Chapter 3

Electrostatic Boundary Value Problem
of Nonlinear Dielectric Composites

In order to get more accurate solutions of the electric potentials of nonlin-
ear dielectric composites, we have extended the general nonlinear partial differen-
tial equations of the electric potentials up to the third order (Eqs. (2.24)-(2.27))
as shown in the last chapter. In this chapter, we will apply these equations to
solve for the electric potentials up to the third order of a weakly nonlinear dielec-
tric composite consisting of dilute linear cylindrical inclusions randomly dispersed

in a nonlinear host medium.

3.1 Physical modeling

We consider a case of nonlinear dielectric composite, consisting of dilute linear
cylindrical inclusions randomly dispersed in a nonlinear host medium. In this
case, the system is assumed to be a single inclusion model. We apply a uniform
electric field (Eg) perpendicular to the inclusion axis and assume that the cylin-
drical dielectric inclusion has such a tiny radius relative to its length. Then this
problem is considered to be a two dimensional problem as shown in Figure 3.1,
where

i denotes the quantities in the inclusion region;

m denotes the quantities in the host region (medium);

a denotes the radius of the cylindrical inclusion;

g; is linear coefficient or the dielectric constant of the inclusion;

Em is linear coefficient or the dielectric constant of the medium;

Xm is the third-order nonlinear coefficient or nonlinear susceptibility of the medium.
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We use the cylindrical coordinate (7,0, z) help to solve this problem. Since the
system has a symmetric property along z-axis, the three dimensional system can
be reduced to a two dimensional system which is described by two variables, r

and 6.

Bm ’xm -

Figure 3.1: A single inclusion model of a nonlinear dilute dielectric composite in
an external uniform electric field (Eg).

3.2 Boundary conditions for the case of linear
inclusions in a nonlinear medium

The first boundary condition
The first boundary condition is located at the remote distance from the

cylindrical inclusion, which is
¢™(r — o0) = —Eyr cosé. (3.1)
Comparing Eq. (3.1) with Eq. (2.8), we obtain
0+ AOT + 2297 + A3 = —Egreosd ;v — 0o . (3.2)

We will consider each term as follows:
The zeroth order:

#6'(r — 00) = —Eyr cosf. (3.3)
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The first order:

o7 (r — o0) =0. (3.4)
The second order:

¢ (r — 00) = 0. (3.5)
The third order: }

¢5'(r — 00) = 0. (3.6)

Eqgs. (3.4), (3.5) and (3.6) show that the electric potentials at the remote distance
from the inclusion which the orders are higher than zero do not exist.
The secondary boundary condition

The secondary boundary condition lies within the linear inclusion at r =

0. Every order of the electric potential must be finite at this point, let say
¢i(r=0, 0) = finite, j=0, 1, 2,3. - (3.7)

The third boundary condition
The third boundary condition is situated at the connecting area, the
inclusion surface (r = a). The tangential of the electric field (E;) continues at

the inclusion surface for every order, which are
Etii=E;?: j:(], 1, 2! 3. (38)

From E = —V ¢ and for the tangential component of the electric field, Eq. (3.8)

becomes _
B 0 9
or
Gilr=a = ]'lr=a» =0, 1, 2, 3. (3.10)

Eq. (3.10) shows the continuity of electric potential at the inclusion surface for

every order.
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The fourth boundary condition
Because the normal component of the electric displacement is continuous

on the inclusion surface (r = a), we have

n-D;=n-D7, j=0,1, 2, 3, (3.11)

where 7 is a unit normal vector to the inclusion surface.
Substituting Eqs. (2.20)-(2.23) into Eq. (3.11) and consider each term in
cylindrical coordinate as follows:

The zeroth order:

9% L/ /048
“orla” ™3 la (5-16)
The first order:
645‘ 7 8¢>’“ 6(;’)0
o Mty T R (313)
The second order:
3¢2 = 3¢"‘ m 995
Br a Emar ( | +Gy or a)' (3.14)
The third order:
3‘#53 __ 047 m 003" m 0P m 095"
181" a_gma'r a+‘3m(00 31" a+Gl 37‘ a+Gz 61" L)‘ (315)

3.3 Derivation of the electric potentials of non-
linear composites

From Egs. (2.24)-(2.27), we can write the equations describing the electric
potential in the inclusion and host medium as follows:

For the inclusion region:

V¢ = 0, (3.16)
V3¢, =0, (3.17)
V3¢, = 0, (3.18)

V2L = 0. (3.19)
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Note that Egs. (3.16)-(3.19) are the Laplace equations.
For the host medium: For convenient, we let 3, = 1 or &,, of the following

equations is in unit of F,.
VP =0, (3.20)
Vi = ——[Gr vy + Gy - vep), (3:21)
Vigg = —[GR V267 + V4T - VGT + G V4§
+ Ve VG’;‘], (3.22)
Vigy =~ [} V267 + Ve - VGF + G VT + Ve - VGT
+ GT V2T + VT - vcg‘]. (3.23)

The zeroth-order electric potential
We first determine the zeroth-order electric potentials, ¢j(r, 8) and ¢g*(r, 8),
from Egs. (3.16) and (3.20). The general solution of these equations, which have

two variables r and 6, in cylindrical coordinate is [17],

¢2(r,0) = A3+Bglar+y r" [Agn cos(nf) + BS, sin(ne)]
n=]

+ Zr'" [C"{}’n cos(nd) + Dg, sin(nﬂ)] , a=1,m, (324

n=1

From the first boundary condition in Eq. (3.3), we obtain
&5 (r,0) = —Eqr cos 0 + Z r " [C,:,",‘l cos(nd) + Dg, sin(nB)] ; (3.25)
n=1

From the second boundary condition in Eq. (3.7), the coefficients C?, and D},

are zero so
00

¢o(r,0) = Z g [Afh cos(nf) + B}, sin(nﬁ)] A (3.26)

n=1
Using the third boundary condition in Eq. (3.10) and the orthogonal property
between cosine and sine functions, we obtain

m

A = }Tl — E. (3:27)
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From the fourth boundary condition in Eq. (3.12) and use the orthogonal prop-

erty between cosine and sine functions again, we obtain

i emCo1
EiAol = —SmE[} — a,z . (328)

From Egs. (3.27) and (3.28), the coefficients A%, and CJ} can be solved. The

solutions are

" —2emEo
Ay = ST (3.29)
and
a2 R
:{ 2 EOG’ (Em El). (330)

(&i+ &m)
Substituting A%, and C7} from Egs. (3.29) and (3.30) into Egs. (3.26) and (3.25)
respectively, we obtain the zeroth-order electric potential in the inclusion and

host medium as follows:

¢o(r,0) = —cEyrcosf, (3.31)

¢ (r,0) = —Eo(r+br')cosé, (3.32)

where b = gs""{—"'}“a, c= %ﬂ and € = €; + €, We note that E}) = —V¢} = cEg
which is a uniform or constant field.
The first-order electric potential

We will determine the first-order electric potential, ¢{(r,8) and ¢7*(r,6),
from Egs. (3.17) and (3.21). The electric potential equation in the inclusion, Eq.
(3.17), is a homogeneous partial differential equation (Laplace equation) which
the solution is known. In the host medium, Eq. (3.21) is a nonhomogeneous
partial differential equation. Therefore, there are two parts of the solutions (Eq.
(3.21)) which are the particular solution (¢7;(r,0)) and the complementary so-
lution (¢7(r,0)). The complementary solution is considered as a homogeneous
equation (the right-hand side of Eq. (3.21) is considered to be zero) which this

solution is known. For the particular solution, we need to compute the quantities
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of the right-hand side of Eq. (3.21). We omit the detail of calculation and give

the result
[Gg* V24m + VG - wg*] - [(85%—5 — 4%") cos 0 — 4br3 cos3a] E2. (3.33)
So, Eq. (3.21) becomes
V2 = —%1; [(Sb?r—ﬁ — 46* ") cos § — 4br=3 cos 39] E:.  (334)

The particular solution of ¢7*(r, @) is

m _ 1142 -3 318l ls o ey
Bip(r.0) = —— [er = b'r7%) cos+ 2 b~ cos 30| B3, (3.35)

The details of calculation of the particular solution, Eq. (3.35), are shown in
Appendix A.

For the complementary solution, we consider
V2¢i(r,0) = 0. (3.36)

The general solution of ¢7i(r,8), Eq. (3.36), is equivalent to Eq. (3.24). We

obtain

T(r,0) = AT'+ Bl*lnr+ z A [A'f:‘ cos(nf) + By, sin(nﬁ')]
n=1

Y 'r_“[ m cos(nd) + DT, sin(na)]. (3.37)

n=1
Combining the particular solution, Eq. (3.35), and the complementary solution,

Eq. (3.37), we obtain

¢7(r,0) = AP +BPlar+y r"[ m cos(nf) + B sin(ns)]
n=1

+ Z ron [C{’; cos(nf) + DT, Siﬂ(ﬂ9)]
n=1

1

€m

[(bzr_3 - é b*r~5) cos O + % br~! cos 39] Eg. (3398
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For the inclusion region, the general solution of ¢i(r, ), from Eq. (3.17)
is Laplace equation, can be written as
- e - 3
#i(r,0) = Aj+Bilnr+ Z * [A‘ln cos(nd) + By, sin(nﬂ)]
n=1

+) [ i cos(nf) + Dj, sin(nﬂ)] : (3.39)
n=1

From the first boundary condition in Eq. (3.4), ¢7*(r — 00) = 0, we find that the
coefficients AT = 0, B[* =0, AT, = 0 and B}, = 0. Thus, Eq. (3.38) is rewritten

as

¢ (r,0) = Zr““[@{’,‘,cos(nﬁ)-i—Df;sin(n&)]
n=1

1
> [(bzr'3 /A % B'r=%)cos 0+ 5 br cos 33] E3.  (3.40)

Em
From the secondary boundary condition in Eq. (3.7), ¢}(r = 0,6) = finite, the
coefficients A} = 0, B} = 0, C}, = 0 and Dj, = 0. Also, Eq. (3.39) can be

expressed as
(=]

gi(r,0) =3 " [A*m cos(nf) + Bi, sin(na)] . (3.41)

n=1

Substituting Eqs. (3.40) and (3.41) into the third boundary condition, Eq. (3.10),

we obtain
- -n m m 1 2 -3 1 3 -5
Y a [Clncos(nﬂ) + DT sm(ne)] b [(b 0™~ = b%) cos6
n=1 m

1 - S n i | S
+35 ba™! cos 39] E = Z a [Am cos(nf) + B}, 51n(n9)] . (342)

n=1

By using the orthogonal property between cosine and sine functions, we obtain
i o Logs 1.y E3
Al =a"CY} - E—“(bo 8 bg) Eyq, (3.43)

and

: 1
Ay =a%CT% — = batE}, (3.44)

m

where by = ba=2.
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Substituting Eqs. (3.40) and (3.41) into the fourth boundary condition, Eq.
(3.13), we obtain
5 i —na ! [Cm cos(nf) + DY} sin(nﬁ)] S [( —3b3 + g b3) cos @
m i In In En 0 6 0

1
~3 bocos 3.9] E

= [(1 — 2y + 262 — b3) cos 0 + (—bo + b2) cos 39] B

=g [ina"_l [Aiﬂ cos(nf) + B, sin(nﬂ)]] , (3.45)

where £, and ¢; are in unit of 3,,.

Again, using the orthogonal property between cosine and sine functions, we obtain
s 2.4 9 13\ 13 938 i

and

2_’;"; B - (b + BB = 3eiaAly,  (3.47)

From Egs. (3.43), (3.44), (3.46) and (3.47), the coefficients A},, CJ%, A}; and CT3

€m [ —3a74CE +

can be solved. The solutions are

. 1 2
4y = —c[-@B-C@)+a-+ W -8B, (349
a~? 5
mo_ _?[_ (365 — 5 68) + (1 = 2bo + 265 — B)
E3 b3
- S0 -69)] E3, (3.49)
i a=>1b37 13
b = - [3] E2, (3.50)
and
"o a™? bo & ,bo bo bg 3
13 = __[_E i §)+(—§+§)]Eu- (3.51)

Substituting CJ} and CT3 into Eq. (3.40), we obtain the first-order electric po-

tential in the host medium as
m i 103 Lig g
¢ (r,0) = —[(b;r +— (@ - 2 b )) cos

+(bar =3+ Ei(% w-l)) cos 33] E2, (3.52)



20

where
a* by 5
b= =[1-25 -8 —‘{]T—_“(b -3, (3.53)
(14 b{] %
5= ?[ 27 ( )] W

Substituting A}, and Aj; into Eq. (3.41), we obtain the first-order electric po-

tential in the inclusion as

8i(r,0) = —[byr cos 8 + bur® cos 39] E3, (3.55)
where
1 B
A [1 e “3‘] (3.56)
—2 b2
by = T(E)’ (3.57)

where € = €; + €, is in unit of B, = Xm/A.
The second-order electric potential
We continue to determine the second-order electric potentials ¢5(r, )
from Eq. (3.18) and ¢5'(r,6) from Eq. (3.22). In the inclusion region, the
general solution of ¢4(r,8) is
¢i(r,0) = A+ Bilnr+ i r“[ 5, cos(nd) + Bj, sin(nﬂ)]
n=1

+ Z r " [C{n cos(nf) + D}, sin(nﬁ')] : (3.58)
n=1

In the host medium, we need to compute the quantities of the right-hand side
of Eq. (3.22) by using mathematica program because the process is much time-

consuming. We give the result as

1 rs/16bb, 2062  12b%h; 24bb, 68b°  24b% 76b*
2m _ = L _ 1 i 2 i
Vil = Em [( rs rs T e T T et®
56b° 4b;  8b  48bby 320  24b%b,
36mr") CoRG ( =y * EmTS * r? = EmT? T
44b° 2b° 6b 24b,  12b° "
~ 30 + = )cos 30 + ( e A= R emr5) cos 59] Eg,

(3.59)



where &,, is in unit of B, = xm/A.
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The solutions of ¢J'(r,6) are composed of the particular solution (¢3,(r,6)) and

the complementary solution (¢5(r,6)). The particular solution of ¢5'(r,0) (see

Appendix A) is
1
¢g; =S [(bsr_s + bgr ™% + byr ™7 4 bgr?) cos f
+ (er_l +bior ™ +byr " + 5127‘_9) cos 30

+ (byar™! + byar™*) cos 59] Eg,

where;
5b
bs = bel_ﬁ,
b%b, 1763
Z/ /=Xt 0k ==
bﬁ 2 T b2+ ﬁgm’
b%by 196*
b /7 WL 1263
7H°
bg/ = ——
3 30em’
by b
by = *2***5:,
3
S . 1154
& 5  30em’
b° o
big = ——
b
biz = T
e = S B
T T T e

which &, is in unit of B, = xm/A and A?¢j3! is the second-order potential.

(3.60)

(3.61)
(3.62)
(3.63)
(3.64)
(3.65)
(3.66)
(3.67)
(3.68)
(3.69)

(3.70)

The calculations of the particular solution, ¢g;,(*r, #), are shown in detail (see

Appendix A).

For the complementary solution, we consider

V2gR(r,0) = 0.

(3.71)
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The general solution of ¢5%(r,0), Eq. (3.71), is

op(r,0) = AP+BPlnr+Y o [Ag; cos(nf) + B sin(nG)]
n=1

+ i r® [C’;‘; cos(nf) + D3, sin(nﬂ)] : (3.72)

n=1
Combining the particular solution, Eq. (3.60), and the complementary solution,

Eq. (3.72), we obtain

o7(r,6) = A7 +Bylar+ r [Ag; cos(nf) + BT 51n(n9)]

n=1
+ i =R [C‘;’"1 cos(n@) + D3 sm(nG)]
n=1

1
= [(b5'r'3 + bgr % + byr ™" + bgr®) cos 6 + (bt ™! + byor™®

+ by r "+ bior°) cos 30 + (byar ' + bar ) cos 59] Ej. (3.73)

Applying the four boundary conditions from Egs. (3.5), (3.7), (3.10) and (3.14)
to the two solutions, Eqgs. (3.58) and (3.73), mentioned above. The computation
of ¢5*(r, 0) is far more tedious, but similar to that of ¢7*(r, ). We finally obtain
the second-order electric potentials in the host medium and in the inclusion as

follows:

o7 (r,0) = (c;r 1 e b5r'3 +ber S + b + bg?"_g)) cos @

+

+

(cg‘lr“3 et (bg'r +bior™® + by + 5127'_9)) cos 30
(car's i = (bla'f' + 514?"”3)) cos 59] Eg, g

¢i(r,0) = — [c4f‘ cos 0 + csr° cos 36 + cgr° cos 58] E3, (3.75)



where

where
Cy
Cs
Cs

D,

Ds

Il

o = S(Clet——Dla),
o = T(@e- %),
= _‘%I(C,sm+pla),
o = T (Cent ),

—-}— (b;,a‘s + bﬁa_5 + b-;a"" + bg(l—g),
Em

£

1
—— (57'1:1.‘0«_1 + 5140_3)‘ X
Em

(3b5a—4 + 5bea 8 4+ Tbia=2 4 nga,'w) 4 (

+(
+

(bga_z 4+ 56100‘6 + 7511(1_8 + 9b10a™ 10) + (b]_ -+ :‘J_

+ (662 — 200+ :—2)a_" +(

+(

1
—— (bga_l + bma_s =5 buﬂ-_"r - blga_g),
m

2, — i)a—z

2Em

m

b2 1363
— dbyb+ ﬁ—)a—“ $ (— 6byb -+ 3b,b? — ——)a—ﬁ
Em £
34pt 13b°
2 Ml 02U~ N mgr—Ol— 10
3bab + 5~ )a S

bt b
6b,b% + S—)a*s .- a~1o

3em

(513 + i)a'2 +

+(

Em
ba
— 6byb — Sy

m

3em

b2
(352 + 3byy — —

o
5

1183

— 6bob — —

2Em

i
€

b

m

o

)
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(3.76)
(3.77)
(3.78)
(3.79)
(3.80)

(3.81)

(3.82)
(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

which €, and ¢; are in unit of B = Xm/) and € = ¢; + €,,. We note that \2¢7

is the second-order potential which is independent of A and depend on x2,.
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The results of our calculations show some miss prints of the reported work of Gu
and Yu [6] as confirmed by showing that our solutions satisfying the differential
equations and the boundary conditions.
The third-order electric potential

We have just obtained the zeroth, the first and the second-orders electric
potentials of a linear dielectric inclusion embedded in nonlinear dielectric medium.
Next we calculate the third-order electric potential of the system which is the new
result of this work. We will proceed to find the ¢4(r,8) and ¢3'(r,8) from Egs.
(3.19) and (3.23), respectively. In the inclusion region, the general solution of
#4(r,0) is

0
¢i(r,0) = A, +Bilnr+ Zr“[ 4, cos(nf) + B, sin(nﬂ)]

n=1

I i 7" [an cos(nf) + Di, sin(nﬁ)] g (3.88)

In the host medium, the quantities of the right-hand side of Eq. (3.23) are

computed by using mathematica program. We give the result as

1 = = = { % L
Vim(r,0) = s [(glr S gor +gar P+ gar M 4+ 95772 + ger %) cos 6
m
+ (g3 + ger ™ + gor "+ gror > + gur ™ + grar ¥
+ g1377°) 0830 + (g1ar > + g1s7 > + g6 + Guer 0

15)

+ glsf'"_“ + glgT‘_la + goor™ 7)) cos 58 + (9217"_3 + 9227'_5

+ gagr~7) cos 79] ET, (3.89)



where &, is in unit of 8, = xm/A and
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8b%  20bs
g1 = 8b2+16bc +z === (3.90)
46°  52b%
ga = —12bb% + 24byby — 12b%c, + 24bc, — o= -
+60be o 64bbs E 60bg = 12b%bg ¥ 4bm’ (3.91)
Em Em Em Em Em .
1006* 1286 24b%
g3 = —48bby by + 1446% = 245262 + (3?2 - = - 4 by
52b%b 144bb 120 64bb 12b
— 5] + 6 - b? + 10 - 111 (392)
Em Em Em Em Em
83265  112b%;  192b%b,  112b%bg  256bb;
s 2 _ = -
gi = <l 32, N 3em B Em ik Bt
_20063 o 40b%byq 1 120bby, = 24612’ (3.93)
Em Em Em Em
46b°  56b* 19262 400 60b%b 192bb
g, = 125 + by b7+ bbg n 12 (394)
2167 292b%bg  84b%byy
0 = -~ - (3.95)
16 4b
gr = —da+ 1oy — (3.96)
- Ed
S 12bb, 3 12bs A 24bbg > 24bb13‘ (3.97)
Em Em Em S
206° 26%h 24bb
go = 48biby +48bc, + Of s
€2, Em Em
24 p 2b 24b%b
. bﬁ + Sb b9 _ 3 10 _ 13‘ (398)
Em Em Em 34
1 3
g0 = —48bbyby — 24b%c, 4 40bes + 12426 _ 56b°b, 4 168b2b,
3es, 3Em
2 4 b 40b%
_4b bs i 64bbg . 0b; 4 88bbo B 80b11 . 0bby4 (3.99)
Em Em Em Em Em Em
706> 4b% 276b%b 126%b, 120
gn = —60b’cs — —— + - — 2 - %+ o
e €m Em Em Em
2
_60b3 B 72b%byg . 144bby, B 1445121 (3.100)

Em Bux Em Em
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G913

914

g15

16

q17

918

g19

920

921

922

Jas

104p° + 76b%b, _ 24b%b; M 192bbs ¥ 136b°by, 4 216bb;,

Em

3e2, Em Em Em Em
4667  40bbg E 216b%b,9
95?.“ Em Em '
1ahy | 4shy
Em Em |
2 2b
—24c, + % . 12bb, 3 24bbg 1 56bb;3 " 3 14,
Em Em ) .Em Em
106> 4006 40b%b 80bb
Y - 0 13, Y
4 1200% 40bb 60b 8b%b
120bc3+8%+ Wty Hng_ (Ox B0
€2, Em Em Ein
°  64b° 4b%b
36562 — 40Peus o) [T
2, 5 Eia
96bb
+ 11 _ 84b12’
Em Em
12b%,  12b%by, /. 168bb, 9
Em Em €m X
24b%b,9
Em
24bys
Eri
14K 6dbbis  40big
€2, Em Exi
56  48bb,  4b%by3  40bbyy
“6063 B, Pt =3 4

Em
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, (3.101)
(3.102)
(3.103)
(3.104)
(3.105)

(3.106)

(3.107)
(3.108)
(3.109)
(3.110)
(3.111)

(3.112)

The solutions of ¢5'(r,8), Eq. (3.89), are composed of the particular solution

(¢5:(r,0)) and the complementary solution (¢3:(r,6)). The particular solution of

@3 (r,0) is

Pap(r,0) =

m

1
_E_ [(615?"_3 -+ b]ﬁ?"hs -+ 5171‘_7 -+ blg?"_g + b19T_11

+bzgf‘_13) cosf + (bg]?'&l + bgg?‘“a Inr 4 6237‘_5 + b24r“7

+bz5?"_g + bgﬁ?‘_” -+ 6277‘_13) cos 30 + (bzg?‘_l + bzg?‘_s

+bgo?‘_5 Inr + bglf’_T + 532?‘"9 + 5331'_11 + b34?"_13) cos 50

+(basr ™ + bagr = + bgzr ) cos 79] E},

(3.113)

= ol _ 1 . it - g 1
where bis = § g1, bie = 35 92, bir = 35 93, b1s = 55 94, b19 = 135 95, b20 = 155 6
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by = —% g7, b = —% gs, bas = % 9o, baa = 3% 910, bas = %2— gu1, b = ﬁ 912,
bar = ﬁ 13, bag = —'2'11 914, bag = *11‘5 915, bso = —% 916, ba1 = % 17, byz =
L 918, b33 = & 19, bas = 133 920, bss = — 35 921, bss = — 35 922 and by = —3; gos.
The details of calculation of the particular solution, (;5’3";,(1', #), are similar to those
of ¢4 (r,0) as shown in Appendix A.

For the complementary solution, we consider
Vign(r,0) = 0. (3.114)
The general solution of ¢5:(r, ), Eq. (3.114), is

$p(r,0) = AP +Bplnr+y o [A;;:, cos(nd) + B sm(ne)]
n=l

+ Z ¥ 7 [Cg’,', cos(nf) + D, sin(n@)] L (3.115)
n=1

Combining the particular solution, Eq. (3.113), and the complementary solution,

Eq. (3.115), we obtain

$r(r0) = AP+ Bllar+S r" [A;; cos(n) + BT sin(ns)]

n=1

s i r " [C:i,’,‘t cos(nf) + Dy, sin(nf’)]
n=1

—i [(blsr's 4 bigr ™2 4+ byrr T 4 bygr =% + byor ™M 4 byor'2) cos b
+ (b;mr'_1 + boor 3 InT + bogr 3 + bogr 7 + bogr 2 + bogr ™M
+-by7r"1%) c0s 36 + (basT " + boor > + bagr P InT 4 by r 7

+b3ar ™ + bagr M + baar'3) cos 50 + (basT ! + bagr 3

+ba7r5) cos 79] E. (3.116)

Applying the four boundary conditions for the third-order electric potential from
Egs. (3.6), (3.7), (3.10) and (3.15) to the two solutions, Eqs. (3.88) and (3.116),

mentioned above. The computation of ¢5'(r, #) is far more tedious, but similar to
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that of ¢T*(r, 0) and ¢7*(r, 6). We finally obtain the third-order electric potentials

in the host medium and in the inclusion which are the new results of this work

as follows:

1
d)g‘('r, 9) = — [(07?"_1 + E—‘ (5151"_3 + 5167‘_5 + b17r_7 + b]g?"_g a b blg?"_“

m

1
+bggf'_13)) cosf + (car'3 4 e (bpr~! + (bggr*a In7 + bogr ™

boar ™" 4 bysr ™0 + bogr ™ + 5277‘_13)) cos 36

1 -
+(Cg'f'_5 + = (bggr'l + bogr 2 + baor P Inr + bgyr 7
m

+bgg?"_9 + b331"w11 1Y b34‘f_'13)) cos b

1
+ (Cl[]T‘_'lIr + E_ (bg5f‘_l H baﬁr_3 + b37r_5)) CcOos 76] Eg, (3117)

¢i(r,0) = — [cur cos 8 + cyor> cos 30 + ¢137° cos 50 + ci47" cos 76] El, (3.118)

where

Cr

Cs

C10

C11

C12

C13

Ci4

Il

¥

-E' (EIGE;‘ + Flﬂ.z < Hlaz),

1

-E— (3.53@36{ + F3G4 — H3G4),
1

g (5.55{15& =+ F5a6 = Hsaﬁ),

1
E (7E7ﬂ'.7€;' 1= F—,:as — HTG,S),

-1

ﬂ.? (—Elsm g Fla — Hla),
a3

? (—3E3Em + F3a == Hg{l),
“6 (=5Esem + Fsa — Hsa),
a—?

“é—' (_?ETEm + F'?a. - H'rﬂ.),

(3.119)
(3.120)
(3.121)
(3.122)
(3.123)
(3.124)
(3.125)

(3.126)



and

H,

29

E; = —"i (b15a_3 + bma_"’ + b”a_T + blga“g
+blg{1_“ + 520(.1_13), (3.127)
Ey = _EL (ba1a™! + (bp2a™2Ina + boza™ + boga™"
+ba5a7° + boga ™" + byra™"3), (3.128)
Es = —gl‘ (bzga*' + boga™2 + byga® Ina + bgyr~7
+b3207% + byza™M! + byga™?), (3.129)
E; = ‘“EL (bssa™ + bgga™® + bzza™), (3.130)
3b15 5515 7517 gblg llblg 13520
= = o A gl a2 g (3.131)
T b21 522 3522 Ina 5b23 7b24 gb25
' = P BT NE ® T aP
11byg ~ 13by
- bgg 3b29 bgg 5530 Ina 7b31 gb:rz
Bo= ~G 75080 N @ o
11b33  13b3y
bss  3bss  5baz
Fr = N ————— (3.134)
1 bg 1 2 36>  bby Tbs  2bbg
0—2(261—5) +E(_2bl_4bq_ﬁ_a+a —a)
3 2
i(sbb';’ UG8 NBHOR DL NIPERS TP _ b _ T2
ab 22, Em Em
12bﬁ 2b2bg bl(} 1 2 2 83&4
e a) g &-g(sbblbg ~ 188 + 3o — G
+58b3b1 _ 3b252 4 852b5 . 20bbﬁ 5 1757 IObbm 3 2b11)
4 5 4 9 3 2 2
al0 3e2, 3em Em Em Em Em

4b%b 14bb 3b 1 2765  5b% 18b%
4 10 i 12) (ﬁ o 2+8b7

B Em Em al? 2e2,

36bbg  5b%b
D% 11

Em Em

a'* \36e2,

Em Em Em

1Sbb12) 1 ( 5957 23b2b3 3 szbm

Em Em )’
(3.135)
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= %y 23\ Ll o bby 265
s = §(c,+a—a)+a—d(—bl—2bcl+ﬁc =i
4 4b%b
oy by L g g, W
6bb 3b 2b% 10b 36%b 6bb 1
oy Yo B W R 1Y + — (126010
Em Em Em Em Em Em a
bt 116% 24b%b b%b 10bb 4b
+6%0; — 10hey — 20+ s A e B
6e2, 3e. Em Em Em Em
10bbyy  14by;  4b%by4 1 2 8b° 2%,  37b%b,
B Evi 3 E ¥ Ei )+aw(5bca+e,2n 3£m+ Em
2b2 14b 5b, 106%b 14bb 18b
+bbﬁ_ b7+__s+ 0 m o, 12)+
1 43 8b* 3b%b 18bb 14b%b 18bb
_( B _ 8b%b, 3 ¥y A B, 12)
al? 12¢2, Eh Em En B Em
1 /4"  4b%bg  18b%bys
. 1 /2by 2by5 1 302  bby 2bby 2bbjz  6byg
Hy = E(Z+H)+&i(3@+4eﬁl_sm Em Eni +Em)
43 b%b 3b b2 4b
+-13(—6b162—66c2+10c:3——,;~ L My Ol S

8 b* 15b%b 10bb 5b
+Zb b13 - 6&514 ey 2 L, 10 3 11

)-I-a—ls(—lUsz—l-

Em Em 6e2, Ein o Em
6b2by4 1 “ » b 116%b,  b%by,  14bby;
g )+Eﬁ(9bb2+wb st
6b12 1 204, 2b%by; 18bbys 3b%by,
+;)+a—,-2~(— = + Ty )+ T (3.137)
_ 3by3 1 2bbiz  4byy 1 36°  3bby,  20%bys
= a%e, E( T e * a) 5(563 E, 4e2, L Em
6bbia\ 1 5 3%,  bbyy
— ) i 3( — 98 — 10hey — = — > ) (3.138)

which €; and €,, are in unit of B, = xm/A and € = €; + £,,. We note that \*¢J
depends on x3 and is independent of .

In order to confirm our solutions, ¢5'(r, #) and ¢4(r, #), we first substitute
#%'(r,0) back to the third-order potential equation for the host medium in Eq.
(3.23). We find that the quantities of both sides of Eq. (3.23) are the same and the

boundary condition is also confirmed. For the inclusion region, we obtain the same
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result by substituting ¢i(r, 8) into Eq. (3.19). Then our new results, ¢5'(r, 8) and
@i (r, 0), are reliable. We learn through the calculations that higher-order terms of
the electric potential can be solved by the same procedure and analytic solutions
for them are all available. There will be no problems if we use mathematica
program help to solve higher-order terms of the electric potential. We will use
these results of the electric potential to calculate the effective nonlinear dielectric

coefficients of nonlinear composites and the details will be shown in chapter 5.
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