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CHAPTER I   
INTRODUCTION 

 
1.1 Backgrounds of This Research 
 
 Model predictive control (MPC) is an advance multivariable control algorithm that is 
popularly used in many chemical processes. At each sampling time, MPC explicitly uses a 
process model to predict the future plant behavior. Both input and output constraints are explicitly 
incorporated in formulating the optimization problem. Although an optimal input sequence is 
calculted, only the first element of input sequence is implemented to the process. At the next 
sampling time, this procedure is repeated by using a new measurement obtained from the process. 
The idea of MPC is shown in Fig. 1.1.  

 
Figure 1.1 The idea of model predictive control. 
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 Since MPC is based on an open-loop optimization problem, in the presence of plant 
uncertainty, robust stability of the closed-loop system cannot be guaranteed. Moreover, the 
control performance of MPC will deteriorate as the discrepency between the real plant and the 
process model used in the prediction increases. For this reason, robust MPC has been widely 
studied by many researchers.  
 One of the main approaches to guarantee robust stability in the presence of plant 
uncertainty is to impose the state feedback control law on the control input. The size of the 
stabilizable region is important because it provides a set of states that can be robustly stabilized. 
However, most of the current researches in the area of robust MPC (Kothare et al., 1996; Wan 
and Kothare, 2003; Ding et al., 2007) still calculate the stabilizable region based on an ellipsoidal 
approximation of a true stabilizable region. This leads to the conservative result because the 
stabilizable region obtained is significantly smaller than the true stabilizable region. The idea of 
using an ellipsoidal approximation of a true stabilizable region is illustrated in Fig. 1.2. 
 

      
Figure 1.2 The idea of using an ellipsoidal approximation of a true stabilizable region. 

 
 Another important problem in an implementation of robust MPC is an on-line 
computational complexity. Although the significant advances of modern computers over the past 
few years have alleviated the computational problem of robust MPC, the application of robust 
MPC is rather restricted due to its on-line computational requirements. Moreover, the size of the 
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optimization problem grows respectively with the number of independent uncertain process 
parameters (Kothare, 1996; Lu and Arkun, 2000; Wada, 2006).  
 The conservativeness is also an important problem of robust MPC. In order to guarantee 
robust stability, the state feedback control law has to be imposed on the control input. However, 
by doing so, the conservativeness is obtained because the control input only depends on the 
evolution of state. This problem is especially severe in the presence of tight constraints because 
the saturation at one point in the horizon as shown in Fig. 1.3 will require a small or zero gain for 
all steps in the horizon (Li and Marlin, 2011).  
 

 
Figure 1.3 The input saturation at one point in the horizon. 

 
 As mentioned in the previous section, there are three important issues concerned in 
robust MPC synthesis including the size of stabilizable region, the on-line computational 
complexity and the conservativeness. In this research, the strategies to tackle these issues will be 
proposed. 
 In chapter 3, an off-line formulation of robust MPC using polyhedral invariant sets is 
proposed in order to solve the problem of the size of stabilizable region. A sequence of state 
feedback gains corresponding to a sequence of polyhedral invariant sets is precomputed off-line. 
At each sampling time, the smallest polyhedral invariant set containing the measured state is 
determined and the corresponding state feedback gain is then implemented to the process. As 
compared with an off-line formulation of robust MPC using ellipsoidal invariant sets of Wan and 
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Kothare (2003), the proposed algorithm gives a significantly larger stabilizable region because the 
true polyhedral invariant set is calculated. Moreover, the proposed algorithm can achieve better 
control performance. The proposed algorithm also solves the problem of on-line computational 
complexity because all of the optimization problems are solved off-line and no optimization 
problem is needed to be solved on-line. 
 In chapter 4, an interpolation-based MPC strategy for LPV systems is proposed to 
alleviate the problem of on-line computational complexity. The on-line computational burdens are 
reduced by precomputing off-line the sequences of state feedback gains corresponding to the 
sequences of nested ellipsoids. At each sampling instant, the real-time state feedback gain is 
calculated by linear interpolation between the state feedback gains of the smallest ellipsoid 
containing the measured state in each sequence. As compared with an on-line MPC algorithm for 
LPV systems of Lu and Arkun (2000), the proposed algorithm gives the same control 
performance with a significantly smaller on-line computational time.  
 In chapter 5, a strategy to reduce the conservativeness based on a one-step state 
prediction is presented. The conservativeness arising from imposing only a state feedback gain on 
the control input in chapters 3 and 4 is reduced by an addition of an element of free control input. 
At each sampling instant, only a computationally low-demanding optimization problem is needed 
to be solved on-line so the on-line computation is tractable. By using the proposed strategy, the 
control performance is improved because the number of degrees of freedom in adjusting the plant 
is increased. 

All of the numerical simulations have been performed in Intel Core i-5 (2.4GHz), 2 GB 
RAM, using SeDuMi (Sturm, 1999) and YALMIP (Löfberg, 2004) within Matlab R2008a 
environment. 
 
1.2 Objectives of This Research 
 
The objectives of this research are as follows 
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1. To develop a robust MPC synthesis approach which gives a significantly larger 
stabilizable rigion as compared with a robust MPC synthesis approach based on an 
ellipsoidal invariant set. 

2. To develop a robust MPC synthesis approach which can reduce high on-line 
computational requirement while still ensuring the same level of control performance. 

3.  To develop a robust MPC synthesis approach which can reduce the conservativeness 
arising from imposing only the state feedback control law on the control input. 



CHAPTER II  
BASIC KNOWLEDGES 

 
 Model predictive control (MPC) has originated in a chemical industry as an on-line 
computer control algorithm to solve multivariable problem. At each sampling time, an open-loop 
constrained optimization problem is solved and only the first computed input is implemented to 
the process. Although MPC is successfully applied to many chemical processes, there is no 
guarantee for robust stability of the control system. Moreover, the performace of MPC drastically 
deteriorates in the presence of plant uncertainty. 
 Due to the aforementioned problem, the attentions for MPC have been shifted towards 
robust MPC where the open-loop optimization is replaced by the closed-loop optimization (the 
deterministic control input is replaced by the state feedback control law). Then robust stability of 
the closed-loop system can be guaranteed by imposing the Lyapunov stability constraint. 
  In this chapter, some of the important basic knowledges in the design of robust MPC and 
several examples are presented. A problem description is presented in 2.1. The Lyapunov theorem 
and several illustrative examples are presented in 2.2. Then the classical robust MPC algorithm 
and its applications are presented in 2.3. 
 
2.1 Problem Description 
 
 The model considered here is the following linear discrete-time systems with polytopic 
uncertainty 

                                         
)()(

)())(()())(()1(

kCxky

kukpBkxkpAkx



                                          (2.1) 

 
where )(kx  is the state of the plant, )(ku  is the control input and )(ky  is the plant output. We 
assume that 

                                        ]},[],...,,[],,{[ ,))](()),(([
2211 LL

BABABACoΩΩkpBkpA              (2.2) 
 
where Ω  is the polytope, Co denotes convex hull, ],[ jj BA  are vertices of the convex hull.  
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Any ))](()),(([ kpBkpA  within the polytope Ω  is a linear combination of the vertices 
such that 

                             1)(0 ,1)(],,[)())](()),(([
11




kpkpBAkpkpBkpA j

L

j
jjj

L

j
j          (2.3) 

  
The aim is to find a state feedback control law 
 
                                           ))/(()/( kikxgkiku                                                               (2.4) 
 
that stabilizes (2.1) and achieves the following performance cost 
 
                                    )(maxmin

))](()),(([)/(
kJ

ikpBikpAkiku



                                  

                        



















 



















)/(

)/(

0

0

)/(

)/(
)(

0 kiku

kikx

R

Θ

kiku

kikx
kJ

T

i
                                                 (2.5) 

 
where 0Θ and 0R are symmetric weighting matrices 

, subject to input and output constraints        

                                          
max,

)/(
hh

ukiku  , unh ,....,3,2,1                                                    (2.6) 

                                           max,)/( rr ykiky  , ynr ,....,3,2,1                                                      (2.7) 
 
2.2 Lyapunov Theorem 
 
 Lyapunov theorem is an important basic theorem that gives the sufficient conditions to 
determine the stability of the considered linear discrete-time systems. Additionally, it is used in 
the formulation of the Lyapunov stability constraint to guarantee robust stability of the closed-
loop system.  
 Consider the linear discrete-time system )()1( kAxkx  , this system is said to be 
asymptotically stable if there exists a positive definite function  ,0)/()/(),(  kikPxkikxkiV T  

 i 0  such that 0),(),1(  ki-VkiV  for all non-zero )/( kikx   and 0),( kiV  at 
.0)/(  kikx   
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  Note that by substitution of )/()/1( kikAxkikx  , an inequality 
0)/()/()/1()/1(  kikPxkikxkikPxkikx TT  is equivalent to )/()/( kikPAxAkikx TT   

0)/()/(  kikPxkikx T . By pre-multiplying by Tkik x  )/(  and post-multiplying by 
1)/( -kik x  , an inequality 0)/()/()/()/(  kikPxkik-xkikPAxAkikx TTT  can be 

written as 0PPAAT . 
 

Example 2.1 Consider the system )(
1020

2010
)1( kx

..

..
kx 








 . Determine whether this system is 

asymptotically stable or not ? 
 
Solution 

  By choosing 













21

12
P , we can see that 














94.103.1

03.194.1
PPAAT . The eigen 

values of 












94.103.1

03.194.1  are -2.97 and -0.91 so 












94.103.1

03.194.1  is negative definite. Then we can 

conclude that 0PPAAT  and the system )(
1020

2010
)1( kx

..

..
kx 








  is asymptotically stable by 

the existence of the Lyapunov function )/()/(),( kikPxkikxkiV T   where 













21

12
P . 

Figure 2.1 shows the responses of this system. It can be observed that 0)/(lim 


kikx
i

. 
Therefore, the system is asymptotically stable. 
 

 
Figure 2.1 The responses of example 2.1. 
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From an example 2.1, it is seen that Lyapunov theorem can only be applied to the system 
)()1( kAxkx  . In order to make it useful for the system with control input 

)()()1( kBukAxkx  , we have to apply it with a little modification. By imposing the state 
feedback control law )()( kKxku  , the system )()()1( kBukAxkx   can be written as 

)()()1( kxBKAkx  . Thus, it is seen that the system )()()1( kBukAxkx   is 
asymptotically stabilized by the control law Kx(k)u(k)  if there exists a positive definite matrix 
P  and a state feedback gain K  such that .0][][  PBKAP BKA T  The Lyapunov stability 
constraint 0][][  PBKAP BKA T  will be used in robust MPC synthesis in the next section. 
 

Example 2.2 Consider the system )(
1

0
)(

5.00

1.01
)1( kukxkx 

















 . Determine whether this 

system is asymptotically stabilized by the feedback control law )()( kKxku   where 
]71.008.1[ K  or not ? 

 
Solution 

 For ]71.008.1[ K , the system )(
1

0
)(

5.00

1.01
)1( kukxkx 

















  can be written as 

).(
21.008.1

1.01
)()()1( kxkxBKAkx 










  By choosing 










248.01685.0

1685.0575.2
P , we can see 

that  PBKAP BKA T ][][ .
2184.00917.0

0917.00747.0











  Its eigen values are -0.26 and -0.03 so 














2184.00917.0

0917.00747.0  is negative definite. Then we conclude that .0][][  PBKAP BKA T  

and the system )(
1

0
)(

5.00

1.01
)1( kukxkx 

















  is asymptotically stabilized by the state feedback 

control law )()( kKxku   where ]71.008.1[ K . Figure 2.2 shows the closed-loop 
responses of this system. It can be observed that 0)/(lim 


kikx

i
. Thus, the system is 

asymptotically stabilized. 
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Figure 2.2 The responses of example 2.2. 

 
2.3 The Classical Robust MPC Algorithm (Kothare et al., 1996) 
 
 In the preceding sections, the Lyapunov stability constraint is developed. In this section, 
it will be used in the design of robust MPC. Before proceeding to robust MPC synthesis, an 
important technique to formulate the efficiently solvable constraints will be presented.  
 Although we can guarantee robust stability of the closed-loop system by using the 
Lyapunov stability constraint 0][][  PBKAP BKA T , it is seen that the Lypunov stability 
constraint 0][][  PBKAP BKA T   is nonlinear.  In the following section, we will introduce the 
technique to transform nonlinear inequality constraint to linear matrix inequality (LMI). LMI 
constraint is convex. Thus, it is computationally tractable. For more details, the reader is referred 
to Boyd et al. (1994). 
 
2.3.1 Schur Complement 
 

 The Hermitian matrix 








RS

SQ
T

 is positive definite if and only if 0R  and 

.01 T- SQ-SR  
 
Proof.  
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If 








RS

SQ
T

 is positive definite then .0
0

00

0
 

11








 






























 






R

SSRQ

ISR

I

RS

SQ

I

SRI
T

TTT
 

0
0

01








  

R

SSRQ T

 if  0R  and .01 T- SQ-SR  

 
Example 2.3 Transform the Lyapunov stability constraint 0][][  PBKAP BKA T  to LMI. 
  
Solution 
 By following the Schur Complement, the Lyapunov stability constraint 

0][][  PBKAP BKA T   can be transformed to LMI as .0
][

][














PBKAP

PBKAP T

 

 
2.3.2 Robust MPC Synthesis 
 
 Robust MPC synthesis that allows an explicit incorporation of model uncertainty in the 
problem formulation was first proposed by Kothare et al. (1996). The goal is to design the state 
feedback control law that minimizes the worst-case performance cost. The optimization problem 
is formulated as the convex optimization problem involving linear matrix inequalities. At each 
sampling instant, the state feedback control law that minimizes an upper bound   on the 

performance cost 



















 



















)/(

)/(

0

0

)/(

)/(
)(

0 kiku

kikx

R

Θ

kiku

kikx
kJ

T

i
 and asymptotically stabilizes 

the system )())(()())(()1( kukpBkxkpAkx   is given by ),/()/( kikKxkiku  1YQK  
where Y and Q are obtained by solving the following optimization problem. 
 
          min

,
 γ

Y,Q
                                                                                                 (2.8) 

                         s.t.      0
)(

)(1










Qkkx

kkx T

                                                                               (2.9) 

                                 ,,210

00

00

00

2

1

2

1

2

1

2

1

L...,, j

γIYR

γIQΘ

QYBQA

RYQΘBYQAQ

jj

TT

j

TT

j





























                              (2.10) 
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Proof. The proof will be divided in two steps. In step a), we will prove that γ  is the upper bound 

on the performance cost 



















 



















)/(

)/(

0

0

)/(

)/(
)(

0 kiku

kikx

R

Θ

kiku

kikx
kJ

T

i
. In step b), we will prove 

that the state feedback gain 1YQK  guarantees robust stability to the closed-loop system. 
 
Step a) Suppose a quadratic function )/()/(),( kikPxkikxkiV T   satisfies the following 
inequality ))()()()((),(),1( kikRukikukikΘxkikxkiVkiV TT  . By summing 
them from  i 0 to i , we get  
 

...kkRukkukkΘxkkxkkRukkukkΘxkkx

...k-VkVk-VkVk-V
TTTT ))1()1()1()1(())()()()((

),2(),2(),1(),1(),0(




 

                                                                                                                                                   (2.11) 
Thus, it is easy to see that )(),0( kJk-V


  or equivalently ),0()(max kV k J 


. Thus, the 

minimization of cost function 



















 



















)/(

)/(

0

0

)/(

)/(
)(

0 kiku

kikx

R

Θ

kiku

kikx
kJ

T

i
 can be written as 

 
                                            )()(),0(min k/kPxk/kxk  V T

P
                                                    (2.12) 

 
By introducing the slack variable  , )()(min k/kPxk/k  x T

P  is equivalent to 
 
                                                 γ 

γ,P
min  

                                       s.t.  γ k/kPxk/kx T )()(                                                                      (2.13) 
 
By defining 1 QP   , (2.13) can be written in the form of LMI as  
                                                γ 

γ,P
min  

                                     s.t.   0
)(

)(1
 









Qk/kx

k/kx T

                                                                   (2.14) 

 
From the proof in step a), we conclude that 


),0()(max kV k J . Thus,   is the upper 

bound on the performance cost )(kJ
 . 
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Step b) From ))()()()((),(),1( kikRukikukikΘxkikxkiVkiV TT  , by 
substituting ,kikPxkikxkiV T  )/1()/1(),1(   )/()/(),( kikPxkikxkiV T   and 

)()( i/kkKxkiku  , we get 
 
              RKKPKikpBikpAPKikpBikpA TT )()))(())((()))(())(((        (2.15) 
 
By substituting   -1γQP  , pre-multiplying by TQ , post-multiplying by Q , substituting KQY   
and applying Schur complement to the resulting inequality, we obtain 
 

                0

00

00

00))(())((

))(())((

2

1

2

1

2

1

2

1





























IYR

IQΘ

QYikpBQikpA

RYQΘikpBYikpQAQ TTTT




   (2.16) 

 
This inequality is affine in ],[)())](()),(([

1
jj

L

j
j

BAkpkpBkpA 


. Thus, it is satisfied for all  

 

                        L,...,, j

γIYR

γIQΘ

QYBQA

RYQΘBYQAQ

jj

TT

j

TT

j

,210

00

00

00

2

1

2

1

2

1

2

1





























                         (2.17) 

 
It is seen that ))()()()((),(),1( kikRukikukikΘxkikxkiVkiV TT   is 
equivalent to (2.17). Thus, )/()/(),( kikPxkikxkiV T   is a strictly decreasing Lyapunov 
function and robust stability is quaranteed.  
 
Example 2.4   

Consider the system )(
07870

0
)(

1010

101
)1( ku

.
kx

α.

.
kx 



















 . At any time k,   varies 

between 101.0  . Find the state feedback control law )()( kKxku   which robustly stabilizes 
this system. 
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Solution 

            It is seen that  
21

,)( AACokA   where 


















00

101

9900

101
21

.
, A

..

.
A . The state feedback 

control law )(]91.14  22.86[)()()( 1 kxkxYQkKxku    can be obtained by solving the 
following optimization problem 
 

                            

 0
)(

)(1

s.t.

    min










Qkkx

kkx

 γ

T

Y,Q

 

                            0

00

00

00

2

1

2

1
1

2

1

2

1

1































γIYR

γIQ

QBYQA

RYQBYQAQ TTTT

 

                           

      0

00

00

00
 

2

1

2

1
2

2

1

2

1

2































γIYR

γIQ

QBYQA

RYQBYQAQ TTTT

 

 
Figure 2.3 shows the closed-loop responses of the system. It is seen that the state feedback control 
law )(]91.14  22.86[)()( kxkKxku   robustly stabilize this system. 
 

 
Figure 2.3 The responses of example 2.4(left), The control input(right). 
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2.3.3 Input and Output Constraints 
 
           One of the advantages of MPC is its ability to deal with constraints. In the presence of 
uncertainty, however, input and output constraints are not guaranteed to be satisfied. In order to 
guarantee robust constraint satisfaction, input and output constraints have to be explicitly 
incorporated into robust MPC synthesis. The sufficient conditions to guarantee input and output 
constraints satisfaction are presented as follows. 
 
Input constraint; The state feedback control law )/()/()/( 1 kikxYQkikKxkiku -   is 
guaranteed to satisfy 

max,
)( 

hh
ukiku   if there exists a symmetric matrix X  such that 

0








QY

YX
T  with 

uhhh nh uX ,...,2,1,2

max,  . 

 
Output constraints; The output constraint max

)(
r,r

ykiky  is guaranteed to be satisfied if there 

exists a symmetric matrix T  such that 0
)(

)(














QCYBQA

YBQACT
 

TT

jj

jj  with  ,yT r,rr

2

max  

yn,...,r ,21 . 
 
Example 2.5 Consider the system in the example 2.4. Find the state feedback control law 

)()( kKxku   which robustly stabilizes the system )(
07870

0
)(

1010

101
)1( ku

.
kx

α.

.
kx 



















  

and satisfies 1)(  kiku . 
 
Solution 
             The state feedback control law )/()/( kikKxkiku   that guarantees input constraint 
satisfaction can be obtained by solving the optimization problem in Example 2.4 with an 

incorporation of LMI constraint  0

2

max 








QY

Yu
T

. 

 
           Figure 2.4 shows the closed-loop responses of the system. It is seen that the state feedback 
control law )(]92.14  33.86[)()( kxkKxku   asymptotically stabilizes this system. Moreover, 
the control input is restricted in the range of 1)(  kiku . 
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Figure 2.4 The responses of example 2.5(left), The control input(right). 

 
2.4 Conclusions 
 
 In this chapter, we have presented some of the important basic knowledges in design of 
robust MPC. The Lyapunov theorem, which is an important theorem used to guarantee robust 
stability of the closed-loop systems, is described. Then the classical robust MPC algorithm and its 
applications are presented.  
 



 

CHAPTER III   
AN OFF-LINE FORMULATION OF ROBUST MPC USING  

POLYHEDRAL INVARIANT SETS 
 

 One of the main approaches to guarantee robust stability in the presence of plant 
uncertainty is to impose the state feedback gain on the control input as described in chapter 2. The 
size of stabilizable region of state feedback gain imposed is important because it provides a set of 
states that can be robustly stabilized. However, most of the current researches in the area of robust 
MPC (Kothare et al., 1996; Mao, 2003; Wan and Kothare, 2003; Ding et al., 2007) still calculate 
the stabilizable region based on an ellipsoidal approximation of the true polyhedral invariant set. 
This leads to the conservative result because a stabilizable region obtained is significantly smaller 
than the polyhedral counterpart. 
 This chapter presents an off-line synthesis approach to robust MPC using polyhedral 
invariant sets. The true polyhedral invariant set is computed so a significantly larger stabilizable 
region is obtained. Although the construction of polyhedral invariant set is computationally 
demanding, it is carried out off-line so an on-line computation is tractable. Most of the on-line 
computational time is reduced by computing off-line a sequence of state feedback control laws 
corresponding to a sequence of polyhedral invariant sets. At each sampling time, the smallest 
polyhedral invariant set that the currently measured state can be embedded is determined. Then 
the corresponding state feedback control law is implemented to the process.  
 
3.1 Introduction 
 
 The main technique of on-line robust MPC (Kothare et al., 1996; Schuumans and 
Rossiter, 2000; Mao, 2003) to guarantee robust stability is to construct at each sampling instant, 
an ellipsoidal invariant set containing the currently measured state. Then the state feedback 
control law is imposed on the control input in order to drive the state towards the origin. 
However, by doing so, the conservative result is obtained because an ellipsoidal invariant set 
constructed is only an approximation of the true polyhedral invariant set. Moreover, the algorithm 
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requires high on-line computational time bacause the optimization problem is really solved on-
line at each sampling instant. 
 Since the application of on-line robust MPC is limited to only a slow dynamic process, 
many researchers have studied off-line robust MPC. Wan and Kothare (2003) proposed an off-
line formulation of robust MPC using linear matrix inequalities (LMIs). A sequence of explicit 
control laws corresponding to a sequence of invariant ellipsoids is computed off-line. At each 
sampling time, the smallest ellipsoid containing the currently measured state is determined and 
the corresponding control law is implemented to the process. Although the algorithm substantially 
reduces on-line computational time, the conservative result is obtained due to the fact that the 
invariant ellipsoids constructed are only the approximations of the true polyhedral invariant sets. 
Ding et al. (2007) proposed an off-line robust MPC algorithm based on the nominal performance 
cost. The algorithm directly extends the algorithm of Wan and Kothare (2003) by choosing the 
nominal performance cost to substitute the worst-case performance cost in order to handle a wider 
class of systems. However, the algorithm is still designed by using an ellipsoidal approximation 
of an exact polyhedral invariant set. Thus, a significantly smaller stabilizable region is obtained. 
 From the preceding review, we can see that on-line robust MPC usually requires high on-
line computational time. Thus, its ability is limited to a relatively slow dynamic process. For off-
line robust MPC, the ellipsoidal approximations of the exact polyhedral invariant sets are usually 
used. Thus, a significantly smaller stabilizable region is obtained. In this chapter, an off-line 
synthesis approach to robust MPC using polyhedral invariant sets is presented. The true 
polyhedral invariant set is computed so a significantly larger stabilizable region is obtained. 
Moreover, all of the computational burdens are moved off-line so the on-line computation is 
tractable. 
  
3.2 An Off-line Formulation of Robust MPC Using Polyhedral Invariant Sets 
 
 In this section, an off-line synthesis approach to robust MPC using polyhedral invariant 
sets is presented. Most of the computational burdens are moved off-line by precomputing a 
sequence of state feedback control laws corresponding to a sequence of polyhedral invariant sets. 
The approach to construct the polyhedral invariant set proposed by Pluymers et al. (2005) is 
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adopted here to construct a sequence of polyhedral invariant sets. At each sampling time, the 
smallest polyhedral invariant set that the currently measured state can be embedded is determined. 
The corresponding state feedback control law is then implemented to the process. The definition 
of polyhedral invariant set is given as follows 
 
Definition 3.1 
 
The set  dMxxS  /  is said to be the polyhedral invariant set if it has the property that 
whenever Skx )( , then Sikx  )( ,  ,...,2,1i . 
We can now formulate an off-line robust MPC algorithm using polyhedral invariant sets 
 
Algorithm 3.1 
 
Off-line step 1: Choose a sequence of states  ,...,N,ix

i
21 ,   and solve the following problem to 

obtain the corresponding state feedback gains 1
iii

QYK . The states i
x  should be chosen such that 

the distance between 
1i

x  and the origin is less than the distance between 
i

x  and the origin. 
 
                                       γ

ii,QiYiγ ,
min  

                                   0
1

 s.t. 




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 

ii
Qx

                                                                                           (3.1)  
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Off-line step 2: Given the state feedback gains 1
iii

QYK ,  ,...,N,i 21  from step 1. For each 
i

K , 
the corresponding polyhedral invariant sets  

iii
dxMxS  /  is constructed by following these 

steps:

 

 
2.1) Set TT

i

T

i

TT

i
KKCCM ] , , ,[  , TTTTT

i
uuyyd ],,,[

minmaxminmax
 and 1m . 

2.2) Select row m  from ),(
ii

dM and check j  whether 
miijjmi

dxKBAM
,,

)(   is redundant with 
respect to the constraints defined by ),(

ii
dM  by solving the following problem: 

 

                                                    
ii

i,mijji,mjmi

ji,m
x

dxM

d)xKB(AMW

W





     

 s.t.

   max

,,

,

                                            (3.5) 

 
If 0

,,


jmi
W , the constraint 

miijjmi
dxKBAM

,,
)(   is non-redundant with respect to ).,(

ii
dM  Then, 

add non-redundant constraints to ),(
ii

dM  by assigning TT

ijjmi

T

ii
KBAMMM ]))((,[

,
  and 

TT

mi

T

ii
ddd ],[

,
 .  

2.3) Let 1 mm  and return to step 2.2. If m  is strictly larger than the number of rows in 
),(

ii
dM  then terminate. 

 
On-line: At each sampling time, determine the smallest polyhedral invariant set  

iii
dxMxS  /  

containing the measured state and implement the corresponding state feedback control law 
)/()/( kkxKkku

i
  to the process. 

 
Remarks 
 
1. The sequence of states  ,...,N,ix

i
21 ,    should be chosen such that the distance between 

1i
x  

and the origin is less than the distance between 
i

x  and the origin. This is to ensure that the 
polyhedral invariant sets constructed are nested )(

1 ii
SS 


. Thus, the state is guaranteed to be kept 

within 
i

S  and driven towards 
1i

S , and so on. Lastly, the state is kept within 
N

S  and driven 
towards the origin.  
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2. The number of polyhedral invariant sets }21{ ,....,N,, iS
i

  constructed by the chosen states 
 ,...,N,ix

i
21 ,   affects control performance. Although the state feedback gain  

i
K  is guaranteed 

to drive all states within 
i

S  towards the origin, it is not necessary to keep this state feedback gain 
constant. By increasing the number of polyhedral invariant sets  (This is done by increasing the 
number of chosen states N ), the control performance is improved due to the fact that we have 
more freedom to adopt varying state feedback gains based on the distance between the state and 
the origin. 
 
3. In an off-line step 1, a sequence of state feedback gains corresponding to a sequence of 
ellipsoidal invariant sets is calculated. Although each state feedback gain calculated guarantees 
robust stability within the corresponding ellipsoidal invariant set, this ellipsoidal invariant set is 
only an approximation of the true polyhedral invariant set. By using only an off-line step 1, the 
conservative result is obtained because the stabilizable region of the ellipsoidal invariant set is 
significantly smaller than the polyhedral counterpart. This problem is especially severe in the case 
of tight constraints. Thus, for a given sequence of state feedback gains calculated from an off-line 
step 1, a sequence of true polyhedral invariant sets is calculated in an off-line step 2. By using an 
off-line step 2, the conservativeness is reduced because the stabilizable region of each state 
feedback gain is substantially expanded. 
 
An overall algorithm is proved to guarantee robust stability in Theorem 3.1. 
 
Theorem 3.1 Given the initial measured state 

1
)( Skx  , the control law provided by algorithm 

3.1 assures robust stability to the closed-loop system. 
 
Proof. The satisfaction of (3.2) for the state feedback gain 1 iii QYK  ensures that 
 

 
  )/()/()/()/(

)/(]))(())(([]))(())(([)/(

kikxRKKkikxkikxkikx

kikxPKikpBikpAPKikpBikpAkikx

i

T

i

TT

iii

T

i

T






 

 
Thus, )/()/( kikxPkikx

i

T   is a strictly decreasing Lyapunov function and the closed-loop 
system is robustly stabilized by the state feedback gain 

i
K . 
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By solving (3.5) and iteratively adding non-redundant constraints 

miijjmi
dxKBAM

,,
)(   to 

),(
ii

dM  by assigning TT

ijjmi

T

ii
KBAMMM ]))((,[

,
  and TT

mi

T

ii
ddd ],[

,
 , we can find the set of initial 

states x  defined by  
iii

dxMxS  /  such that all future states are guaranteed to stay within this 
set without input and output constraints violation. Any initial states outside 

i
S  lead to the future 

states that violate input and output constraints for at least one realization of the uncertainty.  
 Thus, the set 

i
S  is polyhedral invariant set and the corresponding state feedback control 

law )/()/( kikxKkiku
i

  assures robust stability to the closed-loop system. More proof details 
can be found in Appendix A.   
 
Example 3.1:  
 

In the first example, we will consider an application of our approach to an uncertain non-
isothermal CSTR where an exothermic reaction BA   takes place. The reaction is irreversible 
and the rate of reaction is first order with respect to component A . A cooling coil is used to 
remove heat that is released in the exothermic reaction. The reaction rate constant 

o
k  and the heat 

of reaction 
rxn

H  are considered to be the uncertain parameters. They are assumed to be 
arbitrarily time-varying in the indicated range of variation. The linearized model based on the 
component balance and the energy balance is given as follows 
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where 

A
C  is the concentration of A  in the reactor, 

FA
C

,
 is the feed concentration of A , 

T  is the reactor temperature and 
c

F  is the coolant flow. The operating parameters are shown in 
table 3.1. 
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Table 3.1 The operating parameters of non-isothermal CSTR in example 3.1. 
Parameter Value Unit 

F  1  m3/min 

V  1  m3 
  106  g/m3 

p
C  1  cal/g.K 

rxn
H  107-108  cal/kmol 

RE /  8330.1  K 

o
k  109-1010  min-1 

UA  5.34x106  cal/K.min 

eqA
C

,
 0.265 kmol/m3 

eq
T  394 K 

 
 Let ,

,eqAAA
CCC  ,

eq
TTT 

eqFAFAFA CCC
,,,,   and 

eqccc
FFF

,
  where the subscript eq  is 

used to denote the corresponding variable at equilibrium condition. The discrete-time model (3.7) 
is obtained by discretizing (3.6) using Euler first-order approximation with a sampling time of 
0.15 min. 
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where 1010/)(1 9 

o
kk  and 1010/)(1 7 

rxn
Hk . Because two uncertain 

parameters )(k  and )(k  are independent of each other, we have to consider the polytopic 
uncertain model with its four vertices representing all the possible combinations of the two 
uncertain parameters. The polytopic uncertain set is given as follows 
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The objective is to regulate AC  and T  by manipulating FAC ,  and 
c

F , respectively. The 
input constraints are 3

, kmol/m 5.0FAC  and min/m 5.1 3
c

F . Here )(kJ


 is given by 
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 with IΘ   and IR 1.0 .  

 
Next, we will illustrate the step-by-step implementation of the proposed algorithm 3.1. In 

an off-line step 1, a sequence of states ),0425.0,0425.0(),0475.0,0475.0(),0525.0,0525.0{(
i

x  
)}0275.0,0275.0(),0325.0,0325.0(),0375.0,0375.0(  is chosen to calculate the corresponding state 

feedback gains 
i

K . Note that a sequence of states 
i

x  is chosen such that the distance between 
1i

x  
and the origin is less than the distance between 

i
x  and the origin. This is to ensure that the 

polyhedral invariant sets constructed are nested (
ii

SS 
1

). In this example, only six feedback 
gains 6,...,1  , iK

i  are computed off-line because the feedback gains 
i

K  are almost constant 
beyond 6i .  
 

After a sequence of state feedback gains 6,...,1  , iK
i

 is computed in an off-line step 1, 
the corresponding polyhedral invariant sets 6,...,1  , iS

i
 will be constructed in an off-line step 2. 

Let us begin with the first feedback gain 
1

K . In an off-line step 2.1, we first set TT

i

T

ii
KKM ] ,[  , 

TTT

i
uud ],[

minmax
 (There is no output constraint in this example) and 1m . Then, 

1
M  and 

1
d  can be 

written as follows 
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where 






 


14.079.24

01.034.1
1

K  corresponding to the chosen state )0525.0,0525.0(
1
x  is 

calculted from an off-line step 1, 







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max

u  and 
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u  are the input constraints. 

 
In an off-line step 2.2, we select row m=1 from ),(

11
dM , which is an input constraint 

)1,1(:),1(
max1

uxK  , and find whether the constaint )1,1():)(,1(
max1111

uxKBAK   is redundant with 
respect to the constraints defined by ),(

11
dM . By setting )1,1(:),1(

max11111,1,1
u)xKB(AKW   and 
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solving (3.5), we found that 0
1,1,1
W .  Thus, an input constraint )1,1():)(,1(

max1111
uxKBAK   is 

non-redundant and it has to be included in the construction of polyhedral invariant set 
1

S  by 
adding it to the constraints defined by ),(

11
dM . Without this constraint, the state )1( kx  can 

violate an input constraint )1,1()1(:),1(
max1

ukxK   for at least one realization of the uncertainty. 

1
M  and 

1
d  now can be written as TTTT )KB(AKKKM ]):),1((, ,[

1111111
  and 

TTTT uuud ])1,1(,,[
maxminmax1

 . Then an off-line step 2.2 continues for 
2,1,1

W , 
3,1,1

W  and 
4,1,1

W , 
respectively. We found that 0

2,1,1
W , 0

3,1,1
W , 0

4,1,1
W  and hence the constraint 

)1,1():)(,1(
max1331

uxKBAK   also has to be included in the construction of the polyhedral 
invariant set 

1
S . 

 
In an off-line step 2.3, by setting 4  and  3 2,m , (3.5) is repeatly solved to find the set of 

initial states such that the constraints  )1,2()1(:),2(
max1

ukxK  , )1,1()1(:),1(
min1

ukxK   and 
)1,2()1(:),2(

min1
ukxK   are guaranteed to be satisfied, respectively. Then the procedure is 

continued for 4m  until there is no non-redundant constraint. Note that the number of contraints 
defining the polyhedral invariant set 

1
S  is finite because the closed-loop system is robustly 

stabilized by the state feedback gain 
1

K  calculated from an off-line step 1 (The satisfaction of the 
Lyapunov stability constraint (3.2) for the state feedback gain 1K  guarantees that the closed-loop 
system is robustly stabilized.). Finally, in this example, the algorithm terminates at 16m . 
 

The polyhedral invariant sets 6,...,2  , iS
i

 corresponding to the state feedback gains 
6,...,2  , iK

i
 can be constructed by following the same procedure as 

1
S . After the constructions of 

all 
i

S  are completed, the polyhedral invariant sets 6,...,1  , iS
i

 as shown in Fig. 3.1 (a) are 
obtained.  
 

A sequence of ellipsoidal invariant sets constructed off-line by an ellipsoidal off-line 
robust MPC algorithm of Wan and Kothare (2003) by choosing the same sequence of states 

6,...,1  , ix
i

 is shown in Fig. 3.1 (b). It can be observed from the figure that for each chosen state 

i
x , the stabilizable region of polyhedral invariant set constructed by algorithm 3.1 is significantly 
larger than the stabilizable region of an ellipsoidal invariant set constructed by an ellipsoidal off-
line robust MPC algorithm of Wan and Kothare (2003). This is due to the fact that an ellipsoidal 
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invariant set constructed by an ellipsoidal off-line robust MPC algorithm of Wan and Kothare 
(2003) is only an approximation of the true polyhedral invariant set. 
 

 
 

(a) Algorithm 3.1 

    
(b) Wan and Kothare (2003) 

Figure 3.1 The comparison between a sequence of polyhedral invariant sets constructed off-line 
by algorithm 3.1 and a sequence of ellipsoidal invariant sets constructed off-line by an ellipsoidal 
off-line robust MPC algorithm of Wan and Kothare (2003) in example 3.1. 
 

The comparison between the stabilizable regions of feedback gains K1 and K2 is shown in 
Fig. 3.2. In this example, K2 is larger than K1 because K2 is computed by using the state which is 
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closer to the origin than K1. It can be observed from the figure that an ellipsoidal off-line robust 
MPC algorithm of Wan and Kothare (2003) cannot stabilize the states at point A. This is due to 
the fact that the states at point A are not contained in the largest invariant ellipsoid .

1 int


Apo
x  In 

comparison, algorithm 3.1 can regulate the states from point A to the origin by using K1 because 
the states are contained in the largest polyhedral invariant set .

1 int
Sx

Apo
  It can also be observed 

from the figure that if we start at point B, an ellipsoidal off-line robust MPC algorithm of Wan 
and Kothare (2003) can regulate the states to the origin by using the lowest feedback gain K1. In 
comparison, algorithm 3.1 can regulate the states to the origin by using higher feedback gain K2 
due to the fact that .

2 int
Sx

Bpo
  In this circumstance, algorithm 3.1 can adopt higher feedback gain 

as compared to an ellipsoidal off-line robust MPC algorithm of Wan and Kothare (2003). Thus, 
algorithm 3.1 can achieve less conservative result as compared to an ellipsoidal off-line robust 
MPC algorithm of Wan and Kothare (2003). 

         
Figure 3.2 The stabilizable regions of feedback gains K1 and K2 in example 3.1. 

 
Figure 3.3 shows the regulated output and Fig. 3.4 shows the control input. In this 

example, two uncertain parameters )(k  and )(k  are randomly time-varying between 
109 10)(10 

o
kk  and 87 10)(10 

rxn
Hk . It can be observed from the figure that 

algorithm 3.1 can achieve less conservative results as compared to an off-line MPC algorithm of 
Wan and Kothare (2003). Moreover, algorithm 3.1 takes less time than an off-line MPC algorithm 
of Wan and Kothare (2003) to reach and remain inside the settling band which is properly chosen 
as %1  of 

mequilibriuA,
C  and %1.0  of 

mequilibriu
T . Thus, it can be concluded that algorithm 3.1 has less 

settling time than an off-line MPC algorithm of Wan and Kothare (2003). 
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(a) The concentration of A in the reactor 

 

      
(b) The reactor temperature 

Figure 3.3 The regulated output in example 3.1 (a) The concentration of A in the reactor  
(b) The reactor temperature. 
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                      (a) The feed concentration of A 

               
(b) The coolant flow 

Figure 3.4 The control input in example 3.1 (a) The feed concentration of A  (b) The coolant flow. 
 

The cumulative cost  


0

)()()()(
i

TT iRuiuiΘxix  is shown in table 3.2. It can be observed 

from the table that algorithm 3.1 has less cumulative cost than an off-line robust MPC algorithm 
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of Wan and Kothre (2003) so algorithm 3.1 can achieve better control performance as compared 
to an off-line robust MPC algorithm of Wan and Kothre (2003). 

 
Table 3.2 The cumulative cost  in example 3.1 . 

Algorithm Cumulative Cost 
Algorithm 3.1 17.51 

Wan and Kothare (2003) 19.12 
 

Table 3.3 shows the overall numerical burdens in example 3.1. Although the construction 
of polyhedral invariant sets is more computationally demanding than the construction of 
ellipsoidal invariant sets, this is done off-line and hence the on-line computation is tractable. All 
of the numerical simulations have been performed in Intel Core i-5 (2.4GHz), 2 GB RAM, using 
SeDuMi (Sturm, 1999) and YALMIP (Löfberg, 2004) within Matlab R2008a environment. 
 

Table 3.3 The overall numerical burdens in example 3.1. 

Algorithm 
Overall off-ine On-line computational time 

computational time per prediction 
Wan and Kothare (2003) 3.672 s 0.001 s 

Algorithm 3.1 4.372 s 0.001 s 
 
Example 3.2:  
 

In the second example, we will consider an application of our approach to an angular 
positioning system. The system consists of an electric motor driving a rotating antenna so that it 
always points in the direction of a moving object. The motion of the antenna can be described by 
the following discrete-time equation 
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where )(k  is the angular position of the antenna, )(

.

k  is the angular velocity of the 
antenna and  )(ku  is the input voltage to the motor. The uncertain parameter )(k  is proportional 
to the coefficient of viscous friction in the rotating parts of the antenna. It is assumed to be 
arbitrarily time-varying in the range of 10)(1.0  k . Let 

eq
  , eq

...

   and 
eq

uuu   
where the subscript eq  is used to denote the corresponding variable at equilibrium condition. The 
discrete-time model (3.9) can be  written as follows 
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              Because the uncertain parameter )(k  is varied between 0.1 and 10, we conclude that 

ΩkA )(   where Ω  is given as follows 
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The objective is to regulate   from 0.2 to the origin by manipulating u . The input 

constraint is 2)( ku volts. Here )(kJ


is given by 
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with 









00

01
Θ  and .00002.0R    

 
Next, we will illustrate the step-by-step implementation of the proposed algorithm 3.1. In 

an off-line step 1, a sequence of states ),20.0,20.0(),25.0,25.0(),30.0,30.0(),35.0,35.0{(
i

x  
)}05.0,05.0(),10.0,10.0(),15.0,15.0(  is chosen to calculate the corresponding state feedback gains 

i
K . A sequence of states 

i
x  is chosen such that the distance between 

1i
x  and the origin is less 

than the distance between 
i

x  and the origin. This is to ensure that the polyhedral invariant sets 
constructed are nested (

ii
SS 

1
). In this example, only seven state feedback gains 7,...,1  , iK

i  are 
computed off-line because the state feedback gains 

i
K  are almost constant beyond 7i .  
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After a sequence of state feedback gains 7,...,1  , iK

i
 is computed in an off-line step 1, 

the corresponding polyhedral invariant sets 7,...,1  , iS
i

 will be constructed in an off-line step 2. 
Let us begin with the first feedback gain 

1
K . In an off-line step 2.1, we first set TT

i

T

ii
KKM ] ,[  , 

TTT

i
uud ],[

minmax
 (There is no output constraint in this example) and 1m . Then, 

1
M  and 

1
d  can be 

written as follows 
 








 


04.155.4

04.155.4
] ,[

111

TTT KKM ,  











2

2
],[

minmax1

TTT uud  

 
where  04.155.4

1
K  corresponding to the chosen state )35.0,35.0(

1
x  is calculated from an 

off-line step 1, 2
max

u  and 2
min

u  are the input constraints. 
 

In an off-line step 2.2, we select row m=1 from ),(
11

dM , which is an input constraint 

max1
uxK  , and find whether the constaint 

max1111
)( uxKBAK   is redundant with respect to the 

constraints defined by ),(
11

dM . By setting 
max11111,1,1

( u)xKBAKW   and solving (3.5), we 
found that 0

1,1,1
W .  Thus, an input constraint 

max1111
)( uxKBAK   is non-redundant and it has to 

be included in the construction of polyhedral invariant set 
1

S  by adding it to the constraints 
defined by ),(

11
dM . Without this constraint, the state )1( kx  can violate an input constraint 

max1
)1( ukxK   for at least one realization of the uncertainty. 

1
M  and 

1
d  now can be written as 

TTTT )KB(AKKKM ])(, ,[
1111111

 and TTTT uuud ],,[
maxminmax1

 . Then an off-line step 2.2 continues for 

2,1,1
W . We found that 

2,1,1
W > 0 and hence the constraints 

max1221
)( uxKBAK   also has to be 

included in the construction of the polyhedral invariant set 
1

S . 
 

In an off-line step 2.3, by setting 2m , (3.5) is repeatly solved to find the set of initial 
states such that the constraint 

min1
)1( ukxK   is guaranteed to be satisfied. Then the procedure is 

continued for 2m  until there is no non-redundant constraint. Note that the number of contraints 
defining the polyhedral invariant set 

1
S  is finite because the closed-loop system is robustly 

stabilized by the state feedback gain 
1

K  calculated from an off-line step 1 (The satisfaction of the 
Lyapunov stability constraint (3.2) for the state feedback gain 

1
K  guarantees that the closed-loop 

system is robustly stabilized.). Finally, in this example, the algorithm terminates at 12m . 



33 
 

 
The polyhedral invariant sets 7,...,2  , iS

i
 corresponding to the state feedback gains 

7,...,2  , iK
i

 can be constructed by following the same procedure as 
1

S . After the constructions of 
all 

i
S  are completed, the polyhedral invariant sets 7,...,1  , iS

i
 as shown in Fig. 3.5 (a) are 

obtained.  
 

 
(a) Algorithm 3.1 

         
(b) Wan and Kothare (2003) 

Figure 3.5 The comparison between a sequence of polyhedral invariant sets constructed off-line 
by algorithm 3.1 and a sequence of ellipsoidal invariant sets constructed off-line by an ellipsoidal 
off-line robust MPC algorithm of Wan and Kothare (2003) in example 3.2. 
 



34 
 

The comparison between the polyhedral invariant sets constructed by algorithm 3.1 and 
the ellipsoidal invariant sets constructed by an ellipsoidal off-line robust MPC algorithm of Wan 
and Kothare (2003) is shown in Fig. 3.5. Note that for both algorithms, the invariant sets are 
constructed by choosing the same sequence of states 7,...,1  , ix

i
. For each chosen state 

i
x , the 

polyhedral invariant set has a significantly larger stabilizable region as compared to an ellipsoidal 
invariant set. This is due to the fact that an ellipsoidal invariant set constructed by an ellipsoidal 
off-line robust MPC algorithm of Wan and Kothare (2003) is only an approximation of the true 
polyhedral invariant set constructed by algorithm 3.1. 
 

The comparison between the stabilizable regions of feedback gains K1 and K2 is shown in 
Fig. 3.6. In this example, K2 is larger than K1 because K2 is computed by using the state which is 
closer to the origin than K1. It can be observed from the figure that an ellipsoidal off-line robust 
MPC algorithm of Wan and Kothare (2003) cannot stabilize the states at point A because the 
states at point A are not contained in the largest invariant ellipsoid .

1 int


Apo
x  In comparison, 

algorithm 3.1 can stabilize the states at point A by using K1 because the states are contained in the 
largest polyhedral invariant set .

1 int
Sx

Apo
  It can also be observed from the figure that an 

ellipsoidal off-line robust MPC algorithm of Wan and Kothare (2003) can stabilize the states at 
point B by using the lowest feedback gain K1. In comparison, algorithm 3.1 can stabilize the states 
at point B by using higher feedback gain K2 due to the fact that .

2 int
Sx

Bpo
  In this circumstance, 

algorithm 3.1 can adopt higher feedback gain as compared to an ellipsoidal off-line robust MPC 
algorithm of Wan and Kothare (2003). Thus, algorithm 3.1 can achieve less conservative result as 
compared to an ellipsoidal off-line robust MPC algorithm of Wan and Kothare (2003). 
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Figure 3.6 The stabilizable regions of feedback gains K1 and K2 in example 3.2. 
 

Figure 3.7 shows the closed-loop responses of the system when )(k  is randomly time-
varying between 10)(1.0  k . It can be observed from the figure that algorithm 3.1 can 
achieve less conservative results as compared to an off-line robust MPC algorithm  of Wan and 
Kothare (2003). Moreover, it is seen that algorithm 3.1 settles within %1  of 

mequilibriu
  faster than 

an off-line robust MPC algorithm of Wan and Kothare (2003). Thus, it is concluded that 
algorithm 3.1 has less settling time than an off-line MPC algorithm of Wan and Kothare (2003). 

 

 
a) The regulated output 



36 
 

 
b) The control input 

Figure 3.7 The closed-loop responses of the system in example 3.2 when )(k  is randomly  
time-varying between  10)(1.0  k  (a) The regulated output (b) The control input. 
 

The cumulative cost  


0

)()()()(
i

TT iRuiuiΘxix  is shown in table 3.4. It can be 

observed that algorithm 3.1 has less cumulative cost than an off-line robust MPC algorithm of 
Wan and Kothare (2003) so algorithm 3.1 can achieve better control performance as compared to 
an off-line robust MPC algorithm of Wan and Kothare (2003). This is due to the fact that for each 
chosen state ix , the stabilizable region of polyhedral invariant set constructed by algorithm 3.1 is 
significantly larger than the stabilizable region of an ellipsoidal invariant set constructed by an 
off-line robust MPC algorithm of Wan and Kothare (2003). As previously discussed in example 
3.1, algorithm 3.1 can adopt higher feedback gain as compared to an off-line robust MPC 
algorithm of Wan and Kothare (2003). 

 
Table 3.4 The cumulative cost in example 3.2. 

Algorithm Cumulative Cost 
Algorithm 3.1 0.21 

Wan and Kothare (2003) 0.23 
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Table 3.5 shows the overall numerical burdens in example 3.2. For both algorithms, most 
of the computational burdens are moved off-line and hence on-line computations are tractable. 
However, it can be observed that by using the same amount of on-line computational time, the 
proposed algorithm can achieve better control performance as shown in Fig. 3.7. 
 

Table 3.5 The overall numerical burdens in example 3.2. 

Algorithm 
Overall off-ine On-line computational time 

computational time per prediction 
Wan and Kothare (2003) 2.831 s 0.001 s 

Algorithm 3.1 3.541 s 0.001 s 
 
3.3 An Extension of An Off-line Robust MPC Algorithm 3.1 to Linear Parameter Varying 
(LPV) Systems 
 
 By assuming that the time-varying parameter can be measured on-line at each sampling 
instant, the control performance of robust MPC is improved because the first control input can be 
calculated without any model uncertainty. In this section, an off-line MPC algorithm for LPV 
systems using polyhedral invariant sets is proposed. LPV systems are linear systems whose 
dynamics depend on the scheduling parameters that can be measured on-line. The analysis and 
synthesis of LPV systems play an important role in control theory since nonlinear systems can be 
dealt within the framework of LPV systems. Algorithm 3.1 will be extended by precomputing off-
line the sequences of state feedback gains corresponding to the sequences of nested polyhedral 
invariant sets. Instead of constructing only a sequence of nested polyhedral invariant sets as 
proposed in algorithm 3.1, the number of sequences of nested polyhedral invaraint sets 
constructed is equal to the number of the vertices of polytope. At each sampling instant, the 
smallest polyhedral invariant set containing the currently measured state is determined in each 
sequence and the scheduling parameter is measured. The real-time state feedback gain is then 
calculated by linear interpolation between the corresponding off-line state feedback gains. 
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Algorithm 3.2 
 
Off-line step 1: Choose a sequence of states  ,...,N,ix

i
21 ,   and solve the following problem to 

obtain the corresponding state feedback gains L....,jN....,iGYK
jijiji

,,21 ,,,21,1

,,,
  . The states 

i
x  should be chosen such that the distance between 1ix  and the origin is less than the distance 

between i
x  and the origin. 

 
                                    γ
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Off-line step 2: Given the state feedback gains L....,jN....,iGYK

jijiji
,,21 ,,,21,1

,,,
   from step 1. 

For each 
ji

K
,

, the corresponding polyhedral invariant sets  
jijiji

dxMxS
,,,

/   is constructed by 
following these steps:

 

 
2.1) Set TT

ji

T

ji

TT

ji
KKCCM ] , , ,[

,,,
 , TTTTT

ji
uuyyd ],,,[

minmaxminmax,
 and 1m . 

 
2.2) Select row m  from ),(

,, jiji
dM  and check Lll ,...,1  ,   whether 

mjijillmji
dxKBAM

,,,,,
)(    is 

redundant with respect to the constraints defined by ),(
,, jiji

dM  by solving the following problem: 
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  s.t.

 max       
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If  0

,,,


lmji
W , the constraint 

mjijillmji
dxKBAM

,,,,,
)(   is non-redundant with respect to 

).,(
,, jiji

dM  Then, add non-redundant constraints to ),(
,, jiji

dM  by assigning 
TT

jillmji

T

jiji
KBAMMM ]))((,[

,,,,,
  and TT

mji

T

jiji
ddd ],[

,,,,
 .  

 
2.3) Let 1 mm  and return to step 2.2. If m  is strictly larger than the number of rows in 

),(
ii

dM  then terminate. 
 
On-line: At each sampling time, measure )(kx , )(kp

j
 and determine the smallest polyhedral 

invariant set   
jijiji

dxMxS
,,,

/   containing the measured state in each sequence. Then 
implement the corresponding state feedback control law )())((

1

k xKkpu(k)
L

j
i,jj



 to the process. 

 
The satisfaction of (3.13) for the state feedback gain  


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j
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ensures that (Wada et al., 2006) 
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Thus, )/(),()/(),( kikxkiPkikxkiV T   is a strictly decreasing Lyapunov function and the 
closed-loop system is robustly stabilized by the state feedback gain ))(( ikpK  . 
 
By solving (3.16) and iteratively adding non-redundant constraints  

mjijillmji
dxKBAM

,,,,,
)(   to 

),(
,, jiji

dM  by assigning TT

jillmji

T

jiji
KBAMMM ]))((,[

,,,,,
  and TT

mji

T

jiji
ddd ],[

,,,,
 , we can find the set of 

initial states x  defined by  
jijiji

dxMxS
,,,

/   such that all future states are guaranteed to stay 
within this set without input and output constraints violation. Thus, the set 

ji
S

,
 is polyhedral 

invariant set and any convex combination of the corresponding state feedback gain 
 


L

j
jij

KikpikpK
1

,
))(())((  guarantees robust constraint satisfaction. 
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Examples 3.3 
In this example, we will consider the application of our approach to the nonlinear two-

tank system (Angeli et al., 2000) which is described by the following equation 
 

                                                          
22112

.

2

111

.

1

22

2

ghAghAhS

ughAhS







                                          (3.18) 

 
where 

1
h  is the water level in tank 1, 

2
h  is the water level in tank 2 and u  is the water flow. The 

operating parameters are shown in table 3.6.  
 

Table 3.6 The operating parameters of the nonlinear two-tank system in example 3.3. 
Parameter Value Unit 

1
S  2500  cm2 

2
S  1600  cm2 

1
A  9  cm2 

2
A  4  cm2 

g  980  cm/s2 

  0.001  kg/cm3 

eq
h

,1
 14 cm 

eq
h

,2
 70 cm 

 
Let 

eqeq
hhhhhh

,222,111
 ,   and 

eq
uuu   where subscript eq  is used to denote the 

corresponding variable at equilibrium condition, the objective is to regulate 
2

 h  to the origin by 
manipulating u . The input and output constraints are given as follows 

 
         5.1u  kg/s,  13

1
h cm, 50

2
h cm                                          (3.19) 

 
By evaluating the Jacobian matrix of (3.18) along the vertices of the constraints set 

(3.19), we have that all the solutions of (3.18) are also the solution of the following differential 
inclusion 
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where 4,...,1, jA
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 are given by 
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and 4,...,1, jp

j
 are given by 
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The discrete-time model is obtained by discretization of (3.20) using Euler first-order 
approximation with a sampling period of 0.5 s and it is omitted here for brevity. Here )(kJ


 is 

given by 
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Figure 3.8 shows the polyhedral invariant sets constructed off-line by algorithm 3.2 and 

algorithm 3.1. For both algorithms, the polyhedral invariant sets are constructed by choosing the 
same sequence of state  5,...,2,1, ix

i
. Note that with the same number of chosen states, algorithm 

3.2  requires larger number of polyhedral invariant sets than algorithm 3.1. This is due to the fact 
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that for algorithm 3.2, the number of sequences of nested polyhedral invaraint sets constructed is 
equal to the number of the vertices of the polytope. 
 

 
                        a.1) }521{,

1,
,...,,iS

i
                                                 a.2) }521{,

2,
,...,,iS

i
  

  
                   a.3) }521{,

3,
,...,,iS

i
                                             a.4) }521{,

4,
,...,,iS

i
  

(a) Algorithm 3.2 
 

 
 

(b) Algorithm 3.1 
Figure 3.8 The polyhedral invariant sets constructed off-line by (a) Algorithm 3.2 and  

(b) Algorithm 3.1 in example 3.3. 
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Figure 3.9 (a) shows the regulated output. For algorithm 3.2, the scheduling parameter is 
measured on-line at each sampling time so it can achieve less conservative result as compared to 
algorithm 3.1. Moreover, algorithm 3.2 has less settling time than algorithm 3.1 because 
algorithm 3.2 requires less time to enter and remain within the settling band ( %1.0  of 

mequilibriu2,
h ). 

The control input is shown in Fig. 3.9 (b), the input discontinuities are caused by the switching of 
state feedback gains based on the distance between the state and the origin.  
 

 
(a) The regulated output 

    
(b) The control input 

Figure 3.9 The closed-loop responses in example 3.3 a) The regulated output b) The control input. 
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The overall off-line computational burdens are shown in table 3.7. Although algorithm 
3.2 requires larger off-line computational time than algorithm 3.1, the on-line computation is 
tractable because there is no optimization problem needed to be solved on-line. 

 
Table 3.7 The overall off-line computational burdens in example 3.3. 

Algorithm  Off-line CPU time (s) 
Algorithm 3.1 3.612 
Algorithm 3.2 6.738 

 
3.4 Conclusions 
 
 In this chapter, we have presented an off-line synthesis approach to robust MPC using 
polyhedral invariant sets. The proposed algorithm precomputes off-line a sequence of state 
feedback control laws corresponding to a sequence of polyhedral invariant sets. At each sampling 
time, the smallest polyhedral invariant set that the currently measured state can be embedded is 
determined. The corresponding state feedback control law is then implemented to the process. 
Several examples that illustrate the implementation of the proposed off-line robust MPC 
algorithm is presented. The results show that the control performance of our proposed algorithm 
is better than an ellipsoidal off-line robust MPC algorithm. Moreover, a significantly larger 
stabilizable region is obtained. Finally, an off-line MPC algorithm for LPV systems is proposed. 
The scheduling parameter is measured on-line at each sampling instant so the control performance 
is improved. 
  
   



 

CHAPTER IV   
AN INTERPOLATION-BASED MPC STRATEGY FOR LINEAR PARAMETER 

VARYING SYSTEMS 
 

 One of the main important problems in implementation of MPC is the on-line 
computational complexity. Although the significant advances of modern computers over the past 
few years have alleviated the computational problem of MPC, the application of MPC is rather 
restricted due to its on-line computational requirements. Moreover, the size of the optimization 
problem grows respectively with the number of independent uncertain process parameters. 
 This chapter presents a strategy to alleviate the problem of on-line computational 
complexity of MPC. The on-line computational burdens are reduced by precomputing off-line the 
sequences of state feedback gains corresponding to the sequences of nested ellipsoids. At each 
sampling time, the scheduling parameter is measured and the real-time state feedback gain is 
calculated by linear interpolation between the precomputed state feedback gains. 
 
4.1 Introduction 
 
 MPC based on linear model is typically used in many industrial processes because the 
on-line optimization problem can be formulated as the convex optimization problem by either 
linear programming or quadratic programming. However, most of the chemical processes are 
nonlinear. The performance of linear MPC can deteriorate drastically when the operating 
conditions undergo significant changes. Moreover, the stability of nonlinear system cannot be 
guaranteed. 
 Linear parameter varying (LPV) systems are linear systems whose dynamics depend on 
the scheduling parameter that can be measured on-line. The analysis and synthesis of LPV 
systems play an important role in control theory since both nonlinear systems and linear systems 
with model uncertainties can be dealt within the framework of LPV systems. At each sampling 
instant, the scheduling parameter can be measured on-line. Its future behavior is considered to be 
uncertain and contained in a polytope. 
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 Quasi-min-max MPC algorithm for LPV systems was proposed by Lu and Arkun (2000). 
The algorithm is seen as an extension of the algorithm presented by Kothare et al. (1996) by 
keeping the first control input as a free decision variable. Since the optimization problem is really 
solved on-line at each sampling instant, the algorithm requires high on-line computational time. 
Moreover, the algorithm turns out to be conservative because it is derived by using a single 
Lyapunov function. Two-stage scheduling quasi-min-max MPC algorithm was presented by Lu 
and Arkun (2002). The algorithm can achieve less conservative result as compared to Quasi-min-
max MPC algorithm of Lu and Arkun (2000) because more control moves are relaxed from the 
feedback control law. However, it is computationally prohibitive in the practical situations 
because the size of the on-line optimization problem grows significantly with respect to the size 
of the polytope. 
 In order to reduce the conservativeness arising from the use of a single Lyapunov 
function, MPC for LPV systems using parameter-dependent Lyapunov function was proposed by 
Wada et al. (2006). As compared with a single Lyapunov function, the use of parameter-
dependent Lyapunov function can reduce the conservativeness because there are more degrees of 
freedom in solving the optimization problem. However, the algorithm requires high on-line 
computational time because the on-line optimization problem contains many decision variables 
and constraints. 
 Since the application of on-line MPC is restricted to only a slow dynamic process, some 
researchers have begun to study off-line MPC (Wan and Kothare, 2003; Ding et al., 2007). The 
on-line computational time is reduced by precomputing off-line a sequence of explicit control 
laws corresponding to a sequence of invariant ellipsoids. At each sampling time, the smallest 
ellipsoid containing the measured state is determined and the real-time control law is calculated 
by linear interpolation between control laws of two adjacent invariant ellipsoids. Although the on-
line computational time is reduced, the conservativeness is obtained due to the fact that the 
scheduling parameter is not taken into account in the controller design. Moreover, the algorithm is 
still derived by using only a single Lyapunov function.  
 From the preceding review, we can see that on-line robust MPC usually requires high 
computational time. Thus, it is computationally prohibitive in practical situations. For off-line 
robust MPC, the conservative result is usually obtained because the scheduling parameter is not 
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taken into account in the control synthesis. In this chapter, an off-line synthesis approach to MPC 
for LPV systems is presented. The on-line computational burdens are reduced by precomputing 
off-line the sequences of state feedback gains corresponding to the sequences of nested ellipsoids. 
At each sampling time, the scheduling parameter is measured and the real-time state feedback 
gain is calculated by linear interpolation between the state feedback gains of the smallest ellipsoid 
containing the measured state in each sequence. 
 
4.2 An Interpolation-based MPC Strategy for LPV Systems 
 
 In this section, a strategy to reduce the on-line computational complexity of MPC for 
LPV systems is presented. Most of the computational burdens are moved off-line. Thus, the on-
line computation is tractable. The on-line computation is reduced by precomputing off-line the 
sequences of state feedback gains corresponding to the sequences of nested ellipsoids. At each 
sampling instant, the smallest ellipsoid containing the currently measured state is determined in 
each sequence of ellipsoids and the scheduling parameter is measured. The real-time state 
feedback gain is then calculated by linear interpolation between the corresponding state feedback 
gains.  
 
Algorithm 4.1 
Off-line Step 1:  Choose a sequence of states  ,....,N,ix

i
21 ,   and solve the following problem to 
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Off-line Step 2: For each ,Ni  check if the following inequality is satisfied 
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Online: At each sampling time ,k  measure )(),( kpkx and adopt the following state feedback 
control law 
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If  (4.5)  is not satisfied, then 1)( k

i
 . 

 
An overall algorithm is proved to guarantee robust stability in Theorem 4.1. 
 
Theorem 4.1 Given an initial measured state )(kx  satisfying

 
Ljkx

j
Q

,...,2,1,1)(
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1
,1

 , 

algorithm 4.1 asymptotically stabilizes the closed-loop system. 
 
Proof.  
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 The satisfaction of both (4.2) and (4.5) ensures 

that 0,)))(())(((,1)))(())(((  k)P(ikBKikpAk)P(ikBKikpA
i

T

i
  must be 

satisfied and the state feedback gain ))(( kK
i

  is guaranteed to asymptotically stabilize the closed-
loop system. More proof details can be found in Appendix B.  
 
Example 4.1:   Consider the following nonlinear model for CSTR (Magni et al., 2001) where the 
exothermic reaction BA   takes place.  
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where A
C  denotes the concentration of A  in the reactor, T  denotes the reactor temperature and 

c
T  denoted the temperature of coolant stream. The operating parameters are shown in table 4.1.  
 

Table 4.1 The operating parameters of nonlinear CSTR in example 4.1. 
Parameter Value Unit 

q  100 L/min 

f
T  350 K 

AF
C  1 mol/L 

V  100 L 

  1,000 g/L 

p
C  0.239 J/g K 

H  -5x104 J/mol 
RE

a
/  8,750 K 

o
k  7.2x1010 min-1 

UA  5x104 J/min K 

eqA
C

,  0.5 mol/L 

eq
T  350 K 
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By defining ,
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 , (4.10) can be written as (Ding et 
al., 2008) 
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where j
A  is given by 
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The objective is to regulate the concentration AC  and the reactor temperature T  to the 

origin by manipulating cT . The input and output constraints are given as follows 
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The discrete-time model is obtained by discretization of (4.12) with a sampling period of 

0.01 min and it is omitted here for brevity. The proposed algorithm will be compared with Quasi-
min-max MPC algorithm of Lu and Arkun (2000) and an off-line robust MPC algorithm of Wan 

and Kothare (2003). Here )(kJ
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Figure 4.1 shows the ellipsoids constructed off-line by the proposed algorithm and an 
off-line robust MPC algorithm of Wan and Kothare (2003). For both algorithms, the ellipsoids are 
constructed by choosing the same sequence of states  2021 , ,....,,ix

i
 . Note that with the same 

number of chosen states, the proposed algorithm requires larger number of ellipsoids than an off-
line robust MPC algorithm of Wan and Kothare (2003). 
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(a) Algorithm 4.1 
 

 
(b) An off-line robust MPC algorithm of Wan and Kothare (2003) 

 
Figure 4.1 The ellipsoids constructed off-line by (a) Algorithm 4.1 and (b) An off-line robust 
MPC algorithm of Wan and Kothare (2003) in example 4.1. 
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Table 4.2 shows the overall off-line numerical burdens. It can be observed that the 
proposed algorithm requires larger off-line computational time than an off-line robust MPC 
algorithm of Wan and Kothare (2003). This is due to the fact that the ellipsoids constructed by the 
proposed algorithm are derived by using parameter-dependent Lyapunov function. Thus, the 
optimization problem solved off-line is more complex that that presented in an off-line robust 
MPC algorithm of Wan and Kothare (2003).  
 

Table 4.2 The overall off-line numerical burdens in example 4.1. 
Algorithm  CPU time (s) 
Algorithm 4.1 8.174 
Wan and Kothare (2003) 5.783 

 
Figure 4.2 shows the closed-loop responses of the system. It is seen from the figure that 

the proposed algorithm can achieve less conservative result as compared with Quasi-min-max 
MPC algorithm of Lu and Arkun (2000) and an off-line robust MPC algorithm of Wan and 
Kothare (2003). Moreover, the proposed algorithm takes less time to reach and remain inside the 
settling band which is properly chosen as %1  of 

mequilibriuA,
C  and %1.0  of 

mequilibriu
T . Thus, it can 

be concluded that algorithm 4.1 has less settling time than an off-line MPC algorithm of Wan and 
Kothare (2003) and Quasi-min-max MPC algorithm of Lu and Arkun (2000). For Quasi-min-max 
MPC algorithm, although the scheduling parameter is measured and the optimization problem is 
really solved on-line, the conservative result is obtained because the algorithm is derived by using 
a single Lyapunov function. Moreover, it requires heavy on-line computational burden as shown 
in table 4.3.  
 

Table 4.3 The on-line numerical burdens in example 4.1. 
Algorithm CPU time (s) per step 

Algorithm 4.1 0.001 
Wan and Kothare (2003) 0.001 

Lu and Arkun (2000) 0.296 
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(a) The regulated output 
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(b) The control input 

 
Figure 4.2 The closed-loop responses in example 4.1 (a) The regulated output  

(b) The control input. 
 

For an off-line robust MPC algorithm of Wan and Kothare (2003), although the on-line 
computational burden is significantly reduced, the algorithm turns out to be very conservative as 
shown in Fig. 4.2. This is due to the fact that the nonlinear system is approximated by the 
polytopic uncertain system and the scheduling parameter is not taken into account in the 
controller synthesis. The cumulative cost  



0

)()()()(
i

TT iRuiuiΘxix  is shown in table 4.4. It is 

seen that the proposed algorithm can achieve better control performance than an off-line robust 
MPC algorithm of Wan and Kothare (2003) and an on-line MPC algorithm of Lu and Arkun 
(2000).   

Table 4.4 The cumulative cost in example 4.1. 
Algorithm Cumulative Cost 

Algorithm 4.1 118.01 
Wan and Kothare (2003) 122.73 

Lu and Arkun (2000) 120.66 
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Example 4.2:  
 
 Consider the following nonlinear model for CSTR (García-Sandoval et al., 2008) where 
the consecutive reaction CBA   takes place.  
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where 

1
x  denotes the dimensionless concentration of A , 2

x  denotes the dimensionless 
concentration of B , the control variable u corresponds to the inlet concentration of A . The 
operating parameters are shown in table 4.5. 
 

Table 4.5 The operating parameters of nonlinear CSTR in example 4.2. 
Operating parameters Value 

 1
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2
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 ,222 eq
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uuu   where the subscript eq is used to denote the 

corresponding variable at equilibrium condition. We have that all the solutions of (4.14) are also 
the solutions of the following differential inclusion 
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where j
A  is given by 
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http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DGarc%25C3%25ADa-Sandoval,%2520J.P.%26authorID%3D22950307000%26md5%3D9d3f5c8251c3c73efb9ad2e58523b6c5&_acct=C000030318&_version=1&_userid=591295&md5=2783f2280fbd10194f3ad3283113bf7f


57 
 

                                                 min,2max,2

min,22

2

min,2max,2

2max,2

1
 ,

xx

xx
p

xx

xx
p









  

 
The objective is to regulate 1x  and 2x  to the origin by manipulating u . The input and 

output constraints are given as follows 
 

                                                               5.0 ,5.0, 5.0 21  uxx                                          (4.16) 

 
The discrete-time model is obtained by discretizing (4.15) with a sampling period of 0.1 
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For both algorithms, the ellipsoids are constructed by choosing the same sequence of 

states  2021 , ,....,,ix
i
 . The resulting ellipsoids are shown in Fig. 4.3.  
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(a) Algorithm 4.1 
 

 
(b) An off-line robust MPC algorithm of Wan and Kothare (2003) 

 
Figure 4.3 The ellipsoids constructed off-line by a) Algorithm 4.1 and b) An off-line robust MPC 

algorithm of Wan and Kothare (2003) in example 4.2. 
 

Figure 4.4 shows the closed-loop responses of the system. It is seen the proposed 
algorithm outperforms other algorithms in regulating 1x . Moreover, the proposed algorithm 
requires less time to settle within the settling band ( %1  of the  equilibrium point). Thus, the 
settling time of the proposed algorithm is less than the settling times of other algorithms. 
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(a) The regulated output 

 

 
(b) The control input 

Figure 4.4 The closed-loop responses in example 4.2 (a) The regulated output  
(b) The control input. 
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 Then we will study effects of the number of ellipsoids constructed off-line by algorithm 
4.1. Figures 4.5, 4.6 and 4.7 show the ellipsoids constructed off-line by algorithm 4.1 when the 
number of chosen states is varied from N = 6, 11 and 20, respectively. 
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Figure 4.5 The ellipsoids constructed off-line by algorithm 4.1  

when the number of chosen states N = 6. 
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Figure 4.6 The ellipsoids constructed off-line by algorithm 4.1  

when the number of chosen states N = 11. 
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Figure 4.7 The ellipsoids constructed off-line by algorithm 4.1  

when the number of chosen states N = 20. 
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 Figure 4.8 shows the closed-loop responses of the systems in example 4.2 when the 
number of chosen states is varied from N = 6, 11 and 20, respectively. It is seen that the control 
performance improves as the number of chosen states increases. 
 

 
(a) The regulated output 

   
(b) The control input 

Figure 4.8 The closed-loop responses of the systems in example 4.2 when the number of chosen 
states is varied from N = 6, 11, 20, respectively. 
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4.3  Conclusions 
 
 In this chapter, we have presented an interpolation-based MPC for LPV systems. Most of 
the computational burdens are moved off-line by precomputing the sequences of state feedback 
gains corresponding to the sequences of nested ellipsoids. At each sampling instant, the smallest 
ellipsoid containing the currently measured state is determined in each sequence of ellipsoids and 
the scheduling parameter is measured. The real-time state feedback gain is calculated by linear 
interpolation between the corresponding state feedback gains. Comparisons with the existing 
MPC algorithms for LPV systems have been undertaken. The controller design is illustrated with 
two examples in chemical processes. 
 



 

CHAPTER V   
IMPROVING CONTROL PERFORMANCE OF OFF-LINE ROBUST MPC BASED ON 

A ONE-STEP STATE PREDICTION STRATEGY 
 

 An important approach to guarantee robust stability of MPC is to impose the state 
feedback control law on the control input. However, by doing so, the conservative result is 
obtained because the control input only depends on the evolution of state. Moreover, the 
saturation at one point in an input horizon will require a small or zero gain for all steps in the 
horizon. 
 In this chapter, a strategy to improve control performance based on a one-step state 
prediction strategy is presented. The conservativeness arising from imposing only the state 
feedback control law on the control input in chapters 3 and 4 is reduced by an addition of an 
element of free control input. By using the proposed strategy, the control performance is 
improved because the number of degrees of freedom in adjusting the plant is increased.  
 
5.1 Introduction 
 
 In the presence of plant uncertainty, one of the main approaches to guatantee robust 
stability of MPC is to impose the state feedback control law on the control input. Robust MPC 
synthesis that allows an explicit incorporation of plant uncertainty in the problem formulation was 
proposed by Kothare et al. (1996). The goal is to design the state feedback gain that minimizes 
the worst-case performance cost. Since the state feedback control law is imposed on the control 
input, the conservativeness is obtained because the control input only depends on the evolution of 
state.  
 In order to reduce the conservativeness, in Casavola et al. (2000), the control 
performance of the robust MPC algorithm proposed by Kothare et al. (1996) is improved by using 
a sequence of deterministic control inputs in the N-step state prediction instead of a state feedback 
control law. Although the control performance is improved, the algorithm cannot guarantee robust 
stability because there are not enough degrees of freedom in the optimization to be able to 
guarantee robust stability. A correction to the algorithm of Casavola et al. (2000) was proposed 
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by Casavola et al. (2007). Robust stability of the closed-loop system is recovered by using a 
control policy cKxu   in the N-step state prediction instead of a sequence of deterministic 
inputs. A larger N implies better control performance at a price of higher computational load so a 
suitable tradeoff is required in practice. 
 The idea to reduce the conservativeness by using the perturbation of free control input 
was also presented by Schuurmans and Rossiter (2000). A sequence of free control inputs is 
added to the state feedback control law in order to improve the control performance. However, all 
of the optimization problems are solved on-line so the algorithm requires high on-line 
computational time. 
 In this chapter, a strategy to improve control performance based on a one-step state 
prediction strategy is presented. First of all, the proposed strategy is applied to an off-line robust 
MPC algorithm using polyhedral invariant sets in chapter III. Instead of implementing only a state 
feedback gain corresponding to the smallest polyhedral invariant set that the currently measured 
state can be embedded, the control performance is improved by an addition of an element of free 
control input calculated by minimizing a one-step state prediction cost function. At each sampling 
instant, only a numerically low-demanding optimization problem is needed to be solved on-line. 
 Then the proposed strategy is applied to an off-line MPC algorithm for LPV systems in 
chapter IV. Instead of implementing only a real-time state feedback gain calculated by linear 
interpolation between the off-line state feedback gains corresponding to the sequences of nested 
ellipsoids, the control performance is improved by an addition of an element of free control input. 
At each sampling instant, only a numerically low-demanding optimization problem is needed to 
be solved on-line. Moreover, the number of LMI constraints grows up only linearly with the 
number of vertices of the polytope. 
 
5.2 Improving Control Performance of A Polyhedral Off-line Robust MPC Algorithm Based 
on A One-step State Prediction Strategy 
 
 In this section, a strategy to improve control performance of an off-line robust MPC 
algorithm proposed in chapter III is presented. Instead of implementing only a state feedback gain 

i
K  corresponding to the smallest polyhedral invariant set 

i
S  that the currently measured state can 
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be embedded, the control performance is improved by an addition of an element of free control 
input 

k
c  calculated by minimizing a one-step state prediction cost function. At each sampling 

time, given a state feedback gain 
i

K  as proposed in algorithm 3.1, an element of free control 
input 

k
c  is calculated by solving the following problem 
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 

uh,hki
n...,h,ucx(k)K ,,21∈∀)(

max
                                                 (5.4) 

 
 (5.1) is the one-step state prediction cost function. (5.2) is the one-step state prediction. 
(5.3) is for guaranteeing robust stability and (5.4) is for guaranteeing that an input constraint is 
satisfied. Note that the output constraint does not need to be incorporated in the problem 
formulation because the predicted state )1( kx

j  is restricted to lie in 
i

S  by (5.3) so it must also 
satisfy an output constraint

max,≤)( )1( rr yCx k
j

 . 
 
 Since the optimization problem (5.1) has to be solved on-line at each sampling instant, it 
will be formulated as the convex optimization involving linear matrix inequalities (LMIs) that can 
be solved in polynomial time. The optimization problem (5.1) can be written in the form of LMIs 
as follows 
 
Algorithm 5.1 

                                        
0

min J
kC

                                                                                              (5.5) 

                                  L jBcx(k)KBAkx
kijjj

,...,2,1 ,)()1( s.t.                                  (5.6) 
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Implement 
ki

cx(k)Kku )( to the process. 
 By applying Schur complement to (5.8), we obtain 

k

T

kj

T

jo
RcckΘxkxJ  )1()1( . Thus, 

minimizing 
o

J  in (5.5) is equivalent to (5.1). By applying Schur complement to (5.9), (5.4) is 
obtained.  
 
Example 5.1  
 
 In this example, we will consider an application of our approach to a continuous 
bioreactor in fermentation process. Biochemical reactors are used to produce a large number of 
products including pharmaceuticals, food and beverages. In this bioreactor model, only two 
components are considered including biomass B

X  and substrate S . A fermentation process is 
assumed to occur in an isothermal continuous bioreactor with constant volume and constant 
physical-chemical properties. The maximum growth rate 

max
  of biomass is considered to be an 

uncertain parameter. The dynamic model based on the component balance is given as follows 
(Galluzzo et al., 2008) 
 

                                             )( DXXS
dt

dX
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                                               )(
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00

01                                                                     (5.10) 

 

where B
X  is the biomass concentration, S  is the substrate concentration and D  is the dilution 

rate. The operating parameters are shown in table 5.1. 
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Table 5.1 The operating parameters of continuous bioreactor in example 5.1. 
   Parameter Value Unit 

F
S  4 3/ mkg  

Y  0.4 - 

max
  0.01-0.99 1hr  

1
K  0.12 3/ mkg  

2
K  0.45 kgm /3  

 

 Let 
eqBBB XXX

,
 , 

eq
SSS  and 

eq
DDD   where the subscript eq is used to denote 

the corresponding variable at equilibrium condition. The discrete-time model (5.11) is obtained 
by linearization and discretization of (5.10) using Euler first-order approximation with a sampling 
time of 0.2 hr. 
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where 99.0)(01.0

max
 k . Since the uncertain parameter )(

max
k  varies between 0.01 and 0.99, 

we conclude that )(kA  where   is given as follows 
 

                                 
}

0949.02802.0

3380.00521.1
,

9314.00028.0

0034.09411.0
{ 
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
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


CoΩ                                    (5.12) 

 
 The objective is to regulate BX  and S  by manipulating D . The input constraint is 

1hr 015.0)( kD . The symmetric weighting matrices in (5.1) are given by 









00

01
Θ  and 

1.0R .  
 
 Figure 5.1 shows the polyhedral invariant sets constructed off-line by algorithm 3.1. In 
this example, a sequence of nine polyhedral invariant sets is constructed off-line. 
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Figure 5.1 A  sequence of nine polyhedral invariant sets constructed off-line in example 5.1. 

 

 Figure 5.2 (a) shows the regulated output when 1

max
 5.0  hr . It can be observed that 

by using the proposed strategy together with algorithm 3.1, we can achieve less conservative 
result as compared with using only algorithm 3.1. This is due to the fact that by adding an element 
of free control input to the state feedback control law ))()((

k
ckKxku  , we have more degrees 

of freedom to adjust the plant. Moreover, by using the proposed strategy, less settling time is 
required for the output to reach and remain inside the settling band ( %1  of the equilibrium 
point). Figure 5.2 (b) shows the control input. By using only algorithm 3.1, the input 
discontinuities are caused by the switching between the state feedback gains based on the distance 
between the state and the origin. However, the input becomes continuous by an addition of an 
element of free control input as proposed.  
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      (a) The regulated output 

 
  (b) The control input 

Figure 5.2 The closed-loop responses of the continuous bioreactor in example 5.1 

(a) The regulated output (b) The control input.  

 



72 
 

 The cumulative cost  


0

)()()()(
i

TTT iRuiuiΘxix  is shown in table 5.2. It is seen that the 

cumulative cost is reduced by an addition of an element of free control input as proposed in 
algorithm 5.1. 
 

Table 5.2 The cumulative cost in example 5.1. 

Algorithm 
The values of 

max
  

0.01 0.5 0.99 
algorithm 5.1+algorithm 3.1 0.227 0.361 0.404 

only algorithm 3.1 0.233 0.372 0.411 
 
5.3 Improving Control Performance of An Off-line MPC Algorithm for LPV Systems Based 
on A One-step State Prediction Strategy 
 
 In chapter 4, an off-line MPC algorithm for LPV systems is presented. The on-line 
computational time is reduced by precomputing off-line the sequences of state feedback gains 

L,jN,iK
ji

,...,21 ,,...,21,
,

  corresponding to the sequences of nested ellipsoids 
}1/{ 1

,,
  xQxx

ji

T

ji
  where N  is the number of ellipsoids in each sequence and L  is the number of 
vertices of the polytope. At each sampling instant, the smallest ellipsoid containing the currently 
measured state is determined in each sequence of ellipsoids and the scheduling parameter )(kp  is 
measured. The real-time state feedback gain is then calculated by linear interpolation between the 
corresponding off-line state feedback gains  ])())[(1(])()[())((

1 1
,1, 

 


L

j

L

j
jijijijii

KkpkKkpkkK   

where ]1,0()( k
i

 . 
 In this section, a strategy to improve control performance of an off-line MPC algorithm 
for LPV systems (algorithm 4.1) is presented. Instead of implementing only a real-time feedback 
gain ))(( kK

i
  calculated by linear interpolation between the off-line feedback gains, the control 

performance is improved by an addition of an element of free control input 
k

c . At each sampling 
instant, when the measured state satisfies 1)()(

,
kxQkx

ji

T  and NiL,jkxQkx
ji

T 


 ,,...,21 ,1)()(
,1

, 
an element of free control input 

k
c  is calculated based on a one-step state prediction strategy as 

follows 
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                                                         (5.15) 

                                 
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n,h,u)ckxk(K ,...,21)())((
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                                                (5.16) 
       
 (5.13) is the one-step state prediction cost function, (5.14) is the one-step ahead state 
prediction, (5.15) is for guaranteeing robust stability and (5.16) is an input constraint. Note that 
the output constraint 

max,≤)( )1( rr yCx k   does not need to be incorporated in the problem 
formulation because the state )1( kx  is restricted to lie in 

ji ,
  by (5.15) and hence it must also 

satisfy an output constraint 
max,≤)( )1( rr yCx k  . 

 
 Since the optimization problem (5.13) has to be solved on-line at each sampling instant, it 
will be formulated as the convex optimization involving linear matrix inequalities (LMIs) that can 
be solved in polynomial time. The optimization problem (5.13) can be written in the form of 
LMIs as follows 
 
Algorithm 5.2    
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Implement ki

ckxkKku  )())(()(   to the process. 
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 By applying Schur complement to (5.19), we obtain .)1()1(
k

T

k

T

o
RcckΘxkxJ   

Thus, minimizing 
o

J  in (5.17) is equivalent to (5.13). By applying Schur complement to (5.20), 
(5.15) is obtained. Finally, by applying Schur complement to (5.21), (5.16) is obtained. 
 By applying the proposed strategy, the state is driven from 

ji ,
  towards 

ji ,1
 , and so on. 

Finally, the state is kept within 
jN ,

  and driven towards the origin. Thus, robust stability is 
guaranteed. Moreover, it can be observed that only (5.20) depends on the number of vertices of 
the polytope. The size of the optimization problem of the proposed algorithm grows up only 
linearly with the number of vertices of the polytope. 
 
Example 5.2 
 
 Consider the following nonlinear model for CSTR where the consecutive reaction 

CBA   takes place.  
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where 

1
x  denotes the dimensionless concentration of A , 

2
x  denotes the dimensionless 

concentration of B  and the control variable u corresponds to the inlet concentration of A . The 
operating parameters are shown in table 5.3. It is assumed that BA   is a first order chemical 
reaction whereas CB   is a second order chemical reaction. 
 

Table 5.3 The operating parameters of nonlinear CSTR in example 5.2. 
Parameter Value 

1
Da  1 

2
Da  2 

eq
x

,2  0.8956 
 
 Let ,

 ,111 eq
xxx   ,

 ,222 eq
xxx 

eq
uuu  , we have that all the solutions of (5.22) are 

also the solutions of the following differential inclusion 
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where 
j

A  is given by   ,
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 The objective is to regulate 1x  and 2x  to the origin by manipulating u . The input and 
output constraints are given as follows 
 

                                                                 
                                               5.0

5.0x

5.0
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1




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u

x

                        (5.24) 

 
 The discrete-time model is obtained by discretizing (5.23) using Euler first-order 
approximation with a sampling period of 0.1 min and it is omitted here for brevity. Here the 
symmetric weighting matrices in (5.13) are given by IΘ   and .01.0R   
 
 Figure 5.3 shows the ellipsoids ji ,

  where 20,...,2,1i  and 2,1j  constructed off-line by 
algorithm 4.1. In this example, two sequences of ellipsoids are constructed because the polytope 
has two vertices 2,1j . Note that a sequence of states 20,...,2,1

i
x  chosen to constructed the 

ellipsoids should be chosen such that the distance between 
1i

x  and the origin is less than the 
distance between 

i
x  and the origin. This is to ensure that the ellipsoids constructed in each 

sequence are nested 
jiji ,,1

 


 . 
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a.1) },1/{ 1

1,1,
  xQxx

i

Tn

i
 20,...,2,1i  

 
a.2) },1/{ 1

2,2,
  xQxx

i

Tn

i
 20,...,2,1i  

Figure 5.3 Two sequences of ellipsoids constructed off-line in example 5.2. 
 

 The closed-loop responses of the system are shown in Fig. 5.4. It is seen that by using the 
proposed strategy together with algorithm 4.1, we can achieve better control performance than 
using only algorithm 4.1. This is due to the fact that the degree of freedom to adjust the plant is 
increased. Moreover, the settling time, which is the time required for the output to enter and 
remain inside the settling band ( %1  of the equilibrium point), is also reduced. In this example, 
the on-line computational time at each sampling instant of the proposed strategy is only 0.01 s.  
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a) The regulated output                           

    
b) The control input 

Figure 5.4 The closed-loop responses in example 5.2 a) The regulated output b) The control input. 
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 The cumulative cost  


0

)()()()(
i

TTT iRuiuiΘxix  is shown in table 5.4. It is seen that the 

cumulative cost is reduced by an addition of an element of free control input as proposed in 
algorithm 5.2. 
 

Table 5.4 The cumulative cost in example 5.2. 
Algorithm Cumulative Cost 

Algorithm 5.2 + Algorithm 4.1 0.023 
Only algorithm 4.1 0.024 

 
 Figure 5.5 shows the closed-loop responses when the number of ellipsoids in each 
sequence is varied from N = 6, 11 and 20, respectively. It is seen that by an addition of an element 
of free control input, almost identical behaviours are obtained for all cases so the numbers of 
ellipsoids constructed off-line have less effect on the control performance. 
 

 
a) The regulated output              
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b) The control input 

 
Figure 5.5 The closed-loop responses in example 5.2 when the number of ellipsoids constructed 

off-line is varied a) The regulated output b) The control input. 
 

5.4 Conclusions 
 
 In this chapter, a strategy to improve control performance based on a one-step state 
prediction strategy has been presented. The conservativeness arising from imposing only a state 
feedback gain on the control input is reduced by an addition of an element of free control input. 
By using the proposed strategy, the control performance is improved because the number of 
degrees of freedom to adjust the plant is increased.  
 
 



 

CHAPTER VI   
CONCLUSIONS 

 
6.1 Summary of Results 
 
 In this research, three synthesis approaches for robust model predictive control have been 
proposed in order to solve three important issues including the size of stabilizable region, the on-
line computational complexity and the conservativeness. For all algorithms, all of the on-line 
computational burndens are moved off-line so the on-line computation is tractable.  
 Firstly, an off-line formulation of robust MPC using polyhedral invariant sets is proposed 
in order to deal with the problem of the size of stabilizable region. The algorithm precomputes 
off-line a sequence of state feedback gains corresponding to a sequence of polyhedral invariant 
sets. At each sampling time, the smallest polyhedral invariant set containing the measured state is 
determined and the corresponding state feedback gain is then implemented to the process. As 
compared with an off-line formulation of robust model predictive control using ellipsoidal 
invariant sets of Wan and Kothare (2003), the proposed algorithm gives a significantly larger 
stabilizable region because the true stabilizable region is calculated. Moreover, the proposed 
strategy can achieve better control performance. The proposed strategy also solves the problem of 
on-line computational complexity because all of the optimization problems are solved off-line and 
no optimization problem is needed to be solved on-line. 
 Secondly, an interpolation-based MPC strategy for LPV systems is proposed to alleviate 
the problem of on-line computational complexity. The on-line computational burdens are reduced 
by precomputing off-line the sequences of state feedback gains corresponding to the sequences of 
nested ellipsoids. At each sampling instant, the real-time state feedback gain is calculated by 
linear interpolation between the precomputed state feedback gains and no optimization problem is 
needed to be solved on-line. As compared with an on-line MPC algorithm for LPV systems of Lu 
and Arkun (2000), the proposed strategy gives the same control performance with a significantly 
smaller on-line computational time. Moreover, the proposed strategy can achieve better control 
performance as compared with an ellipsoidal off-line robust model predictive control strategy 
with no interpolation between state feedback gains of Wan and Kothare (2003). 
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 Finally, the conservativeness arising from imposing the state feedback control law on the 
control input in order to guarantee robust stability is reduced by using a one-step state prediction 
strategy. The conservativeness is reduced by an addition of an element of free control input in 
order to increase the number of degrees of freedom to adjust the plant. At each sampling instant, 
only a computationally low-demanding optimization problem is needed to be solved on-line so 
the on-line computation is tractable. By using the proposed strategy, the conservativeness is 
reduced because we have more degrees of freedom to adjust the plant.   
 
6.2 Limitations and Future Works 
 
 For an off-line formulation of robust MPC using polyhedral invariant sets proposed in 
chapter 3, the input discontinuities usually occur because the state feedback gains are constant in 
the regions between two adjacent polyhedral invariant sets. This problem can be solved by 
developing the technique to interpolate the state feedback gains. Another issue is the construction 
of polyhedral invariant set. In algorithm 3.1, non-redundant constraints are iteratively added to 
find the region that all future states are guaranteed to stay within this set without violation of input 
and output constraints. For large system with large number of vertices, more efficient approach 
needs to be developed in order to reduce the complexity in construction of polyhedral invariant 
set.  
 For an interpolation-based MPC strategy for LPV systems proposed in chapter 4, the 
stabilizable region of the algorithm is quite small in the case of asymmetric input and output 
constraints because it is constructed based on the ellipsoidal approximation of the true polyhedral 
invariant set. The size of the stabilizable region can be enlarged by calculating the true polyhedral 
invariant set. However, new interpolation technique suitable for the true polyhedral invariant set 
also needs to be developed. 
 Finally, in chapter 5, an element of free control input calculated on-line is added to the 
state feedback control law calculated off-line in order to increase the degrees of freedom in 
adjusting the plant. This strategy can be further improved by developing the technique to calculate 
both state feedback control law and an element of free control input off-line.   
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APPENDIX A 
PROOF DETAILS OF THEOREM 3.1 

 
  In order to prove that algorithm 3.1 assures robust stability to the closed-loop, we have to 
prove that the state feedback gain 

i
K  satisfies the Lyapunov stability constraint 

 

     
  )/()/()/()/(

)/(]))(())(([]))(())(([)/(
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
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  From (A.1), by pre-multiplying by Tkikx  )/( and post-multiplying by 1)/(  kikx , we 
obtain 
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 By substituting 1

iii
QγP , pre-multiplying by T

i
Q , post-multiplying by 

i
Q , substituting 

iii
QKY   and applying Schur complement to the resulting inequality, we obtain 
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   (A.3) 

 
 This inequality is affine in ],[)())](()),(([

1
jj

L

j
j

BAkpkpBkpA 


. Thus, it is satisfied for  
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                                         (A.4) 

 
 From the proof, it is seen that (A.1) is equivalent to (A.4) so the state feedback gain 

i
K  is 

guaranteed to satisfy the Lyapunov stability constraint (A.1) by imposing (A.4) in the 
optimization problem.  



87 
 

  
             Since the state is guaranteed to be driven towards the origin and the input and output 
constraints are the closed convex set containing the origin, by iteratively adding non-redundant 
constraints 

miijjmi
dxKBAM

,,
)(   to ),(

ii
dM  by assigning TT

ijjmi

T

ii
KBAMMM ]))((,[

,
  and 

TT

mi

T

ii
ddd ],[

,
  as proposed in algorithm 3.1, we can find the set of initial states x  defined by 
 

iii
dxMxS  /  such that all future states are guaranteed to stay within this set without input 

and output constraints violation. Thus, robust constraint satisfaction is guaranteed. Note that the 
iteratively adding non-redundant constraints terminates in a finite number of steps because the 
closed-loop system is guaranteed to be robustly stabilized by the state feedback gain 

i
K . 
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APPENDIX B 
PROOF DETAILS OF THEOREM 4.1 

 
 In order to prove that algorithm 4.1 assures robust stability to the closed-loop system, we 
have to prove that (a) the state feedback control law 



L

j
i,jji

(k)KpK
1

 robustly stabilizes the 

closed-loop system and (b) the interpolation between the state feedback control laws
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j
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1

1
,))(1()())((   also robustly stabilizes the 

closed-loop system.  
 Firstly, we will prove that (a) the state feedback control law 



L

j
i,jji

(k)KpK
1

 robustly 

stabilizes the closed-loop system. From the inequality 
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 has to be positive definite. Thus, )()(
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 (B.2) is equivalent to  
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  By substituting 1

,,


jiiji

QP  and 1

,,


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QP  , we will obtain 
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  For each  j, multiply the corresponding inequalities by )( ikp

j
 and sum for L,...j ,1  to 

get  
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  For each  l, multiply the corresponding inequalities by )1(  ikp

l
 and sum for L,...l ,1  

to get 
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where    

L

l lil
PikpkiP 1 ,

)1(),1( . By applying twice the Schur Complement to the resulting 
inequality, we obtain  
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 Thus, the Lyapunov function )/(),()/(),( kikxkiPkikxkiV T   is a strictly decreasing 
function and robust stability is guaranteed. 
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  Secondly, we will prove that (b) the interpolation between the state feedback control laws
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  By applying the Schur Complement to (4.5), we obtain 
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  Since (B.10) is affine in 
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  By substituting 1

,,


jiiji

QP   and 1
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QP  , we obtain 
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  For each  j, multiply the corresponding inequalities by )( ikp

j
 and sum for L,...j ,1 . 

Then, for each  l, multiply the corresponding inequalities by )1(  ikp
l

 and sum for L,...l ,1 . 
We obtain 
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  By applying the Schur complement to (B.14), we obtain  
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  Thus, )/(),()/(),( kikxkiPkikxkiV T   is a strictly decreasing Lyapunov function and 
the closed-loop system is robustly stabilized by the state feedback gain ))(( kK

i
 . 

 
             From the  proof in steps (a) and (b), we conclude that algorithm 4.1 assures robust 
stability to the closed-loop system.   
 
 Next, we will prove that the state feedback gain 
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robust constraint satisfaction. Let us begin with the input constraint  
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 (B.18) is equivalent to 
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 For each  j, multiply the corresponding inequalities by )( ikp
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 From (B.17), by following the same procedures, the state feedback gain 
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K  must also 
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 From (B.21) and (B.22), the following inequality must be satisfied 
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              By applying the Schur complement to (B.23), we obtain 
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 From algorithm 4.1,  the state feedback gain 

i
K  must satisfy 

 

                     21 210 2

max

,,,,,

yr,rr

ji

T

jiji

TT

jijij

,..n,, ryT.....L,,j, 
QGGC)BYG(A

T












   (B.28) 

 
By substituting 
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T

jijiji

T
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,,,,

1
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 , (B.28) can be written as 
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 (B.29) is equivalent to 
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 By substituting 1
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jijiji

GYK , (B.30) can be written as 
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 For each  j, multiply the corresponding inequalities by )( ikp

j
 and sum for L,...j ,1  to 

obtain 
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 From (B.28), by following the same procedures, the state feedback gain 

1i
K  must also 

satisfy 
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 From (B.32) and (B.33), the following inequality must be satisfied 
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 By applying the Schur complement to (B.34), we obtain 
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 Since 
yr,rr

n,,, ryT ...,212

max
 , (B.35) can be written as 
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 , (B.36) can be written as 
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 By substituting 

rir
kikxkBKACkiky ))/()))(((()/1(   , we can conclude that 

)/1(max, kikyy rr  ,
ynr ,...,3,2,1 . Thus, the output constraint is guaranteed to be satisfied. 
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