm is then repeated until a termination
criterion, i.e. maximum number of iterations or convergence of the optimal solution, is reached.
The flowchart of the pPSADE_ALM when applied to solve the OPF problems is shown in Figure
4.4.

4.4.1 The inner loop iteration
For each PC, the inner loop solves the augmented lagrange function L, using self-
adaptive differential evolution (SADE) based on its DE’s strategy. The algorithm of the inner

loop iteration of pPSADE_ALM is similar to SADE_ALM as described in section 4.3.1.

4.4.2 The outer loop iteration

After all PCs have finished the inner loop iteration, the master node starts the outer loop
iteration by using the ALM method to handle the inequality constraints of the state variables. The
details of the outer loop can be described as shown below.

1) Initialization

Set maximum iteration of the outer loop (¥,), the constrain violation tolerance (€., the
lagrange multiplier fs, and the penalty parameters rpincluding ¢, andr, ..

2) Determined the best optimal inner loop iteration

The master node will determine the best optimal inner loop iteration (X ;P,) by
comparing the final result of all PCs based on the sum of the violated constraints (SVC) index in
(4.37) and (4.38) and the total generator fuel cost in (4.4).

3) Checking constrain violation

The constrain violation of the best optimal inner loop iteration ( X ;p,) is checked through

the sum of the violated constraints (S¥C) index as shown in (4.37) and (4.38).
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Figure 4.4 Flowchart of pPSADE_ALM-OPF

4) Creating the new unconstrained minimization problem

The new unconstrained minimization problem through the new augmented lagrange
function L, is created by updating the lagrange multiplier fs and the penalty parameter Ty
according to (4.23), and (4.24) respectively.

5) Appling the most feasible elitism

To improve the efficiency of the proposed algorithm, the most feasible elitism (X, ) is
employed by replacing the worst individual X, which has the highest fitness value for the next
inner loop iteration. The elitist member is initialized by using the optimal solution obtained from
the first inner loop iteration. Then, it is updated according to the extent of the sum of the violated

constraints (SVC) index in (4.37) and (4.38) and the total generator fuel cost in (4.4). The outer
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loop will be terminated according to the same criteria as the inner loop, i.e. 1) maximum iteration

number of the outer loop (¥,), and 2) convergence of the optimal solution.

4.5 Numerical Results

Both SADE_ALM and pSADE_ALM were implemented to solve the OPF problems
based on the IEEE-30 bus system given in O. Alsac and B. Stott [65] of which the bus, generator,
and branch data are presented in Table D.1-D.3 in Appendix D respectively. The effectiveness of
both algorithms has been tested and compared with other approaches, i.e. TS [9], TS/SA [10], ITS
[11], EP [7, 12, 13], IEP [14], and parallel EP [24] based on different fuel cost characteristics, i.e.
1) quadratic cost curve model, 2) piecewise quadratic cost curve model (multiple fuels), 3)
quadratic cost curve with rectified sine component model (valve-point effects), and 4) combined
multiple fuels, valve-point effects, and combined cycle cogeneration plant (CCCP) model. In
addition, the OPF problems with quadratic fuel cost function for the IEEE 57 and 118 bus system
[66] were also implemented. The bus, generator, and branch data for the IEEE 57 and 118 bus
system are presented in Appendix E and F respectively. The in-phase transformers for both test
systems were assumed to be adjustable tap setting in ranges of + 10%. For each case, 10
independent runs were conducted.

The parameters of SADE_ALM and pSADE_ALM for all test cases were set as follows:
NP =20, F = [0.2, 1], CR = [0.1; 1], 7, = 10", ¢, = 100, 7,,,,. = 10°, N, = 10", N, = 5, £ 4, = 10°,
Eoc = 10”. In addition, the lagrange multiplier (fs) of inequality constraints were initialized using
zeros values for all cases. The programs were developed based on free numerical software

SCILAB 4.0 [61] on PC Cluster 3x2.8 GHz Pentium IV processors with 256 MB RAM for each

PC as described in section 4.3.

4.5.1 Case 4.1: The OPF with Quadratic Fuel Cost Function for the IEEE 30 Bus System.
For this case, bus 1 is the slack bus of the system and the generator cost curves of all the

generators are represented by quadratic function as shown in (3.1). The generator cost coefficients

are given in Table 4.1 [7, 14]. The simulation results are shown in Table 4.2 and the convergence

characteristic of SADE_ALM and pSADE_ALM is shown in Figure 4.5.



Table 4.1 Generator cost coefficients in case 4.1

Bus No. Reall ;I i::;pm Cost Coefficients

Min Max a b G
1 50 200 |0.00375] 2.00 0
2 20 80 0.01750| 1.75 0
5 15 50 0.06250| 1.00 0
8 10 35 0.00834| 3.25 0
11 10 30 0.02500| 3.00 0
13 12 40 0.02500 | 3.00 0

Table 4.2 Comparison of the total generator fuel costs for case 4.1

Fuel Cost ($/hr.) Average

Algorithm Average | Worst | S.D. of | computational
Best cost p :

cost cost cost time (minutes)
Gradient [65] 802.40 | N/A N/A N/A N/A
EP [14] 802.907 | 803.232 | 803.474 | 0.226 66.693
TS [14] 802.502 | 802.632 | 802.746 | 0.080 86.227
TS/SA [14] 802.788 | 803.032 | 803.291 | 0.187 62.275
ITS [14] 804.556 | 805.812 | 806.856 | 0.754 88.495
IEP [14] 802.465 | 802.521 | 802.581 | 0.039 99.013
parallel EP" [24] | 802.510 803.330 | 804.280 | N/A 5.020
SADE ALM 802.404 | 802.407 | 802.411 | 0.003 15.934
pSADE ALM 802.405 | 802.405 | 802.405| 0.000 17.295

Notes: 1) Computational time is based on different computing hardware

2) Based on 50 different runs on 31 Intel Pentium IV 2.66 GHz processors

803.6 45
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--4&--SVC of SADE_ALM ----SVC of pSADE_ALM

Figure 4.5 Convergence characteristic of SADE_ALM and pSADE_ALM for case 4.1



4.5.2 Case 4.2: The OPF with multiple fuels for the IEEE 30 Bus System.

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by
piecewise quadratic functions using (3.3). Bus 5 is selected as the slack bus of the system to allow
more accurate control over units with discontinuities in cost curves [7]. The generator cost
coefficients of those two generators are given in Table 4.3 [7, 14]. The simulation results are

shown in Table 4.4 and the convergence characteristic of SADE_ALM and pSADE_ALM is

shown in Figure 4.6.
Table 4.3 Generator cost coefficients in case 4.2
Real power output ;
Bus No. limit (MW) Cost Coefficients

Min Max a b c

1 50 140 | 0.00500| 0.70 55
140 200 ]0.00750] 1.05 82.5

2 20 55 0.01000| 0.30 40
55 80 |0.02000] 0.60 80

Table 4.4 Comparison of the total generator fuel costs for case 4.2

Fuel Cost ($/hr.) Average

Algorithm Average | Worst | S.D. of | computational

Best cost : -

cost cost cost | time (minutes)
EP [14] 650.206 | 654.501 | 657.120 | 2.262 69.865
TS [14] 651.246 | 654.087 | 658.911 | 2.054 88.447
TS/SA [14] | 654.378 | 658.234 | 662.616 | 2.788 73.243
ITS [14] 654.874 | 664.473 | 675.035| 6.888 94.832
IEP [14] 649.312 | 650.217 | 651.125] 0.555 100.427
SADE ALM | 647.833 | 648.159 | 650.049 | 0.680 17.505
pSADE ALM | 647.833 | 647.833 | 647.833 | 0.000 21.568

Note: Based on differentent computing hardwares
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Figure 4.6 Convergence characteristic of SADE_ALM for case 4.2

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by

4.5.3 Case 4.3: The OPF problem with valve-point effects for the IEEE 30 Bus System.

characteristic of SADE_ALM and pSADE ALM is shown in Figure 4.7.

Table 4.5 Generator cost coefficients in case 4.3

Real power output :
BusNo.| limit (MW) it
Min Max a b o d e
1 50 200 |0.00160]2.00| 150| 50 |0.063
2 20 80 0.01000]2.50| 25 | 40 |0.098

Table 4.6 Comparison of the total generator fuel costs for case 4.3

Fuel Cost ($/hr.) Average

Algorithm Average | Worst | S.D. of | computational

Best cost ) :

cost cost cost time (minutes)
EP [14] 955.508 | 957.709 | 959.379 | 1.084 61.419
TS [14] 956.498 | 958.456 | 960.261 | 1.070 88.210
TS/SA [14] | 959.563 | 962.889 | 966.023 | 2.146 65.109
ITS [14] 969.109 | 977.170 | 985.533 | 6.191 85.138
IEP [14] 953.573 | 956.460 | 958.263 | 1.720 93.583
SADE ALM | 944.031 | 954.800 | 964.794 | 5.371 16.160
pSADE ALM | 953.516 | 953.516 | 953.516 | 0.000 29.372

Note: Based on differentent computing hardwares
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quadratic functions with rectified sine components using (3.2). As in case 2, bus 5 is selected to
be the slack bus of the system. The generator cost coefficients of those two generators are given

in Table 4.5 [7, 14]. The simulation results are shown in Table 4.6 and the convergence
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Figure 4.7 Convergence charai:téristic of SADE_ALM and pSADE_ALM for case 4.3

4.5.4 Case 4.4: The OPF with Combined Quadratic, Multiple Fuels, Valve-Point Effects,
and Combined Cycle Cogeneration Plant (CCCP) Model for the IEEE 30 Bus System.

In this case, the first generator is assumed to be combined cycle cogeneration plant
(CCCP), second generator has multiple-fuel options, and third and fourth generators have valve-
point effects. For the rest of the generators, the fuel cost functions are represented by simple
quadratic functions. As in case 4.2, bus 13 is selected to be the slack bus of the system. The
generator cost coefficients with ramp rate data are given in Table 4.7 [12]. The simulation results

are shown in Table 4.8 and the convergence characteristic of SADE_ALM is shown in Figure 4.8.

Table 4.7 Generator cost coefficients in case 4.4

Real power output ; Rate
Gen.|Bus [irr::l (M?N)p Cost Coefficients gint:lF::MW)
No. | No.

Min Max a b ¢ [d| e | K|P]|URDR,
1|1 50 63.750 | 0 2.426]-1195[/0] 0 | 0 [135] 65/ 85

63.750 | 82.875 | 0 J0.000f O 0] 0 (142

82.875) 93.750 | 0 ]7.146| -449.5[(0] 0 [ 0

93.750 [ 157.500 | 0 ]2.942)-5536]0f 0 | 0

157.500| 176.625| 0 0.000] 0 0] 0 [408

176.625| 200 0 16.074| -6649[0| 0 [ O

23052 43 53 10.010j0300f 35 J0] 0 [0 ]|65]12]22
53 77 10.020{0.600f 60 0] 0 [ 0O

3 15 20 47 10.070]0.095] 45 [40/0.08] 0 [ 35] 12 15

4 |8 10 33 [0.090/0.025| 30 ]30[0.09] 0 | 25| 8 | 16

5 111 11 26 10.025{3.000f 0 0/ 0 J]OJ20[6]9

6 |13 14 38 ]0.025{3.000f 0 0] 0 fo]30][8]16




Table 4.8 Comparison of the total generator fuel costs for case 4.4

Fuel Cost ($/hr.) Average
Algorithm Rest éciat Average | Worst | S.D. of c_omputguonal
cost cost cost | time (minutes)
EP [12] 747.300| N/A N/A N/A N/A
SADE ALM | 716.003 | 716.213 | 716.752 | 0.312 17.577
pSADE ALM | 716.021 | 716.021 | 716.021 | 0.000 21.851
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Figure 4.8 Convergence characteristic of SADE_ALM and pSADE_ALM for case 4.4
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4.5.5 Case 4.5: The OPF with Quadratic Fuel Cost Function Based on the IEEE 57 and 118

Bus System.

For this case, bus 1 and 69 are the slack bus of the IEEE 57 and 118 bus system

respectively. The generator cost curves of all the generators are represented by quadratic function

as shown in (3.1). The generator cost coefficients for the IEEE 57 and 118 bus system are given

in Table E.4 and F.4 in Appendix E and F respectively [66]. The simulation results are shown in

Table 4.9 and the convergence characteristic of SADE_ALM and pSADE_ALM for both systems

are shown in Figure 4.9 and 4.10.

Table 4.9 Comparison of the total generator fuel costs for case 4.5

Fuel Cost ($/hr.) Average
Test Algorithm Average computational
System Best cost Worst cost | S.D. of cost| ;
cost time (minutes)
57 Bus SADE ALM | 41795.508 | 42348.726 | 43931.655 | 636.666 10.639
pSADE ALM | 41710.286 | 41710.286 | 41710.286 0.001 45918
118 Bus SADE ALM |142453.920]151941.503] 161703.515] 5973.669 23.461
pSADE ALM |130383.237|130383.237 130383.237 0.003 108.482
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Figure 4.9 Convergence characteristic of SADE_ALM and pSADE_ALM for case 4.5 (the IEEE

57 bus system)

Generator Fuel Cost ($/hr.)
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Figure 4.10 Convergence characteristic of SADE_ALM and pSADE_ALM for case 4.5 (the IEEE

118 bus system)



63

Based on the IEEE 30 bus system, numerical results of cases 4.1-4.4 for both
SADE_ALM and pSADE_ALM from ten test runs do not violate any constraints. Tables 4.2, 4.4,
4.6, and 4.8 show that the best and the average fuel costs of both algorithms are lower than those
obtained by TS, TS/SA, ITS, EP, IEP, and parallel EP except gradient base method [65] in case
4.1 where the optimal solution is very similar. In addition, for case 4.2, the best generator fuel
cost of EP reported by J. Yuryevich etal. [7] is $647.79/hr, which is less expensive than
SADE_ALM in Table 4.4. However, the given solution violates reactive power of generator at
bus 1, 8, and 13 by -229.59%, +20%, and -86.67% respectively. For case 4.3, the best generator
fuel cost of EP, and TS reported by J. Yuryevich et.al [7], and M.A. Abido [9] respectively also
are less expensive than SADE_ALM in Table 4.6. However, the best solution given in J.
Yuryevich et.al [7] ($919.89/hr.) violates reactive power of generator at bus 1 by -252.04 %, and
line loading 1-2 by +17%. Finally, the best solution given in M. A. Abido [9] ($919.715/hr.) also
has the violation on the limit of line loading 1-2 by +4.1%.

Comparing between SADE_ALM and pSADE_ALM, we can see that the best generator
fuel costs of pSADE_ALM for case 4.1, 4.2, and 4.4 are similar with SADE_ALM, whereas the
best generator fuel costs of pSADE_ALM are expensive than SADE_ALM in case 4.3. However,
the average, the worst and the S.D. of generator fuel costs of pSADE_ALM for case 4.1-4.4 are
better than SADE_ALM as shown in Tables 4.2, 4.4, 4.6, and 4.8 respectively. These show that
the robustness or the consistency of the optimal solutions determined from pSADE ALM are
better than SADE_ALM. The optimal values of the best solution given by SADE_ALM and
pSADE_ALM in case 1-4 are shown in Table 4.10. Tables D.4-D.11 in Appendix D show power
flow results of SADE_ALM and pSADE_ALM based on the associated best optimal solution for
each case.

Based on the same parameter setting, numerical result for case 4.5 reveals that the best,
the average, the worst, and the S.D. of generator fuel costs of pPSADE_ALM are less expensive
than SADE_ALM for 57 and 118 bus systems as shown in Table 4.9. In addition, for all ten test
runs, pSADE_ALM provides the same optimal solution for all trial runs without violating any
constraints, whereas SADE_ALM violates constraints slightly in trial no. 1, 3, 4, 7, and 8 for 57
bus system, and all trials for 118 bus system as shown in Table 4.11. This emphasis the

pSADE_ALM is better than SADE_ALM for higher test systems.
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The optimal values of the best solution given by SADE_ALM and pSADE_ALM for 57
and 118 bus system are shown in Table E.5 and F.5 in Appendix E and F respectively. In
addition, Tables E.6-E.7 and F.6-F.7 in Appendix E and F show power flow results of
SADE_ALM and pSADE_ALM based on the associated best optimal solution for 57 and 118 bus

system respectively.

Table 4.10 The best optimal solutions given by SADE_ALM and pSADE_ALM in case 4.1-4.4

Optimal Case 1 Case 2 Case 3 Case 4
Solution | SADE_ |PSADE_ | SADE_ [pSADE_ | SADE_ [pSADE_ | SADE_ [pSADE_
ALM ALM ALM | ALM ALM ALM ALM | ALM
Pgi (MW) 1176.1522] 176.0940 140.0000| 140.0000 | 193.2903 | 149.7331| 176.6250] 176.6250
Pga (MW) | 48.8391 | 48.8401 | 55.0000 | 55.0000 | 52.5735 | 52.0571 | 53.0000 | 52.9999
Pgs (MW) | 21.5144 | 21.4981 | 24.1986 | 24.2086 | 17.5458 | 23.2772 | 20.0000 | 20.0000
Pgg (MW) | 22.1299 | 22.1855 | 35.0000 | 35.0000 | 10.0000 | 34.0310 | 10.0000 | 10.0001
Pgii (MW) | 12.2435 | 12.2571 | 18.6439 | 18.5943 | 10.0000 | 16.4249 | 17.3733 | 17.4531
Pgi3 (MW) | 12.0000 | 12.0000 | 17.6397 | 17.6797 | 12.0000 | 15.5025 | 16.2304 | 16.1540
Vg (pu.) | 1.0500 | 1.0500 | 1.0500 | 1.0500 | 1.0493 | 1.0500 | 1.0500 | 1.0500
Vg (pu.) | 1.0381 | 1.0379 | 1.0402 | 1.0404 | 1.0271 | 1.0396 | 1.0386 | 1.0386
Ves (pu.) | 1.0112 | 1.0108 | 1.0146 | 1.0150 | 1.0081 | 1.0138 | 1.0110 | 1.0111
Vgs (p-u.) | 1.0190 | 1.0190 | 1.0255 | 1.0257 | 1.0109 | 1.0242 | 1.0179 | 1.0177
Ve (pu) | 1.0911 | 1.0961 | 1.0910 | 1.0907 | 1.0732 | 1.0919 | 1.0954 | 1.0856
Vi3 (p-u.) | 1.0891 | 1.0903 | 1.0821 | 1.0840 | 0.9634 | 1.0848 | 1.0876 | 1.1000
t, 1.0556 | 1.0099 | 1.0475 | 1.0237 | 0.9612 | 1.0271 | 1.0576 | 0.9940
t); 0.9000 | 0.9534 | 0.9139 | 0.9392 | 1.0680 | 0.9353 | 0.9039 | 0.9744
tis 1.0070 | 1.0093 | 1.0004 | 1.0040 | 1.0118 | 1.0034 | 1.0058 | 1.0275
tse 0.9420 | 0.9423 | 0.9451 | 0.9465 | 0.9041 | 0.9450 | 0.9419 | 0.9420
¥ “:;ff:’;ts 802.404 | 802.405 | 647.833 | 647.833 | 944.031 | 953.516 | 716.003 | 716.021

Table 4.11 Optimal results for the IEEE 57 and 118 bus system given by SADE_ALM and
pSADE_ALM for each trial run in case 4.5

IEEE 57 bus system IEEE 118 bus system
s SADE_ALM pSADE_ALM SADE_ALM pSADE_ALM
No. | FuelCost | svc FuelCost [ SVC | FuelCost | SVC | FuelCost | svC
($/hr.) index ($/hr.) index ($/hr.) index ($/hr.) index
1 42671.820 0.0137 41710.286 0 149951.870 | 7.6540 | 130383.237 0
E 41795.508 | 0.0000 41710.286 0 142453.920 | 1.1131 | 130383.237 0
3 42012.763 | 0.0115 41710.286 0 161703.515 | 4.7328 | 130383.237 0
4 42641.993 | 0.0001 41710.286 0 150446.156 | 8.7776 | 130383.237 0
5 42023.418 | 0.0000 41710.286 0 148625.163 | 4.5063 | 130383.237 0
6 42345.237 | 0.0000 41710.286 0 147477.105 | 5.2237 | 130383.237 0
7 42287.809 0.0008 41710.286 0 153852.693 | 4.0102 | 130383.237 0
8 41888.548 | 0.0115 41710.286 0 148405.675 | 10.4295 | 130383.237 0
9 43931.655 | 0.0000 41710.286 0 159472628 | 4.2020 | 130383.237 0
10 41888.507 | 0.0000 41710.286 0 157026.301 | 2.9650 | 130383.237 0
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4.6 Conclusion

The sequential self-adaptive differential evolution with augmented lagrange multiplier
method (SADE_ALM) and parallel SADE_ALM called pSADE_ALM were applied to solve the
OPF problems for generators with non-smooth and nonconvex fuel cost functions. The
effectiveness of both algorithms have been tested on the IEEE 30-bus system with different fuel
cost characteristics. Numerical results show that the sequential SADE_ALM is successfully and
effectively implemented to find the best total generator fuel cost of the OPF problems compared
with other approaches, i.e. tabu search (TS), hybrid tabu search and simulated annealing (TS/SA),
improved tabu search (ITS), evolutionary programming (EP), improved evolutionary
programming (IEP), parallel EP, and pSADE_ALM. However, for higher test system, i.e. 57 and
118 bus system, the pSADE_ALM provide the best generator fuel cost less expensive than
SADE_ALM without violating any constraints. In addition, the robustness of the optimal results
determined from each trial for all test cases of pSADE_ALM is significantly better than
SADE_ALM. Therefore, the pSADE_ALM shows promising capability for solving the OPF
problems especially in larger system. However, the average computational time of pSADE_ALM
for all test cases is higher than SADE_ALM. The main reason for this is that there is the bottle
neck at the inner loop iteration of pPSADE_ALM. The computational time for inner loop iteration
of pSADE_ALM are higher than SADE_ALM since the master node has to wait the elite
members from every nodes including the master node before proceeding the outer loop iteration,
whereas the SADE_ALM can proceed the outerloop iteration immediately without idle time. This
drawback is still needed to be improved for future research.

In the next chapter, we will discuss the solution procedure of the security constrained
optimal power flow (SCOPF) using both sequential and parallel algorithm of SADE_ALM, since
the primary limitation of the OPF solution is lack of system security or contingency constraints
pertaining to credible outages of transmission lines and/or generating plants. Security of the
system requires that the optimal operation of the system is not only feasible for the intact system
(N-0) but also for the contingency cases (N-1). Therefore, in order to ensure security of the
system, contingency constraints for a few severe contingencies should be identified and OPF

schedule should be corrective rescheduling to eliminate limit violation.
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