CHAPTER II
LITERATURE REVIEW ON GENERATION
SCHEDULING

21 Introduction

The determination of most economical generation scheduling, which satisfies all
operating constraints, is one of the major problems in power system operation. In
most utilities, electric power is dominantly generated from thermal units. In the
current situation in which the fuel price is tend to continuously increases, the
economic consequence of operating schedule of thermal units becomes much more

important.

Scheduling generating units over a short-term horizon is a complex, large scale,
mixed-integer, and non-linear optimization problem. Generation scheduling problem
in the short-term horizon sometimes also called as unit commitment (UC) problem
[39, 47], which has been the subject of a large number of publications [26, 47, 48] for

decades.

In a conventional vertically integrated structure, the UC problem concerns with
the determination of committed units for supplying the forecasted demand and reserve
at minimal total cost while satisfying the prevailing constraints. Many papers which
utilizes several methods for obtaining the solution under this old structure have been
reported in [28, 48, 49]. This problem became much more complex since deregulation
in the electricity industry introduced in 1990°’s. Several methods has also been
proposed for solving the UC problem in the deregulated environment as reported in
[26, 50]. One of the models of deregulation is the combination of vertically integrated
system, called as the original system in this dissertation, with bilateral contracts. This
model is mainly adopted by developing countries by allowing some GENCOs to

directly sell power to consumers via bilateral transactions.

This chapter reviews several aspects which are usually considered in the unit

commitment problem. In the beginning, the formulation of UC problem based on both
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conventional and MILP method are presented. Then, issues which have strong
correlation with the UC problem, e.g. demand uncertainty and reliability, are
discussed. The review of optimization techniques currently available to solve UC
problem are also presented. Finally, literature study on decision analysis and its

previous application is described.

2.2 Conventional Unit Commitment Formulation

The UC problem can be formulated as minimization of the objective function
subjected to variety of system and unit constraints. The objective function is usually
non-convex and representing the total cost of producing electricity. The system
constraints comprise demand and spinning reserve as of the classical UC problem in
vertically integrated structure. The unit constraints include physical limitation of
generator, e.g. minimum and maximum delivered power, minimum up and down-time

constraints.

2.2.1 Objective Function

The objective of UC problem in a vertically integrated structure is to minimize
the total generation cost which is the sum of the production and the start-up costs of
all committed units over a scheduling period. This objective function can be

formulated as

T. 1
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where
P : output power of unit i at time t (MW),
U/ : status of unit 7 at time # (1=on; 0=of¥),

F,(P') :fuel cost function of unit i when its output power is P/ ($),

ST/ : start-up cost of unit i at time 7 (),
I : number of generating units,
T : number of scheduling periods (hours).

Generally, the fuel cost of a thermal generating unit can be modeled as a

quadratic function [39] as follows:

F(P)=a,+bP,+¢,P® $/hr ... ; 2.2)
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where

a;, b;, and ¢; : the cost coefficients for the generating unit i,
P; : generated power of generating unit i.

The UC objective function in (2.1) is subjected to some system and unit

constraints which will be explained in the following sub-section.

2.2.2 System Constraints
1) Demand requirements: Since the short-term generation scheduling is an
activity to determine the committed units to meet the forecasted demand, hence the

total amount of generated power has to balance with the forecasted load demand in

every time interval ( P, ). Generally, this constraint can be formulated as

4
R o L - T SR (2.3)
i=1

2) Spinning reserve requirements: Spinning reserve is the term used to
describe the total amount of generation available form all units synchronized on the
system minus the load demand and losses being supplied. The UC schedule should
guarantee that sufficient generating spinning reserve is available to ensure the reliable
and secure operation of the power system during emergency conditions. This means
that in the event of a contingency where one or more units are disconnected from the
system, there must be enough reserve in the remaining units to make up for the

generating outage. The spinning reserve requirement can be represented as follows:

I
Plog +SR' =3 Ppo; <OVt €[LT] o, O o J ' (2.4)
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where SR and P is the spinning reserve requirement at time ¢ and maximum
output capacity of unit i/ respectively.

Practically in most utilities, the spinning reserve requirement is
deterministically set as equal to or grater than the maximum capacity of the biggest
unit scheduled in one particular time. Other criteria for setting the reserve requirement
are based on a percentage of the peak load or even as a hybrid function of these two

quantities [39].

While the deterministic criteria are easy to implement, they do not represent the

stochastic nature of the operation of power system and do not take into account the
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intrinsic reliability of the generating units. Probabilistic techniques for computing
spinning reserve requirements, where a UC “risk index” determine the probability of
failing to meet demand at some instant in time, has been proposed in [25]. The
integration of the concept of a “risk index” with an LR-based UC program is
described in [44], where it is proposed that the optimal risk index is determined by a
balance between the cost of carrying a certain amount of reserve and the expected cost
of energy not supplied. The first factor of the cost/benefit analysis is a by-product of
the UC package while the second is simply the product of the expected energy not
supplied by the value of loss load (VOLL).

2.2.3 Unit Constraints
1) Generating limits: the generating units should only be scheduled to supply
power within the limits, set by their minimum synchronized generation level (Ppin)

and maximum capacity (Ppaxi). This constraint can be formulated as follows:

P

min,i

U! < P! < BZ VYN bl IKEE L] ccooococecenrnnnnns (2.5)

max,i— i *

2) Minimum up and down time: once a generating unit is committed, it should
be remaining on-line for a minimum period of time (MUT;). Similarly, one a
generating unit is de-committed, it should not be re-committed before a minimum

amount of time (MDT;). These two constraints can be formulated as follows:

1, if T;"‘,- <MUT,,
Ul'=4 0, M oMBEr—cllh..coorromrsersosrssrssssenes (2:6)
lor 0, otherwise
where
T,,;  :continuously online time of unit i at time t (hours)

Tjown; - continuously down time of unit i at time t (hours)
MUT; : minimum up time of unit i (hours)
MDT; :minimum down time of unit i (hours)

3) Start-up cost: The start-up costs are usually represented by exponential

function of the point the units have been shut-down, 7, ; , such as
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= Ta.; n,i
ST =a; + B,(1- ex;{%} ...................................................... (2.7)

The longer this period, the colder the unit is and the more expensive is to start-
up. In (2.7), the crews start-up cost and equipment maintenance costs, which are in
part proportional to the number of start-ups, are integrated in the term a;, the cost
associated with the required fuel to start-up the unit from the cold condition are

represented by the term f;, and the unit cooling rate is expressed by 7;.

The start-up cost function of the unit is usually can be approximated by
assuming that there are two start-up conditions, i.e. cold and hot start-up [49]. This

approximation is formulated as

ST! = {HST'" if MDIS Laoins SAegips +MDT,, oy

" | CST,, if Thppny > Tooa; + MDT,
where
HST;  :hot start-up cost of unit i ($)

CST;  : cold start-up cost of unit i ($)

Teoiai  : cold start hour of unit i (hours)
2.3 UC formulation based on MILP Method

2.3.1 Objective Function
The objective function in (2.1) can be reformulated in the form of mixed-integer

linear programming (MILP), which can be presented as follows:
g
1=li=1
where CP' and CU; represent production cost and start-up cost respectively.

Two components of the objective function (2.9) mentioned above are explained

in the following.

1) Production cost: As shown in Figure 2.1, the fuel cost function in (2.2) can
be approximated by a set of piecewise blocks [51]. The number of piecewise block
can be denoted as NL. In this research, two piecewise blocks are employed. F; and F;
represent the slop of block /=1 and /=2 of unit i/ respectively. Meanwhile, the

o represents the generated power in the considered block of the piecewise linear cost
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function. The constant value 4; shows the constant cost at minimum power output,

Ponini. The value of 4; can be calculated as

A 0 B P F OB g eermssssmmmsosessimativianases (2.10)
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Figure 2.1 Piecewise linear production cost

The analytical representation of this linear approximation is
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2) Start-up cost: Figure 2.2 shows the approximation of a typical exponential
start-up cost function [39] with a stairwise cost function. Since the time span has been
discretized into hourly periods, the start-up cost is also a discrete function, as shown
in Figure 2.2 with blackened circles. The discrete start-up cost can be asymptotically

approximated by a stairwise function (solid line in Figure 2.2).

A mixed-integer linear formulation for the stairwise start-up cost was proposed
in [52].

cu' > K,?[U; 4 f;v;*’],w €LVt €T,Vg E.ND oo (2.17)

r=|
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Regarding the two start-up conditions as stated in (2.8), the coefficient K can

be described as
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Figure 2.2 Exponential and stairwise start-up cost functions.
2.3.2 Minimum Up and Down Time Constraints

The new expressions for minimum up and down time constraints based on [51]

can be formulated as

VI
Y1 -U1]= 0,91 e B A S gy (220)
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where V; is the number of initial periods during which unit i must be online. V; is

mathematically expressed as V, = M:’n{T : (MUT - TOO,,I,. . }

I

Analogously, the new expression of minimum down time constraints can be
formulated as shown in (2.23)-(2.25).

W,
SU!=0,Yiel .. R R (2.23)
t=1

1+MDT, -1
Y 1-vf|> MpT U Ut Vie Ve =W, +1.7 - MDT, +1 (2.29)
g=t
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T
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where W; is the number of initial periods during which unit i must be offline. W; is

mathematically expressed as W, = Min{T i (MDT,. —Tooﬁ-‘,- Xl -U;! )}

24 Demand with Uncertainty Consideration

Since the expected product of UC process is a set of committed units to satisfy
the demand for each time interval within the scheduling periods without violating the
prevailing constraints hence it is necessary to provide a time chronological of the
forecasted demand. The time interval is normally half hour or one hour. The accuracy
of the short-term load forecast, as reported in [19], is generally in the range of 2 to 5
percent of the actual demand. It is found in general that, the longer lead time is, the
higher uncertainty in the forecasted value [19, 53] will be embedded. A typical
forecast demand of one day period by incorporating forecast error can be represented

by low, medium, and high load level as shown in Figure 2.3.
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Figure 2.3 A typical of demand uncertainty as function of lead time

2.5 Economic Dispatch

In the term of generation scheduling, economic dispatch is a process of
allocating output power to each committed unit, assuming that the thermal units at
each time interval have been determined, so that the system demand at the considered

time interval be supplied entirely subjected to the considered unit constraints at lowest
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production cost. Suppose that N/, generating units are committed at time interval t,

hence the ED problem can be formulated as

NI

D20 211 I .
i=1

subject to

NI, 5 .

30 . Dt S | .27

i=1

P GBS P s 2.28)

Since a linearized fuel cost characteristic is used in this research as has been
explained previously in subsection 2.2, hence the objective function of (2.26) now
becomes minimization of linear function. This linear objective function subjects to the
system demand constraint (2.27) and the individual unit output constraint (2.28).
Therefore the equations (2.26)-(2.28) constitute a linear programming problem which
can be solved by various methods, e.g. equal incremental cost criteria [39], simplex
method of Dantzig [54], or by using Interior Point Method (IPM) [55, 56].

2.6  Reliability Consideration

In short-term operation, it is important to ensure that electric power can be
supplied to customer both at minimum production cost and at most reliable. The
minimum cost can be obtained if utilities allocate the total online capacity at ‘close to
the edge” with the demand. In other hand, the responsibility of utilities to maintain the
reliability at an acceptable risk level can be achieved if utilities provide enough
spinning reserve. However, operation with too much reserve is not economic since it
incurs higher cost. Therefore, it is important to obtain the trade-off between reliability

and economic criteria.

Many papers in the previous works [49, 57] set the spinning reserve
requirement based on deterministic criterion, e.g. percentage of forecasted demand. In
practice, the amount of percentage reserve is defined based on the previous
experience. Other approach in determining the spinning reserve requirement with
consideration of stochastic nature of each generating unit is based on probabilistic
technique. The technique for computing the spinning reserve requirement have been
proposed in [25, 44]. In [44] risk index is used as stopping criteria to measure how

much reserve should be scheduled. Recent works which incorporating reliability
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issues in determining the UC decision by using LOLP and EUE constraints is
presented in [45]. The total cost under this technique is composed of production cost

and reliability cost.

Since most utilities still use deterministic criteria, i.e. specific percentage of
demand, it is necessary to evaluate the impact of different amount of percentage
criteria to the total cost, which is defined as the summation of production cost and
cost of expected unserved energy (EUE). The Expected Unserved Energy (ENS) cost
per-kWh, which may be called as value of loss load (VOLL). In Argentina, the VOLL
is set at $US 2/kWh [1, 58], whereas it was set at £ 2/kWh in the previous UK pool
market. Studies identified VOLL varying between 1-3 $US/kWh depending on

different consumer class [1].

In this thesis, the considered model in which some part of the contracted
demand need a certain level of back-up capacity creates new problems in related to
the determination of appropriate spinning reserve to maintain acceptable reliability

level of the overall obligated demand.

2.7  Solution Technique of Unit Commitment Problem

The thermal unit commitment problem has been traditionally solved in
centralized power systems to determine when to start-up or shutdown thermal
generating units and how to dispatch online generators to meet system demand and
spinning reserve requirements while satisfying unit constraints over a specific short-

term time span, so that the overall operation cost is minimized [39].

For several decades, this large-scale, mixed-integer, combinatorial, and
nonlinear programming problem has been an active research topic because of
potential savings in operation costs. As a consequence, several solution techniques
have been proposed such as heuristics [36, 59], dynamic programming [60-62],
mixed-integer linear programming (MILP) [51, 63, 64], Lagrangian relaxation [49, 57,
65], simulated annealing [45, 66-68], and evolution-inspired approaches [69-72]. A
recent extensive literature survey on unit commitment can be found in [26]. Among
the aforementioned methodologies, Lagrangian relaxation is the most widely used
approach because of its capability of solving large-scale problems. The main

disadvantage of this method is that, due to the non-convexities of the unit
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commitment problem, heuristic procedures are needed to find feasible solutions,

which may be suboptimal.

In contrast, MILP guarantees convergence to the optimal solution in a finite
number of steps [73] while providing a flexible and accurate modeling framework. In
addition, during the search of the problem tree, information on the proximity to the
optimal solution is available. Efficient mixed-integer linear software such as the
branch-and-cut algorithm has been developed, and optimized commercial solvers with
large-scale capabilities are currently available [74, 75]. As a consequence, a great deal

of attention has been paid to MILP-based approaches.

In [63], MILP was first applied to solve the unit commitment problem. The
formulation in [63] was based on the definition of three sets of binary variables to,
respectively, model the start-up, shut-down, and on/off states for every unit and every

time period.

This mixed-integer linear formulation was extended in [64] to model the self-
scheduling problem faced by a single generating unit in an electricity market. Non-
convex production costs, time-dependent start-up costs, and inter-temporal constraints
such as ramping limits and minimum up and down times were accounted for at the
expense of increasing the number of binary variables. For realistic power systems
comprising several tens of generators, the models of [63] and [64] require a large
number of binary variables. Thus, the resulting MILP problems might be
computationally intensive for state-of-the-art implementations of branch-and-cut

algorithms [74, 75] and current computing capabilities.

The latest improvement of MILP formulation proposed in [51] which only
requires a single set of binary variable (one per unit and per period). This alternative
mixed-integer linear formulation is denoted by MILP-UC. Unlike previous MILP
approach [63, 64], the lower number of binary variable proposed in MILP-UC yields
a reduction in the number of node of the search tree used by branch-and-cut algorithm,
as well as reduction in the number of constraint thus decreasing the computation time.
Moreover, MILP-UC accurately model thermal unit commitment states, intertemporal
constraints, and time-dependent start-up cost, thereby improving the modeling

capabilities.
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2.8 Decision Analysis for Generation Scheduling

2.8.1 Basic Concept of Decision Analysis

Electric utilities have faced with increasing uncertainty in engineering and
management decisions, which include unpredictable energy supply, capital market
chaos, demand uncertainty, and other regulatory statutes. These significant
uncertainties have motivated some electric utilities to consider using decision analysis
as a tool to determine engineering and management decisions. Decision analysis is a
formal procedure for analyzing and relating the factors relevant to a decision analysis
on an explicit and logical basis, with special emphasis on the treatment of uncertainty.
A review of wide range applications of decision analysis on electric power system
engineering and management are presented in [76]. The basic concept of decision
making process [77, 78] by employing decision analysis method can be summarized

below.

The first step of decision analysis is to list viable options for gathering
information, experimentation, and actions. After the list of possible events is
generated, the list is sorted into chronological order. Next, the consequences for each
possible state have to be identified as well as the probability of each event. The
critical component is to include all costs, benefits, and risks. It is always better to do

no decision analysis than to do a poor analysis.

The second step in applying decision analysis is to draw the tree. The decision
tree includes three types of nodes: decision, natural and result. The decision nodes
have connections to natural nodes, one connection for each possible decision. The
natural nodes are connected to other natural nodes or, finally to result nodes. Each
connection leaving a natural node identifies the probability (subjective or estimated)
of traversing to the next state based on all other probable outcomes for that natural
node. The final nodes are the result nodes which give the benefit minus the cost for
the alternative given the present state defined by all of the probability connections to
natural nodes back to the first decision node. All decision trees start with a decision

node. All decision trees end with result nodes.

The next step is to evaluate the tree. The common approach is to assume that all
natural nodes are Bayesian (normally distributed). Then the variable to be calculated

at each node, the expected monetary value is simply a summation of the weighted
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costs from the next node (natural or result). The alternative selected at each decision
node is made by selecting the path, which yields the maximum value in the case of

maximization problem or minimum value in the case of minimization problem.

The final step is to perform a sensitivity analysis. How much do the

probabilities have to vary in order to change the decision(s)?

2.8.2 Decision Analysis for Solving Generation Scheduling Problem

Regarding to generation scheduling problem, the application of decision
analysis to analyze the risk of short-term power system operational planning in
presence of electrical load forecast uncertainty is reported in [22]. Another work [78]
proposed the application of decision analysis for solving the dispatch problem of
GENCOs under competitive generation market structure. In this paper, decision
analysis is employed to determine the best dispatching strategy which constitutes the
balance between risk and expected profit. The implementation of decision making
steps presented in the previous subsection for solving generation scheduling problem

can be described below.

The first step is to gather all required data for determining committed units in
generation scheduling problem. The required data for solving generation scheduling

problem based on decision analysis can be summarized as follows:

a. Generating unit’s data: fuel cost characteristic, minimum and maximum
generation limit, minimum up and down time constraints, start-up cost

characteristic, and reliability data.

b.  Demand data: forecasted demand for 24-hour and its uncertainty parameter, i.e.

standard deviation and occurrence probability of load level.

c.  Other related parameters, i.e. value of loss load, spinning reserve requirement

(as a percentage of demand).

Based on the demand uncertainty, a set of demand scenarios for the 24-hour
period has to be developed. Each of the scenario represents information about the
possible demand to be considered. Each scenario is assigned with a weight of, PL;,
which reflects the possibility of its occurrence in the considering period. Each demand
scenario is used as input in a conventional unit commitment problem with a specified

spinning reserve requirement. This unit commitment problem can be solved by any
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developed unit commitment technique, e.g. MILP method. Based on the obtained
committed units, then the consequence of generation cost and risk cost for each

possible load level can be calculated.

Suppose that the number of load scenarios or levels is J. The decision tree of
generation scheduling problem can be illustrated as shown in Figure 2.4. The decision
tree is developed by connecting decision nodes to the J number of natural nodes. Each
natural node represents unit commitment (UC) decision of each considered load level.
The consequence cost of a specified scenario as a summation of all considered costs,
i.e. generation cost and risk cost after weighted by each occurrence probability, can be
calculated based on the resulted committed units from the natural node. The best
alternative is then selected among the UC strategies which give minimum expected
total cost. The impact of some investigated parameters to the selected scenario can be
performed by performing sensitivity analysis. All the details and test results will be
presented in Chapter 3.

expected total cost of scenaric#j is summation of all
costs weighted by each occurrence probability
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Figure 2.4 Decision tree of generation scheduling problem
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