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This work emphasizes on the optical polarization property of three kinds of
quantum dot (QD) structures, namely, binary quantum dots (bi-QDs), linearly aligned
quantum dots (LAQDs). and QDs aligned on a cross-hatch pattern. Such property was
investigated by means of photoluminescence spectroscopy as well as theoretical
calculation. It was found out from calculation that linear polarization degree (PD) of
the LAQDs strongly depends on spacing, size. and number of QDs in the alignment.
In particular, closer spacing, smaller dot size, or more number of QDs in the
alignment gives rise to a higher PD value. For isolated QDs, the extent of shape
isotropy strongly affects the PD. In the experimental point of view, optical properties
of the three kinds of structures were investigated by means of temperature-dependent-,
excitation-power-dependent-, = and  polarization-resolved  photoluminescence
spectroscopy. Measurements on a bi-QD sample and two LAQD samples reveal that
the temperature-dependent PD for these nanostructures originates from coupling
among the QDs. On the other hand, QDs on a cross-hatch pattern did not show the
temperature-dependent behavior; the amount of PD that was observed for this type of
sample merely comes from the shape anisotropy of individual QDs. By comparing
these results, the physics behind the observed behaviors of these nanostructures is
better understood and this will help produce higher-efficiency devices for the era of
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Tt F 0 TIINT Ve mspsmesssssscisssomsioasoscessas o oo AR S ST
Excitation-power-dependent PL spectra of QDs on a cross hatch
measured at4.4 K (Sample X2 .o

Power-dependent micro-PL spectra of Sample X2. The peaks
were at 1.32 eV and the emission intensity was stronger than that

emitted from the QDs and the linewidths of the spectra were

(a) Polarized-PI. measurement result, which follows the Malus’s
law (b) Polarized-PL spectra of Sample X1 measured at low
temperature (P4 KV A SRR 1 NN NN N +vrssssssersins v s nanisans g smoans wromes o
(a) Polarized-PL measurement result, which follows the Malus’s
law, and (b) Polarized-PL spectra of Sample X2 measured at low
temperature (4.4 K)mmmmmmmmmml| ...t
(a) Temperature-dependent PL spectra of Sample X1, and

(b) Peak shift caused by the effect of temperature is clearly be seen
in the figure.
Temperature-dependent PL measurement result showing the
integrated PL intensity and peak shift for Sample X1............
(a) Polarized PL spectra of QDs on the cross-hatch sample
measured at 6 K, and (b) temperature-dependent polarization

degree for Sample X1 (4 Kto 130 K)o
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