Chapter 2
Theory

In several works [6-8|, the electric potentials of weakly nonlinear compos-
ites have been obtained only up to the second order by using the perturbation
expansion method. In order to obtain a more accurate solution of the electric
potential, we extend the derivation for the field equations and the boundary con-

ditions from base on the second-order to the third-order perturbation expansion.

2.1 Linear dielectrics

A linear dielectric has a property of which the response to an external
electric field is linear. Thus, we can write the relation between the electric dis-

placement (D) and the electric field (E) of a linear dielectric as
D=c¢E, (2.1)

where € is a linear coefficient or a dielectric constant.

2.2 Nonlinear dielectrics

A nonlinear dielectric has the property of which the response to an external
electric field is nonlinear. Thus, we consider the relation between the electric

displacement (D) and the electric field (E) of nonlinear dielectric as [8]
D=¢E+x|[EE+1|E*E, (2.2)

where €, x, and 7 are linear, nonlinear dielectric coefficients in the third and the
fifth-orders, respectively. In this research, we will focus on the nonlinear dielectric
composite in the case of weak nonlinearity which nonlinear properties are that

7|E|* < € and x|E]? € €.



2.3 Basic equations of electrostatics

The basic equations of electrostatics are Maxwell’s equations, the first one
is that

V-D=py, (2.3)

where py is the free electric charge density.
For the electrostatic problem in which there is no free electric charge (or

ps = 0). Thus, we can reduce Eq. (2.3) in to

V-D=0. (2.4)
Another one of the four Maxwell’s equations for electrostatics is

VxE=0. (2.5)

From this equation, the electric field (E) can be written in terms of the scalar
electric potential (¢), which is

E=-V¢. (2.6)

Egs. (2.2), (2.4) and (2.6) are the basic equations to be used to solve for the
electric potential.

Because the nonlinear relation between the electric displacement and the
electric filed of the composite so that the equation for the electric potential is
a very nonlinear differential equation which cannot be solved exactly in an an-
alytic form. Thus, many approximation methods l}ave been developed to solve
this problem such as variational method [1,19], decoupling approximation [10]
and perturbation expansion method [6-8,15,16]. Each approximation method has
its own advantages and drawbacks. In this research, we use the perturbation

expansion method to solve this problem.



2.4 The perturbation expansion method

In theoretical physics, there are several forms of equation that the exact
solutions cannot be obtained. Therefore, the approximate methods are required
to get the solutions in order to explain these problems to the accurate level that is
acceptable. The perturbation expansion method is based on the assumption that
the system being considered is not much different from the system that has an
exact solution. For example, problems of hydrogen atom and nonlinear harmonic
oscillator [16]. By using the perturbation expansion method, the solution for each
order is solved separately and the approximate solution is obtained by combining

the solutions of all orders.

2.5 Field equations and boundary conditions

In this work, we first extend the derivation for the field equations and the
boundary conditions from the second order previously published [6-8] to base on
the third-order perturbation expansion for weakly nonlinear dielectric composites
with the electric displacement (D) and the electric field (E) relation including
the fifth-order nonlinear coefficient as shown in Eq. (2.2).

We begin with writing the electrostatic potentials il the inclusion (¢)
and host medium (¢™) using the perturbation expansion method up to the third

order as follows:

@' = ¢h + A} + A2 + N3¢ (2.7)
™ = ¢gt + AT + A27 + AT (2.8)
where the superscripts i and m denote, respectively, the quantities in the inclu-

sion region and in the host medium region. A is the expansion parameter that

represents how much the nonlinearity of the composite is. We will call ¢g, ¢§, ¢$



and ¢§ are the zeroth, the first, the second and the third orders electric potentials,
respectively and a = i or m.
From Eq. (2.6), the electric field can also be written in the form of

perturbation expansion as
E* = —(V¢§ + AV¢ + A2Ve5 + A3V ¢3), (2.9)

or

E® = E§ + AE{ + AZES + A3ES. (2.10)

Again, E§, E, Ef and E§ are the zeroth, the first, the second and the third
orders electric fields, respectively.

For convenient, it is defined
G =[EY? = (V¢?) - (V4°), (2.11)

to denote the square of the electric fields in each region. From Egs. (2.10) and
(2.11), we obtain

G* = (Eg+AE? + ME2+ N ES) (ES ¥ AES +22ES + A’E3),
G* = |EZ?+ A2 E§-E2)+ )2 ES - ES +{ES|®) + A3 (2 ES - E2 + 2 ES - E9)

+ higher order terms.

G* can be written in the form of perturbation expansion as follows:

G%= G + X6 £ NG+ 67, (2.12)
where
Gg = V43P, (2.13)
Gl =2 Vg - Vi, (2.14)
5 = |V’ +2 Vo - Vg3, (2.15)

S =2 VT Vg +2 Vs Vs . (2.16)



From Eq. (2.2), the relation between the electric displacement and the electric

field in the inclusion and host medium can be written as
D® =g, E* + x.G* E* + 1’,@,,:((}“"‘)2 E*. (2.17)

Substituting E* from Eq. (2.10) and G* from Eq. (2.12) into Eq. (2.17), we

obtain

D® = —£,(V¢§ + AV S + N2V92 + A3V e3) — xa(GE + AGS + XG5 + X°GS)
[V + AV @S + A2V ¢S + A3V 3] — na(G§ + AGE + N2GS + A°G3)?

(Vo3 + AV o§ + N2Ves + A3V 3] .

To perform the grouping of terms in the above equation according to their
magnitudes, we first note that the perturbation parameter A is just a fictitious
parameter introduced in such a way that a term multiplied by A™ has its size of
the nth order correction to the corresponding unperturbed quantity. Since &,,
Xo|E®*[? and 7,|E*|* correspond to the order of A° A! and A%, respectively, we
define x, and 7, in terms of A\* as x, = AB, and 7, = A?y,. Consequently, the
grouping of terms according to their sizes can be done without any confusion,

with the result

D® = —£,V ¢ — AMea VS + BaGS V3) — N2(ea VS + Ba(GS Vi
+ G V) +1a(G5)? V5) — X (ea V5 + Ba(GE V¢35 + GT VT
+ GF V) + 1a((GS)? V¢§ + 2 GSGE V¢3)) + higher order terms.

(2.18)

Comparing Eq. (2.18) with

D* = D§ + AD¢ + A’Dg + A*D§ (2.19)



yields
D2 = —, Ve, (2.20)
DY = -4V ¢7 — BuGy V5 (2.21)
D3 = —€a V5 — Ba(G§ VT + G V]) —1a(G5)” Vo5, (2:22)
and

DS = —€, V¢S — Ba(GS V¢S + G V¢ + GS V¢5)

- 1a((G§)* V4§ +2 G§GY V). (2.23)
Substituting Eqs. (2.20)-(2.23) into Eq. (2.4), we obtain

eaV2g2 = 0, (2.24)

eaV24 + Ba(G V295 + VGG - V)

Il
o

(2.25)

€a V203 + Ba(GS V39S + V3 - VGS + G V248

+V 5 - VGT) +1a((GF)? Vg5 +2 G§ V5 - VGE) = 0,  (2.26)
and

eaV205 + Ba(G§ V285 + V5 - VG§ + G V245 + Vi - VG
+G§ V2g + V5 - VG3) +1.((G3)* V247 +2 G§ V5 - VG
+2 GSG$ V25 +2 G§ V5 - VG +2 GF V5 - VGF) = 0.

(2.27)

Eqs. (2.24), (2.25) and (2.26) are the zeroth, the first and the second order
equations, describing the electrostatic potential, which have been reported by
several authors [6-8]. We obtain more general results that are the equations
for determination of ¢ (Eq. (2.27)) and the equation for fitting the boundary

condition (Eq. (2.23)). We also note that the electrostatic potential, including
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the third-order potential, was generally more accurate than the result having
only the first and the second-orders [15]. This is the reason why we expanded the
electric potential up to the third order.

In order to solve for each order electrostatic potential, the following

boundary conditions are applied:
1. the electrostatic potential in the host medium at remote distance.
2. the electrostatic potential at the center of the inclusion.
3. the continuity of the tangential of the electric field at the inclusion surface.

4. the continuity of the normal component of the electric displacement at the

inclusion surface.

We will discuss each boundary condition in details in the next chapter.
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