CHAPTERII

THEORIES AND CONCEPTS

This chapter presents the theory and technique used in application of
geostatistical simulation for permeability determination from well logging data. It
involves two steps, which are geostatistical simulation and permeability equation

from porosity.

2.1 Geostatistical method

Geostatistics is a method that describes and models the spatial variability of
reservoir properties and the spatial correlation between related properties. The method
can be used to the construct spatial distribution of reservoir properties from some
sampled locations. The key feature of such techniques is its ability to account for
spatial character of the data and incorporate many types of geological and engineering
data. Spatial continuity is known to be important in describing reservoir parameters
since reservoir properties are correlated in space. Lack of spatial information seriously
decreases the accuracy of estimated properties. In general, it is likely to increase the

accuracy of reservoir properties when using geostatistics.

In addition, the important characteristic of geostatistics is probabilistic aspect
which can describe more heterogeneity in reservoir as well as generating the
distribution of reservoir parameters. Another aspect of geostatistics is the estimation
of petrophysical properties at unsampled location. It means that geostatistics can
recognize and preserve spatial relationships of sample data for estimation of data

values or describe uncertainty at unsampled locations.

The porosity is the reservoir property that related to reservoir connectivity.
This variable is spatial interdependent and its characteristic can be incorporated into

the simulation model.



8

Geostatistics plays a role in describing the spatial variable that is an essential
feature of many natural phenomena and provides adaptations of classical regression
techniques to take advantage of this variable. Geostatistics has many techniques that
use to analyze or estimate spatial variable, i.e. variogram, cross validation, Kriging

estimation, Gaussian simulation, and etc.

Several geostatistical tools are adopted in this study, which are variogram
analysis, cross validation and Sequential Gaussian Simulation. Therefore, the steps of
analysis can be classified as statistical analysis, structural analysis, cross validation,
and Sequential Gaussian Simulation, respectively. The geostatistical model flow chart

is presented in Figure 2.1.
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Figure 2.1: Geostatistical model flow chart

2.1.1 Statistical analysis

In statistical analysis, there are tools to analyze and summarize in order to
measure certain characteristics of variable such as a measure of location (mean,
median, minimum, maximum and quartiles), a measure of spread (variance and
standard deviation) and a measure of shape (coefficient of skewness, kurtosis and
coefficient of variation). The statistical tools used in this study consist of location

plot, histogram plot, and probability plot.
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Location plot is the map that exhibits the positions and values of sample in X-

Y-Z directions.

Histogram is a frequency distribution that used to present the observed values
from a sample set for a particular variable. The histogram rapidly and pictorially
provides a good representation of the shape of data’s distribution. The histogram
displays how often observed values fall within certain intervals or classes. The
variables encountered in data sets may assume a number of different distributional

shapes and forms.

Probability plot is some petrophysical of the estimation tool to present the
distribution of data. Probability plots consist of probability density function and

cumulative probability distribution function that can display type of distribution.

2.1.2 Structural analysis

Structural analysis is the most commonly used geostatistical technique for
describing the spatial relationship. It involves variogram construction and modeling.

Mathematically, the variogram calculation is defined as:

_.. N -
10 = o 3 (2 -2t B @1
where
¥ (}-; ) = variogram value at distance h
Nk) = number of data pair

Il

[Zx;)-Z(x; + i )] the difference in value between two sample points

separated by distance %

Equation 2.1 is used to calculate the variogram value at any distance ( 3 ) and
direction. The plot of variogram values against distance ( h ) along a specific direction
presents the spatial variability structure of that variable. Figure 2.2 presents a

variogram plot and basic components of variogram model.
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Figure 2.2: Basic components of variogram.

As seen in Figure 2.2, three main components of variogram model are sill,
range and nugget. Sill is the maximum variance of variable and theoretically equal to
the data variance. Range is the maximum distance in which data still have correlation.
The variation at small scale and should be zero at zero distance is called nugget. But
nugget in practice comes from two sources, measurement error and small scale

variation.

To determine the spatial correlation structure of a variable, the experimental
point variogram values at given distances and direction are calculated using Equation
2.1. After that, the variogram model is fitted into the experimental point variogram
values. In practice, the goodness of fit is observed by a visual inspection. There are
many variogram models to select for variogram modeling such as power, spherical,
exponential, Gaussian model, etc. For this study, only the equation and characteristics
of interested variogram models (spherical, exponential and Gaussian model) are

described.
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(1) Spherical Model

The spherical model is, in all probability, the most frequently used function for
modeling variograms. The shape of spherical model is represented in Figure 2.3. The
beginning portion of the graph, indicating small separation distances, display a linear
component. This linear behavior is lost at larger distances, and the curve flattens,
eventually reaching a plateau. A line tangent at the origin will intersect the sill at two-
thirds the range. The equation for the spherical model is described as follows:

C,+C; [%a—k—%;} h2a
Yy = @2
C,+C, h>a

where a is the range, C, is the nugget effect, and C; + C, is the sill.
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Figure 2.3: Spherical variogram model.

(if) Exponential Model

The shape of exponential model is very close to spherical model but represents
a more continuous process. Its shape is represented in Figure 2.4. It rises more steeply
from the origin than spherical model but then flattens at a more leisurely rate. The

equation and definitions of the exponential model are as follows:
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{5 +C;|:1—EXP(—2):| hsa
yéy = @3
C, +C; h>a

where a is the range, C, is the nugget effect, and C; + C, is the sill.
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Figure 2.4: Exponential variogram model.

(iii) Gaussian Model

Gaussian model is typically used to model processes that show extremely low
variation at short distances, to the extent that the model is parabolic at the origin. The
shape of this model is represented in Figure 2.5. The equation and definition of the

Gaussian model are as follows:

}32
C,+C;[1—EX1°(~—L;)] h<a
@

Yy = (2.4)
&+ h>a

where a is the range, C, is the nugget effect, and C; + C, is the sill.
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Figure 2.5: Gaussian variogram model.

The variogram calculation depends on sample distribution. Two parameters
which are angle and lag distance are introduced to calculate variogram values in less
restrictive way. Angle is the direction of variogram calculation. Lag distance is the
distance (k) for variogram calculation. This process can be applied well to regularly
spaced data but not the irregularly spaced data because there are few pairs of data in
irregularly spaced data that have the same distance. Thus, tolerlance angle,
bandwidth, and lag tolerance are introduced to find the more number of calculated
pairs. Tolerance angle is an angle that deviates from the observed direction. However,
at a large distance, the direction of interest loses its consistency. Therefore, bandwidth
is introduced because bandwidth is the offset of the direction of interest. It keeps the
pairs of sample that are located between the direction vector and bandwidth lines.
Finding the variogram value at any distances, lag distance is specified first and the
real distance is then calculated from the average distance in each lag. Figure 2.6

shows the variogram parameters such as angle, angle tolerance, lag distance, and
bandwidth.
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Figure 2.6: Variogram parameters (angle tolerance, lag distance, and bandwidth).

Generally, variogram is a significant tool that is necessary for estimation and
simulation process. The next section describes the cross validation process that

verifies the reliability of the variogram model.

2.1.3 Cross Validation

Cross validation is a technique to prove the reliability of the variograms from
structural analysis by comparing the estimated and true values using only the
information available in sample data set. In cross validation, the estimation method is
tested at the locations of existing samples. The sample value at a particular location is
temporarily discarded from the sample data set. The value at the same location is then
estimated using the remaining samples. The procedure, shown in Figure 2.7, can be
seen as an experiment in which we mimic the estimation process by pretending that
we had never sampled a certain location. Once the estimate is calculated and
compared to the true sample value that was initially removed from the sample data
set. This procedure is repeated for all available samples. The resulting true and

estimated values can then be compared using the statistical and visual tools.



15

~} %\(Jfﬁ?\ ?

g

Figure 2.7: An example of cross validation procedure. (a) Sample at selected location
being removed, (b) Sample after removed, (¢) Sample being estimated, and (d)
Comparing estimated with true value.

For this study, cross validation is used to evaluate the differences between
estimated calculated by Ordinary Kriging. Ordinary Kriging, is the one type of
Kriging estimation and remains an essential tool for geostatistical estimation
technique. The distinguishing feature of Ordinary Kriging is minimizing the error

variance.

Ordinary Kriging seeks an estimate of a property Z* at an unmeasured location

(point 0) that is based on the Z,; , i = 1,...,n known values.

n

Z* = 2AZg @.5)

=1
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Equation (2.5) is a common interpolator. The values 44, a=1,...,n, are the kriging

weights. Clearly, if the 1, was determined, the Z* will be calculated.

From the distinguishing feature of Ordinary Kriging to minimize the error

variance, the bias can be removed by forcing the 1, to sum to one as Equation (2.6)

below.
DA = 1 2.6)
=1
Equation (2.7) is the equation for Ordinary Kriging. u is the Lagrange
multiplier.
> A Wasvs )t =7, V) 5B =1,0m @.7)
a=1
where
n = number of data
v = point to be estimated
\ = sample at location x,

which can be written in the following matrix form:

E(v,,v,)... E(V:a"’,s)-- Z(V,,vn) 1 A r(v,,V)
Z(Vﬁ’v')" z(vﬁ,vﬂ).. ;_/(vﬂ,vn) 1 I B
y(vﬂ,vl).. y(v",vﬁ).. y(vﬂ,v") 1 " y(vn,\?)
1 RO | O | 0 H 1

The variogram values, (), can be calculated from Equations 2.2, 2.3 and 2.4
depend on variogram model. The Kriging weights can be obtained after solving the
matrix above. And then substituting the Kriging weights in Equation 2.5, the

estimated value is known.

As mention earlier, cross validation is used to compare the estimated value
with the true value, so the error distribution is very necessary for this study. The next

section describes the error and its distribution.
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The true values can be defined as Z,, Z»... Z,, and the estimated values can be
defined as Z,", Z, ... Z. . The estimation error can be defined as the true value minus

the estimate:
e = Z-Z (2.8)

Now that actual errors are being calculated, the concepts of precision,
accuracy and bias become increasingly important. Precision is a measure of the
variability between individual estimates or measurements and indicates how closely
individual calculations agree with one another. Accuracy, summarizes the closeness
of measurements to the true value, indicates how close to the target center
measurements or estimates come. Bias is defined as any systematic or consistent over-

or underestimation of true values of the quantity being estimated.

The average of the estimate should not deviate from the actual value because
deviation indicates a lack of accuracy. In fact, it will be much more satisfying if there

is no systematic error or bias in the estimates.

For error distributions, it is useful to apply the histogram plot. Figure 2.8
shows three identical histogram plots, each representing the distribution of the errors
made during an estimation process. The distribution in Figure 2.8a has an average
value of less than zero, indicating that a bias toward underestimation exists.
Conversely, the distribution of error in Figure 2.8b has a positive average, indicating
overestimation. Figure 2.8c presents a more balanced and acceptable situation, where
the average value is equal to zero. It should be noted that each of these diagrams
shows the same precision for the error distribution. Only Figure 2.8c can be

considered unbiased and also presented more accurate than the others.
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Figure 2.8: Examples of bias in error distributions: (a) negative bias, (b) positive bias,

and (c) no bias.

Figure 2.9 is the histogram visualization of precision. Each error distribution
has a mean of zero, indicating unbiasness. However the width or spread of the
distribution that indicates the variance is smaller in Figure 2.9a than in Figure 2.9b.
The smaller variance in error distribution indicates the higher precision of the

estimation model, and thus the high reliability of the input variogram model.
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Figure 2.9: Example of precision in error distribution: (a) The narrower distribution

indicates greater precision; (b) the wider distribution indicates less precision

2.1.4 Sequential Gaussian Simulation (SGS)

Sequential Gaussian Simulation is a procedure for estimating the reservoir
characteristics between data points. Based on the idea of iterating from a first guess
and refining through reduction of errors, the procedure generally transforms the model
to normality, simulating the normally distributed transform, and then back-

transforming to the original variable of interest.

The objective in simulation is to generate multiple realizations of the map each
of which would honor the actual data, and approximately the same variogram and

distribution.

Because the assumption of Sequential Gaussian Simulation states that the
study variable has to follow standard normal distribution with zero mean and unit

variance, normal score transform needs to be explained.
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The process of transforming original data to standard normal data is carried

out using normal score transform function. Let Z and Y be the two data sets and their
cdf (Cumulative Distribution Function) are FAz) and Fy(y), respectively. The
transform Y = ¢(Z) identifies the cumulative probabilities, which correspond to the Z

and Y p-quantiles:
Fy(yy) = Fz(z) = p.Ype|[0,1] (2.9)
Thus,
y = Fy(Fz() (2.10)

with 7 }1 (*) being the mverse cdf, or quantile function, of ¥ data set:

ys = Fy@), ¥pe[0,1] @.11)

In case that Y is standard normal with cdf’ Fy(y) = G(y), the transform
G'(FA*)) is the normal score transform. Figure 2.10 presents the graphical

transformation from real data set to normal score data.

Sequential Gaussian Simulation (SGS) is a procedure that uses the Kriging
mean variance to generate realization of a multivariate Gaussian field. By assuming
multivariate normal distribution and sequential simulation approach, SGS algorithm is
simulated variable value one cell node after another in a sequential manner,
subsequently using these values as the conditional data. The procedure is the

following:
1. Transforms the data set into a standard normal distribution.
2. Constructs variogram analysis and fits a proper model for the data set.
3. Selects grid node at random.

4. Performs Kriging to estimate the mean and variance values at that node

location.

5. Draws a simulated data from the distribution, and adds the simulated data

to the data set.
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6. Selects another grid node at random and repeats the procedure for Kriging

until all grid nodes are simulated.

7. Back transform to the original distribution, the realization map is created.

8. Repeats for all the other realizations using a different random number

sequence to generate multiple realization maps.
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Figure 2.10: Graphical display of normal score transform

Sequential Gaussian Simulation is a high performance to simulate values at
unsampling data locations. Figure 2.11 shows the flow chart of Sequential Gaussian

Simulation procedure. Practically, this technique consists of several calculations so

using computer program is necessary to speed up the computation process.
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Figure 2.11: Sequential Gaussian Simulation (SGS) flow chart.
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2.2 Permeability equation from porosity

Estimation of permeability is based on assumption that porous medium can be
represented by a bundle of capillary tubes. Combination of Darcy’s law and

Poiseuille’s law for straight cylindrical tubes yields following relationship:
k = —& (2.12)

Equation 2.12 shows that the relationship between porosity and permeability

depends on geometrical characteristics of the pore space.

2.2.1 Kozeny-Carman Equation

For a realistic porous medium, Kozeny and Carman have modified Equation
2.12 by adding a tortuousity factor (7) and using mean hydraulic radius, expressed
through surface area per unit grain volume Sgv. The resulting generalized of Kozeny-

Carman equation has the following form:

« BT @13
(1-8)% F,c2Sdv '

where F; is the shape factor, k is permeability in um” and & is porosity in fraction.

The group F, 7% is known as the Kozeny constant and was a main limitation in
previous attempts to use Equation 2.13 for permeability calculation. Because actual
values of the Kozeny constant are usually not known for particular rocks, and the term
of surface area per unit grain volume was not accounted in calculations. The hydraulic

flow unit approach is used to solve this problem.

2.2.2 Hydraulic Flow Unit Concept

In 2000, the concept of hydraulic flow unit has been used in the petroleum
industry to improve prediction of permeability in uncored wells by classification of
rock types and prediction of flow properties, based on sensible geological parameters

and the physics of flow at pore scale.
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As mentioned earlier in Equation 2.13, the HFU approach addresses variability

of the Kozeny constant and surface area per unit grain volume term by classificying
parameter flow zone indicator, which includes all major geological and geometrical

characteristics of a porous medium.

1

in P —— it
‘\‘FT,fS'gv

(2.14)
The central idea of the HFU approach is to group data according to the flow
zone indicator values and other petrophysical information using various statistical and
graphical methods to obtain classification of the HFU. HFU distribution in uncored
wells is then estimated using relations between HFU and flow zone indicator and

various responses.

Equation 2.13 can be written in field units (i.e., permeability is in md) and

combined with Equation 2.14 as the following form:

0.0314 & e ®) S 215
j; B Ty 2.15)

where the constant 0.0314 is the conversion factor from um’ to md.

To simplify graphical analysis of the data, two additional parameters, reservoir

quality index (RQI) and ratio of pore volume to grain volume (®.) are defined.

ROI = 00314 f-’i (2.16)
@
_ P
P = He 2.17)

Using the parameters earlier, Equation 2.15 can be rearranged as follows:
logROI = logP; +log F 7 (2.18)
According to Equation 2.18, a log-log plot of RQI vs. ®, yields a straight line

with unit slope and the intercept equal to flow zone indicator. Hence, all data points

corresponding to one HFU should lie on the same line.
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After calculating pore-throat related parameters of reservoir quality index and

flow zone indicator from core information, hydraulic flow unit can be identified based
on flow zone indicator values. Although there should exist one single flow zone
indicator value for each hydraulic flow unit, a distribution for each flow zone
indicator around its true mean results because of random measurement errors. When
multiple hydraulic flow unit groups exist, the overall flow zone indicator distribution
function is a superposition of the individual distribution functions around their means
flow zone indicator. Identification of each mean flow zone indicator, or the
corresponding hydraulic flow unit, would require decomposition of the overall flow
zone indicator distribution into its constituting elements. This is a desuperposition

problem and cluster analysis techniques allow for such a decomposition process.

Two approaches of cluster analysis, histogram analysis and probability plot,

are discussed in the next section.

2.2.3 Graphical Clustering Method

Graphical clustering methods of histogram analysis and probability plot
provide a general visual image of flow zone indicator distribution to determine the

number of hydraulic flow units, their mean values, and their distribution types.
(1) Histogram Approach

Because flow zone indicator distribution is a superposition of multiple log-
normal distributions, a histogram of flow zone indicator should show “n” number of
normal distributions for “n” number of hydraulic flow units. The convolved frequency
distribution for a mixture of multiple Gaussian probability density functions is
described by;

Ny 0 ; (Z _z_,)2
! = B ™ &

and,

Ny
e, = 1 (2.20)
i=1
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where w; is the weight factor. In general, w; are themselves from a probability density

function. For equally weighted distributions,

w;, = foralli=1,.,Ny (2.21)
Ny

When clusters are distinctly separate, the histogram clearly delineates each

hydraulic flow unit and provides their corresponding flow zone indicator values.

(ii) Probability Plot Approach

The probability plot or cumulative distribution function, is the integral of
histogram, is a smoother plot than the histogram. The scatter in data is reduced on this
and the identification of clusters becomes easier. The cumulative distribution function

is given by Equation 2.22 below.

Fo= [ o Zw % (ch: )J 2.22)

A normal probability plot has a specially arranged coordinate system where a
normal distribution forms a distinct straight line. Hence, the number of straight lines
and the limiting boundary values of flow zone indicator or each hydraulic flow unit
can be obtained from the probability plot of log (F.). Because means of flow zone
indicator values are not calculated from probability plots, the representative of flow
zone indicator value for each hydraulic flow unit is obtained by averaging all the flow
zone indicator values within the corresponding hydraulic flow unit limits. This exactly
corresponds to a linear least-square regression of data where the slope of the
regression line is equal to unity. The probability method is more useful than the

histogram method because it is easier to identify straight lines visually.

Two main theories and concepts of geostatistical model and permeability
equation from porosity that are described in this chapter will use in chapter III and

chapter IV. The procedure of this study is shown in Figure 2.12.



Prepares dataof porosity in x-y-z directions

Y

Y

Performs the statistical analysis

\4

Constructs variogram of porosity

No Cross validation

Sequential Gaussian Simulation

v

Determination permeability equation based on HFU concept

v

Application of permeability equation: Using reservoir simulation

v
Conclusions and recommendations

Figure 2.12: Procedure of the study.
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