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CHAPTER 1

INTRODUCTION

1.1 Backgrounds of This Research

Model predictive control (MPC) is an advance multivariable control algorithm that is
popularly used in many chemical processes. At each sampling time, MPC explicitly uses a
process model to predict the future plant behavior. Both input and output constraints are explicitly
incorporated in formulating the optimization problem. Although an optimal input sequence is
calculted, only the first element of input sequence is implemented to the process. At the next

sampling time, this procedure is repeated by using a new measurement obtained from the process.

The idea of MPC is shown in Fig. 1.1.

|« Past >|<——Future ———|

.-Tlnnx _________________________
Setpoint o
________________ Q_o s
o
4]
o o
L ]
| ] " . ®
..-T]'n_i_u ________________________
| 1 | | | ] | | | | ]
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L4
ll]n_in —————————————————————————
] | ] ] ] ] ] ] 1 ] ]
-4 -3 -2 -1 Lk +1 +2 +3 +4 +5 16 +7 +8 +9

Sampling Instants

Figure 1.1 The idea of model predictive control.



Since MPC is based on an open-loop optimization problem, in the presence of plant
uncertainty, robust stability of the closed-loop system cannot be guaranteed. Moreover, the
control performance of MPC will deteriorate as the discrepency between the real plant and the
process model used in the prediction increases. For this reason, robust MPC has been widely
studied by many researchers.

One of the main approaches to guarantee robust stability in the presence of plant
uncertainty is to impose the state feedback control law on the control input. The size of the
stabilizable region is important because it provides a set of states that can be robustly stabilized.
However, most of the current researches in the area of robust MPC (Kothare et al., 1996; Wan
and Kothare, 2003; Ding et al., 2007) still calculate the stabilizable region based on an ellipsoidal
approximation of a true stabilizable region. This leads to the conservative result because the
stabilizable region obtained is significantly smaller than the true stabilizable region. The idea of

using an ellipsoidal approximation of a true stabilizable region is illustrated in Fig. 1.2.

----- True stabilizable region
— Ellipsoidal approximation

\\\\\\\\\
.......
......

W,
s,
,

Figure 1.2 The idea of using an ellipsoidal approximation of a true stabilizable region.

Another important problem in an implementation of robust MPC is an on-line
computational complexity. Although the significant advances of modern computers over the past
few years have alleviated the computational problem of robust MPC, the application of robust

MPC is rather restricted due to its on-line computational requirements. Moreover, the size of the



optimization problem grows respectively with the number of independent uncertain process
parameters (Kothare, 1996; Lu and Arkun, 2000; Wada, 2006).

The conservativeness is also an important problem of robust MPC. In order to guarantee
robust stability, the state feedback control law has to be imposed on the control input. However,
by doing so, the conservativeness is obtained because the control input only depends on the
evolution of state. This problem is especially severe in the presence of tight constraints because
the saturation at one point in the horizon as shown in Fig. 1.3 will require a small or zero gain for

all steps in the horizon (Li and Marlin, 2011).

7 Constraint
S

Input saturation
at one point

The control input

Time

Figure 1.3 The input saturation at one point in the horizon.

As mentioned in the previous section, there are three important issues concerned in
robust MPC synthesis including the size of stabilizable region, the on-line computational
complexity and the conservativeness. In this research, the strategies to tackle these issues will be
proposed.

In chapter 3, an off-line formulation of robust MPC using polyhedral invariant sets is
proposed in order to solve the problem of the size of stabilizable region. A sequence of state
feedback gains corresponding to a sequence of polyhedral invariant sets is precomputed off-line.
At each sampling time, the smallest polyhedral invariant set containing the measured state is
determined and the corresponding state feedback gain is then implemented to the process. As

compared with an off-line formulation of robust MPC using ellipsoidal invariant sets of Wan and



Kothare (2003), the proposed algorithm gives a significantly larger stabilizable region because the
true polyhedral invariant set is calculated. Moreover, the proposed algorithm can achieve better
control performance. The proposed algorithm also solves the problem of on-line computational
complexity because all of the optimization problems are solved off-line and no optimization
problem is needed to be solved on-line.

In chapter 4, an interpolation-based MPC strategy for LPV systems is proposed to
alleviate the problem of on-line computational complexity. The on-line computational burdens are
reduced by precomputing off-line the sequences of state feedback gains corresponding to the
sequences of nested ellipsoids. At each sampling instant, the real-time state feedback gain is
calculated by linear interpolation between the state feedback gains of the smallest ellipsoid
containing the measured state in each sequence. As compared with an on-line MPC algorithm for
LPV systems of Lu and Arkun (2000), the proposed algorithm gives the same control
performance with a significantly smaller on-line computational time.

In chapter 5, a strategy to reduce the conservativeness based on a one-step state
prediction is presented. The conservativeness arising from imposing only a state feedback gain on
the control input in chapters 3 and 4 is reduced by an addition of an element of free control input.
At each sampling instant, only a computationally low-demanding optimization problem is needed
to be solved on-line so the on-line computation is tractable. By using the proposed strategy, the
control performance is improved because the number of degrees of freedom in adjusting the plant
is increased.

All of the numerical simulations have been performed in Intel Core i-5 (2.4GHz), 2 GB
RAM, using SeDuMi (Sturm, 1999) and YALMIP (Lo6fberg, 2004) within Matlab R2008a

environment.

1.2 Objectives of This Research

The objectives of this research are as follows



To develop a robust MPC synthesis approach which gives a significantly larger
stabilizable rigion as compared with a robust MPC synthesis approach based on an
ellipsoidal invariant set.

To develop a robust MPC synthesis approach which can reduce high on-line
computational requirement while still ensuring the same level of control performance.

To develop a robust MPC synthesis approach which can reduce the conservativeness

arising from imposing only the state feedback control law on the control input.



CHAPTERII

BASIC KNOWLEDGES

Model predictive control (MPC) has originated in a chemical industry as an on-line
computer control algorithm to solve multivariable problem. At each sampling time, an open-loop
constrained optimization problem is solved and only the first computed input is implemented to
the process. Although MPC is successfully applied to many chemical processes, there is no
guarantee for robust stability of the control system. Moreover, the performace of MPC drastically
deteriorates in the presence of plant uncertainty.

Due to the aforementioned problem, the attentions for MPC have been shifted towards
robust MPC where the open-loop optimization is replaced by the closed-loop optimization (the
deterministic control input is replaced by the state feedback control law). Then robust stability of
the closed-loop system can be guaranteed by imposing the Lyapunov stability constraint.

In this chapter, some of the important basic knowledges in the design of robust MPC and
several examples are presented. A problem description is presented in 2.1. The Lyapunov theorem
and several illustrative examples are presented in 2.2. Then the classical robust MPC algorithm

and its applications are presented in 2.3.
2.1 Problem Description

The model considered here is the following linear discrete-time systems with polytopic

uncertainty

x(k+1) = A(p(k))x(k)+ B(p(k))u(k) Q2.1
y(k)=Cx(k)

where x(k) is the state of the plant, u(k) is the control input and y(k) is the plant output. We
assume that

[A(p(K)), B(p(k))] € 2, Q2=Co{[4,,B,],[4,.8,],...]4,.B, ]} 22

where @ is the polytope, Co denotes convex hull, [4 o B j] are vertices of the convex hull.



Any [A(p(k)), B(p(k))] within the polytope £ is a linear combination of the vertices

such that

L L
[A(p(k)), B(p(k))] = ngp_, (k[4;,B;], ngp_, (k)=1,0<p;(k)<1 (2.3)
The aim is to find a state feedback control law
utk+i/k)=g(x(k+i/k)) 2.4)

that stabilizes (2.1) and achieves the following performance cost

min max J (k)
u(k+i/ k) [A(p(k+i)).B(p(k+i))EQ
cxtk+il k)| [@ 0 x(k+ilk)
J, (k)=% : . (2.5
i\ u(k+i/k)| |0 R|uk+ilk)

where @ >0and R > 0 are symmetric weighting matrices

, subject to input and output constraints

G +il )| <u, =123, (2.6)

‘y,.(k+i/k)‘Syr,max,r=l,2,3,....,ny 2.7
2.2 Lyapunov Theorem

Lyapunov theorem is an important basic theorem that gives the sufficient conditions to
determine the stability of the considered linear discrete-time systems. Additionally, it is used in
the formulation of the Lyapunov stability constraint to guarantee robust stability of the closed-
loop system.

Consider the linear discrete-time system x(k-+1)= Ax(k), this system is said to be
asymptotically stable if there exists a positive definite function V(i,k)=x(k+i/k) Px(k+i/k) >0,

i>0 such that V(i+Lk)-V(@,k)<0O for all non-zero x(k+i/k) and V(i,k)=0 at

x(k +i/k)=0.



Note that by substitution of x(k+i+1/k)=Ax(k+i/k), an inequality
x(k+i+1/k) Px(k+i+1/k)—x(k+i/ k)" Px(k+i/k)<0 is equivalent to x(k-+i/k) A" PAx(k+i/k)
—x(k+i/k)" Px(k+i/k)<0. By pre-multiplying by x(k+i/k)”" and post-multiplying by
x(k+i/k)", an inequality x(k+i/k)" A" PAx(k +i/k)x(k+i/k)" Px(k+i/k)<0 can be

written as A" PA—-P<0.

x(k) . Determine whether this system is
02 0l

Example 2.1 Consider the system x(k +1) ={

asymptotically stable or not ?

Solution

2 -1 . -1.94 1.03
ol we can see that A"PA-P=

1.03  -1.94

By choosing Pz{ } The eigen

-194 1.03
1.03 -194

-1.94 1.03
1.03 -1.94

01 02
02 01

values of { } are -2.97 and -0.91 so { } is negative definite. Then we can

conclude that A" PA— P <0 and the system x(k +1) ={ }x(k) is asymptotically stable by

2 -1
the existence of the Lyapunov function V(i,k)=x(k+i/k) Px(k+i/k) where Pz{ . 2]

Figure 2.1 shows the responses of this system. It can be observed that lim, , x(k+i/k)=0.

Therefore, the system is asymptotically stable.

38

Time(s)

Figure 2.1 The responses of example 2.1.



From an example 2.1, it is seen that Lyapunov theorem can only be applied to the system
x(k+1)=Ax(k). In order to make it useful for the system with control input
x(k +1) = Ax(k)+ Bu(k) , we have to apply it with a little modification. By imposing the state
feedback control law u(k) = Kx(k), the system x(k+1)= Ax(k)+ Bu(k) can be written as
x(k+1)=(A+BK)x(k). Thus, it is seen that the system x(k+1)=Ax(k)+Bu(k) is
asymptotically stabilized by the control law wu(k)= Kx(k) if there exists a positive definite matrix
P and a state feedback gain K such that [4+ BK]" P[4+ BK]—-P<0. The Lyapunov stability

constraint [4+ BK] P[4+ BK]— P <0 will be used in robust MPC synthesis in the next section.

1 0.1
Example 2.2 Consider the system x(k+1)={0 s

0
}x(k)+{1}u(k). Determine whether this
system is asymptotically stabilized by the feedback control law wu(k) = Kx(k) where

K =[-1.08 —0.71] or not ?

Solution

1 0.1
For K=[-1.08 —0.71], the system x(k+1)={

0
0 O.S}C(k)j{l}u(k) can be written as

2.575 0.1685
0.1685 0.248

-1.08 —-0.21
—-0.0747  0.0917
0.0917 -0.2184

x(k+1)=(A4+ BK)x(k)= { }c(k). By choosing P = [ } , We can see

that [A+BK]TP[A+BK]—P:{ } Its eigen values are -0.26 and -0.03 so

{— 0.0747 0.0917

0.0917 —0.2184} is negative definite. Then we conclude that [4+BK] P[4+ BK]-P<O0.

1 0.1
and the system x(k+1)=
ystem x(k +1) {0 0.5

0
}x(k) +L}u(k) is asymptotically stabilized by the state feedback

control law u(k)=Kx(k) where K =[-1.08 -0.71]. Figure 2.2 shows the closed-loop
responses of this system. It can be observed that lim,_x(k+i/k)=0. Thus, the system is

asymptotically stabilized.
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T T T
0 20 40 60
time(s)

Figure 2.2 The responses of example 2.2.
2.3 The Classical Robust MPC Algorithm (Kothare et al., 1996)

In the preceding sections, the Lyapunov stability constraint is developed. In this section,
it will be used in the design of robust MPC. Before proceeding to robust MPC synthesis, an
important technique to formulate the efficiently solvable constraints will be presented.

Although we can guarantee robust stability of the closed-loop system by using the
Lyapunov stability constraint [4+BK] P[4+BK]-P<0, it is seen that the Lypunov stability
constraint [4+BK] P[4+ BK]-P<0 is nonlinear. In the following section, we will introduce the
technique to transform nonlinear inequality constraint to linear matrix inequality (LMI). LMI
constraint is convex. Thus, it is computationally tractable. For more details, the reader is referred

to Boyd et al. (1994).

2.3.1 Schur Complement

S

The Hermitian matrix QT
S" R

} is positive definite if and only if R>0 and

O-SR'S” > 0.

Proof.
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I -SR" S I 0 -SR7'S" 0
If L’QT ;SJ is positive definite then L) ; :IL% R}{—RTST I}Z{Q ) X >0.

{Q—SR]ST

0
0 R}>O if R>0 and O-SR'S” >0.

Example 2.3 Transform the Lyapunov stability constraint [4+ BK] P[4+ BK]-P <0 to LML

Solution

By following the Schur Complement, the Lyapunov stability constraint

P [4+ BK] P}>O'

[A+BK] P[A+BK]-P <0 can be transformed to LMI as
P[A+ BK] P

2.3.2 Robust MPC Synthesis

Robust MPC synthesis that allows an explicit incorporation of model uncertainty in the
problem formulation was first proposed by Kothare et al. (1996). The goal is to design the state
feedback control law that minimizes the worst-case performance cost. The optimization problem
is formulated as the convex optimization problem involving linear matrix inequalities. At each

sampling instant, the state feedback control law that minimizes an upper bound y on the

) P x(k+il k)| O 0 x(k+i/k) . i sl
pertormance cost J, =X w(k+i/k) 0 R|utk+ilk) and asymptotically stabilizes

the system x(k+1)= A(p(k))x(k)+ B(p(k))u(k) is given by u(k+i/k)=Kx(k+i/k), K=YQ"

where Y and Q are obtained by solving the following optimization problem.

min_ ., y (2.8)
! k/k)"
.. RN (2.9)
| x(k/k) 0O
0 047 +Y'B] 00* Y'R?
AQ+BY 0 0
le ’ © >0, j=12,.,L (2.10)
0°Q 0 o0
RY 0 0 I
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Proof. The proof will be divided in two steps. In step a), we will prove that y is the upper bound

R S D=3 xtk+ilk)]' O 0 x(k+i/k) | b "
t t = . t
on the perrormance Cos - = u(k+i/k) 0 R u(k+i/k) n step , W€ Will prove

that the state feedback gain K =YQ™' guarantees robust stability to the closed-loop system.

Step a) Suppose a quadratic function V(i,k)=x(k+i/k)" Px(k+i/k) satisfies the following
inequality V(i+1,k)-V(i,k) <—(x(k+i/k)" Ox(k+i/k)+u(k+i/k)" Ru(k+i/k)). By summing

them from i =0 to [ =0, we get

V0, k) + VLK)V (LK) +V (2, k)-V (2, k). <
— (x(k/ k)" Ox(k/ k) +u(k/ k)" Ru(k/k)) — (x(k +1/k) Ox(k +1/k) +u(k +1/k)" Ru(k +1/k))...
@.11)

Thus, it is easy to see that -V (0,k)<—J_(k) or equivalently max J_(k) <V(0,k). Thus, the

nimization of cost function /() = $ x(k+i/k) ][O 0 x(k+ilk) o
minimization ot cost function J = uk +1/%) 0 R|uk+ilk) can be written as

min, V(0,k)=x(k/k)" Px(i/k) (2.12)

By introducing the slack variable y, min, x(k&k)" Px(k/k) is equivalent to

min, y

s.t. x(kKk)" Px(kk) < y (2.13)

By defining P =30, (2.13) can be written in the form of LMI as

min,, y
st { ! x(k/k)r} >0 (2.14)
xWk) O

From the proof in step a), we conclude that max J (k) <V(0,k)<y. Thus, y is the upper

bound on the performance cost J_ (k).
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Step b) From  V(i+1,k)—V(i,k) < —(x(k +i/k)” Ox(k+ilk)+ulk +i/k)" Ru(k+i/k)), by
substituting V(i +1,k) = x(k+i+1/k)" Px(k+i+1/k), V(@ k)=x(k+i/k)" Px(k+i/k) and
u(k +i/k) = Kx(k +i/k) , we get

(A(p(k +1)) + B(p(k +i)K)" P(A(p(k +1)) + B(p(k +i))K) —P<—(©@+K'RK) (2.15)

By substituting P =yQ" , pre-multiplying by Q" , post-multiplying by Q, substituting ¥ = KQ

and applying Schur complement to the resulting inequality, we obtain

0 QA(p(k+i))" +Y " B(p(k+i))" Q@% Y'R?
A(p(k+i))QTB(p(k+i))Y 0 0 U 2.16)
00 0 A 0
R%Y 0 0 A

This inequality is affine in [A(p(k)), B(p(k))] = i p,(k)[4,,B,]. Thus, it is satisfied for all

_ . A
0 QA‘/.T +YTB/T 00> Y'R?
A4,0+BY 0 0 0 )
1 >0,j=12,..,L (2.17)
00 0 yl 0
1
| RY 0 0 /8

It is seen that V(i+Lk)—V(,k)<—(x(k+i/k) Ox(k+i/k)+u(k+i/k)" Ru(k +i/k)) is
equivalent to (2.17). Thus, V(i,k)=x(k+i/k)" Px(k+i/k) is a strictly decreasing Lyapunov

function and robust stability is quaranteed.

Example 2.4

0.1

0
0 1_0_1a}x(k)+{0.0787}u(k). At any time k, « varies

Consider the system x(k+1)= {

between 0.1<a <10. Find the state feedback control law u(k) = Kx(k) which robustly stabilizes

this system.
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Solution

It is seen that A(k) e Co{4,,A4,} where 4 :[(l) 0039} 4, =Ll) 061}. The state feedback

control law u(k)=Kx(k)=YQ 'x(k) =[-86.22 —14.91]x(k) can be obtained by solving the

following optimization problem

minY'Q y
s.t.
r T
1 x (k/k) 50
| x(k/k) 0
r 1 1
0 o4 +Y'B" 0@ Y'R?
AQ l+BY 0 0 0 -
020 0 Vi 0
1
| RY 0 0 ¥l
r 1 1
0 o4; +Y'B’ 00 Y'R®
A,Q+ BY 0 0
le 0 N
020 0 vl 0
1
RYY 0 0 Vi

Figure 2.3 shows the closed-loop responses of the system. It is seen that the state feedback control

law wu(k) = Kx(k) =[-86.22 —14.91]x(k) robustly stabilize this system.

\‘\M 0.0 4

0.0 5 1.0 15 2.0 00 5 10 15 20
Time (s) Time(s)

Figure 2.3 The responses of example 2.4(left), The control input(right).
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2.3.3 Input and Output Constraints

One of the advantages of MPC is its ability to deal with constraints. In the presence of
uncertainty, however, input and output constraints are not guaranteed to be satisfied. In order to
guarantee robust constraint satisfaction, input and output constraints have to be explicitly
incorporated into robust MPC synthesis. The sufficient conditions to guarantee input and output

constraints satisfaction are presented as follows.

Input constraint; The state feedback control law u(k +i/k)=Kx(k+i/k)=YQ 'x(k+i/k) is

guaranteed to satisfy |uh(k+i/k)|Su if there exists a symmetric matrix X such that

h,max

-

X Y . 2
Yoo 20 with X,, <w, .. .h=12,..n

Output constraints; The output constraint

v, (k+if k)| < ¥, . 1S guaranteed to be satisfied if there
T C(40+BY)

exists a symmetric matrix 7 such that Ao
(40+BY) C 0

}20 with 7 <y? .,

r :1,2,...,ny-

Example 2.5 Consider the system in the example 2.4. Find the state feedback control law

1 0.1 0
u(k) = Kx(k) which robustly stabilizes the system x(k +1)= {O - O'Ia}x(k) + {0.0787}4(1{)

and satisfies |u(k + i/k)| <1.

Solution
The state feedback control law u(k+i/ k)= Kx(k+i/k) that guarantees input constraint

satisfaction can be obtained by solving the optimization problem in Example 2.4 with an

TR
incorporation of LMI constraint { ;;X 0 20

Figure 2.4 shows the closed-loop responses of the system. It is seen that the state feedback
control law u(k) = Kx(k) =[-86.33 —14.92]x(k) asymptotically stabilizes this system. Moreover,

the control input is restricted in the range of |u(k +i/k)|<1.
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T . . ; : T
00 5 10 15 20 00 ] 10 15 20
Time (s) Time(s)

Figure 2.4 The responses of example 2.5(left), The control input(right).

2.4 Conclusions

In this chapter, we have presented some of the important basic knowledges in design of
robust MPC. The Lyapunov theorem, which is an important theorem used to guarantee robust
stability of the closed-loop systems, is described. Then the classical robust MPC algorithm and its

applications are presented.



CHAPTER III
AN OFF-LINE FORMULATION OF ROBUST MPC USING

POLYHEDRAL INVARIANT SETS

One of the main approaches to guarantee robust stability in the presence of plant
uncertainty is to impose the state feedback gain on the control input as described in chapter 2. The
size of stabilizable region of state feedback gain imposed is important because it provides a set of
states that can be robustly stabilized. However, most of the current researches in the area of robust
MPC (Kothare et al., 1996; Mao, 2003; Wan and Kothare, 2003; Ding et al., 2007) still calculate
the stabilizable region based on an ellipsoidal approximation of the true polyhedral invariant set.
This leads to the conservative result because a stabilizable region obtained is significantly smaller
than the polyhedral counterpart.

This chapter presents an off-line synthesis approach to robust MPC using polyhedral
invariant sets. The true polyhedral invariant set is computed so a significantly larger stabilizable
region is obtained. Although the construction of polyhedral invariant set is computationally
demanding, it is carried out off-line so an on-line computation is tractable. Most of the on-line
computational time is reduced by computing off-line a sequence of state feedback control laws
corresponding to a sequence of polyhedral invariant sets. At each sampling time, the smallest
polyhedral invariant set that the currently measured state can be embedded is determined. Then

the corresponding state feedback control law is implemented to the process.

3.1 Introduction

The main technique of on-line robust MPC (Kothare et al., 1996; Schuumans and
Rossiter, 2000; Mao, 2003) to guarantee robust stability is to construct at each sampling instant,
an ellipsoidal invariant set containing the currently measured state. Then the state feedback
control law is imposed on the control input in order to drive the state towards the origin.
However, by doing so, the conservative result is obtained because an ellipsoidal invariant set

constructed is only an approximation of the true polyhedral invariant set. Moreover, the algorithm
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requires high on-line computational time bacause the optimization problem is really solved on-
line at each sampling instant.

Since the application of on-line robust MPC is limited to only a slow dynamic process,
many researchers have studied off-line robust MPC. Wan and Kothare (2003) proposed an off-
line formulation of robust MPC using linear matrix inequalities (LMIs). A sequence of explicit
control laws corresponding to a sequence of invariant ellipsoids is computed off-line. At each
sampling time, the smallest ellipsoid containing the currently measured state is determined and
the corresponding control law is implemented to the process. Although the algorithm substantially
reduces on-line computational time, the conservative result is obtained due to the fact that the
invariant ellipsoids constructed are only the approximations of the true polyhedral invariant sets.
Ding et al. (2007) proposed an off-line robust MPC algorithm based on the nominal performance
cost. The algorithm directly extends the algorithm of Wan and Kothare (2003) by choosing the
nominal performance cost to substitute the worst-case performance cost in order to handle a wider
class of systems. However, the algorithm is still designed by using an ellipsoidal approximation
of an exact polyhedral invariant set. Thus, a significantly smaller stabilizable region is obtained.

From the preceding review, we can see that on-line robust MPC usually requires high on-
line computational time. Thus, its ability is limited to a relatively slow dynamic process. For off-
line robust MPC, the ellipsoidal approximations of the exact polyhedral invariant sets are usually
used. Thus, a significantly smaller stabilizable region is obtained. In this chapter, an off-line
synthesis approach to robust MPC using polyhedral invariant sets is presented. The true
polyhedral invariant set is computed so a significantly larger stabilizable region is obtained.
Moreover, all of the computational burdens are moved off-line so the on-line computation is

tractable.

3.2 An Off-line Formulation of Robust MPC Using Polyhedral Invariant Sets

In this section, an off-line synthesis approach to robust MPC using polyhedral invariant
sets is presented. Most of the computational burdens are moved off-line by precomputing a
sequence of state feedback control laws corresponding to a sequence of polyhedral invariant sets.

The approach to construct the polyhedral invariant set proposed by Pluymers et al. (2005) is
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adopted here to construct a sequence of polyhedral invariant sets. At each sampling time, the
smallest polyhedral invariant set that the currently measured state can be embedded is determined.
The corresponding state feedback control law is then implemented to the process. The definition

of polyhedral invariant set is given as follows

Definition 3.1

The set S= {x/Mde} is said to be the polyhedral invariant set if it has the property that
whenever x(k)e S, then x(k+i)eS, Vi=12,...00.

We can now formulate an off-line robust MPC algorithm using polyhedral invariant sets
Algorithm 3.1

Off-line step 1: Choose a sequence of states x,i e {1,2,...,N} and solve the following problem to
obtain the corresponding state feedback gains K =YQ"'. The states x, should be chosen such that

the distance between x,, and the origin is less than the distance between x, and the origin.

min

1'iinrQiyi
S
s.t. >0 (3.1)
EANY
i Ql_ * * *
A/Q1+B/Yi Qi * *
1 >0,vj=12,..,L (3.2)
0’0, 0 pl *
| R 0 0 ylI
X
v Q}ZO’ X, <u; . h=12,.n, (3.3)
- g .
o >0,
(40,+BY)'C" Q (3.4)

S, <yt =120 V=12, L

r,max’



20

Off-line step 2: Given the state feedback gains K, =Y,Q"', ie{l2,...,N} from step 1. For each K,
the corresponding polyhedral invariant sets S, = {x/ Mx < dl.} is constructed by following these
steps:

2.1)Set M, =[C",-C",K,-KT, d =[y. .,y ,u _,u 1and m=1.

2.2) Selectrow m from (M,,d,) and check v; whether M, (4, +B K )x<d,, isredundant with

respect to the constraints defined by (M,,d,) by solving the following problem:

max W, .
stW,, . =M, (4 +BK )x-d, (3.5)
M x<d,

If W >0, the constraint M.

im,j im

(4, +B K)x<d,, is non-redundant with respect to (M,,d,). Then,

add non-redundant constraints to (M,,d) by assigning M, =[M,(M,

im

(4+BK)'T and
di =[ ir’d:,-m]r .

2.3) Let m=m+1 and return to step 2.2. If m is strictly larger than the number of rows in

(M,,d,) then terminate.

On-line: At each sampling time, determine the smallest polyhedral invariant set S, = {x/M x<d,}
containing the measured state and implement the corresponding state feedback control law

u(k/k)=K x(k/k) to the process.

Remarks

1. The sequence of states x,,i € {l2,....N} should be chosen such that the distance between x,,
and the origin is less than the distance between x, and the origin. This is to ensure that the

polyhedral invariant sets constructed are nested (S

i+l

< S,). Thus, the state is guaranteed to be kept

within S, and driven towards S,,, and so on. Lastly, the state is kept within S, and driven

i+l 2

towards the origin.
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2. The number of polyhedral invariant sets S, ie{l,2,....,N constructed by the chosen states
X,i€ {12]\/} affects control performance. Although the state feedback gain K, is guaranteed
to drive all states within S, towards the origin, it is not necessary to keep this state feedback gain
constant. By increasing the number of polyhedral invariant sets (This is done by increasing the
number of chosen states NV ), the control performance is improved due to the fact that we have
more freedom to adopt varying state feedback gains based on the distance between the state and

the origin.

3. In an off-line step 1, a sequence of state feedback gains corresponding to a sequence of
ellipsoidal invariant sets is calculated. Although each state feedback gain calculated guarantees
robust stability within the corresponding ellipsoidal invariant set, this ellipsoidal invariant set is
only an approximation of the true polyhedral invariant set. By using only an off-line step 1, the
conservative result is obtained because the stabilizable region of the ellipsoidal invariant set is
significantly smaller than the polyhedral counterpart. This problem is especially severe in the case
of tight constraints. Thus, for a given sequence of state feedback gains calculated from an off-line
step 1, a sequence of true polyhedral invariant sets is calculated in an off-line step 2. By using an
off-line step 2, the conservativeness is reduced because the stabilizable region of each state

feedback gain is substantially expanded.

An overall algorithm is proved to guarantee robust stability in Theorem 3.1.

Theorem 3.1 Given the initial measured state x(k) € S,, the control law provided by algorithm

3.1 assures robust stability to the closed-loop system.

Proof. The satisfaction of (3.2) for the state feedback gain K, =Y,0; ! ensures that

x(k +i/k)" {A(p(k + i) + B(p(k +i)K, 1" PLA(p(k +i)) + B(p(k +i)K,1— P pe(k +i/ k)
<—{x(k +i/ k) Ox(k +i/k)+x(k+i/ k)" K RK x(k +i/k)}

Thus, x(k+i/k)" Px(k+i/k) is a strictly decreasing Lyapunov function and the closed-loop

system is robustly stabilized by the state feedback gain K.
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By solving (3.5) and iteratively adding non-redundant constraints M, (4, +B,K)x<d, to
(M,.d,) by assigning M, =[M,(M,,(4,+BK))'] and d,=[d,d],]", we can find the set of initial
states x defined by S, = {x/ Mx< a’[} such that all future states are guaranteed to stay within this
set without input and output constraints violation. Any initial states outside S, lead to the future
states that violate input and output constraints for at least one realization of the uncertainty.

Thus, the set S, is polyhedral invariant set and the corresponding state feedback control
law u(k+i/k)=Kx(k+i/k) assures robust stability to the closed-loop system. More proof details

can be found in Appendix A.

Example 3.1:

In the first example, we will consider an application of our approach to an uncertain non-
isothermal CSTR where an exothermic reaction 4——> B takes place. The reaction is irreversible
and the rate of reaction is first order with respect to component 4. A cooling coil is used to
remove heat that is released in the exothermic reaction. The reaction rate constant &, and the heat
of reaction AH,, are considered to be the uncertain parameters. They are assumed to be
arbitrarily time-varying in the indicated range of variation. The linearized model based on the

component balance and the energy balance is given as follows

E E

F o w E | w.
v ———kUe RTyq _ - kUe RTeq CA,&, E 0
e v ) RT, Cal |V . xes {C‘“}
T |-aH ke™ F U4 o E 7] 10 -2098x0° = — e
—AH ke T _F_UA 4 .
pcp V V pCp rxn pCp RT; 2 o Aeq pC P

_ 1 0 C.
y{o J{T} G0

where C, is the concentration of A in the reactor, C,, is the feed concentration of A4,
T is the reactor temperature and F. is the coolant flow. The operating parameters are shown in

table 3.1.
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Table 3.1 The operating parameters of non-isothermal CSTR in example 3.1.

Parameter Value Unit
F 1 m’/min
1% 1 m’
yo, 10° g/ m’
C, 1 cal/g.K
~AH 10™-10° cal/kmol
E/R 8330.1 K
k, 10-10" min’
UA 5.34x10° cal/K.min
e 0.265 kmol/m’
394 K

Let ¢,-c,-cC,,, T=T-T,, C«r=C,,~C,,, and F=F- F.,, where the subscript eq is
used to denote the corresponding variable at equilibrium condition. The discrete-time model (3.7)

is obtained by discretizing (3.6) using Euler first-order approximation with a sampling time of

0.15 min.
Cu(k+1)|_[0.85-0.0986a(k) ~0.0014a(k) Ca(k) Jfors o C e (k)
T(k+1) || 0.9864a(k)fk)  0.0487+0.01403a(k)B(k) | Tk) 0 -0912] F.(k)
Rk){‘ 0} <® (3.7)
01 T(k)

where 1<a(k)=k, /10’ <10 and 1< B(k)=-AH_ /10" <10. Because two uncertain
parameters a(k) and S(k) are independent of each other, we have to consider the polytopic
uncertain model with its four vertices representing all the possible combinations of the two

uncertain parameters. The polytopic uncertain set is given as follows

C 0.751 -0.0014]]|0.751 -0.0014||-0.136 -0.014||-0.136 -0.014 (3.8)
=Co 5 > > :
0.986  0.063 9.864  0.189 9.864  0.189 || 98.644 1451
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The objective is to regulate C, and 7 by manipulating C..» and F , respectively. The

¢

input constraints are |C..r|<0.5kmol/m’ and |]7C|S1.5m3/min. Here J (k) is given by
[xtk+ilk)] O 0 xk+ilk)] .

I =5 FEHITR MEHITR) | it @ =1 and R=0.17 .
Slutk+ilk)| |0 R|uk+ilk)

Next, we will illustrate the step-by-step implementation of the proposed algorithm 3.1. In
an off-line step 1, a sequence of states x ={(0.0525,0.0525),(0.0475,0.0475),(0.0425,0.0425),
(0.0375,0.0375),(0.0325,0.0325),(0.0275,0.0275)} is chosen to calculate the corresponding state
feedback gains K,. Note that a sequence of states x, is chosen such that the distance between x,,
and the origin is less than the distance between x and the origin. This is to ensure that the
polyhedral invariant sets constructed are nested (S,, = S.). In this example, only six feedback
gains K, i=1,..6 are computed off-line because the feedback gains K, are almost constant

beyond i=6.

After a sequence of state feedback gains K., i=1,...6 is computed in an off-line step 1,
the corresponding polyhedral invariant sets S, i=1,...6 will be constructed in an off-line step 2.
Let us begin with the first feedback gain K, . In an off-line step 2.1, we first set M, =[K',-K']",
d, =[u., ,u., 1" (There is no output constraint in this example) and m=1. Then, M, and d, can be

i max >~ min

written as follows

-1.34 -0.01 0.5

2479 0.14 1.5
Mlz[Klrv_Klr]T: 134 0.01 ) dl :[u;awuim]r = ~05

-2479 -0.14 -1.5

-1.34 -0.01

where K‘:{2479 0.14

} corresponding to the chosen state x, =(0.0525,0.0525) is

0.5 5
calculted from an off-line step 1, u,, = L 5} and u, :{ 5} are the input constraints.

In an off-line step 2.2, we select row m=1 from (M,,d,), which is an input constraint
K (1,)x<u,_ (1), and find whether the constaint K (1,:)(4 +BK,)x<u_ (11) is redundant with

respect to the constraints defined by (M,,d,) . By setting W,, =K, (1,:)(4 +B K )x—u_ (1,1) and
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solving (3.5), we found that W, >0. Thus, an input constraint K, (1,:)(4 +BK )x<u_ (1]) is

max

non-redundant and it has to be included in the construction of polyhedral invariant set S, by
adding it to the constraints defined by (M,,d,). Without this constraint, the state x(k+1) can

violate an input constraint K, (L:)x(k+1)<u_ (1,1) for at least one realization of the uncertainty.

max

M, and d, now can be written as M, =[K/,—K,(K,(1,:)4+BK, )'] and

1 1

W,

1,1,3

and W

1,1,4 2

d =[ul ,ul ,u_ (L)) . Then an off-line step 2.2 continues for W,

1 max 2 1,1,2 %

respectively. We found that W,

1,1,2

<0, W,,>0, W,,<0 and hence the constraint

K (1,:)(4, + B, K )x<u,_, (L1) also has to be included in the construction of the polyhedral

invariant set S, .

In an off-line step 2.3, by setting m=2,3 and 4, (3.5) is repeatly solved to find the set of
initial states such that the constraints K (2,)x(k+1)<u, (2,1), K (L)x(k+1)>u_(1,1) and
K@ )x(k+1)>u_ (2,]) are guaranteed to be satisfied, respectively. Then the procedure is
continued for m >4 until there is no non-redundant constraint. Note that the number of contraints
defining the polyhedral invariant set S, is finite because the closed-loop system is robustly
stabilized by the state feedback gain K, calculated from an off-line step 1 (The satisfaction of the
Lyapunov stability constraint (3.2) for the state feedback gain K, guarantees that the closed-loop

system is robustly stabilized.). Finally, in this example, the algorithm terminates at m=16.

The polyhedral invariant sets S, i=2,...6 corresponding to the state feedback gains
K, i=2,...6 can be constructed by following the same procedure as S,. After the constructions of
all S, are completed, the polyhedral invariant sets S, i=1,...6 as shown in Fig. 3.1 (a) are

obtained.

A sequence of ellipsoidal invariant sets constructed off-line by an ellipsoidal off-line
robust MPC algorithm of Wan and Kothare (2003) by choosing the same sequence of states
x,, i=1,...6 is shown in Fig. 3.1 (b). It can be observed from the figure that for each chosen state
x,, the stabilizable region of polyhedral invariant set constructed by algorithm 3.1 is significantly
larger than the stabilizable region of an ellipsoidal invariant set constructed by an ellipsoidal off-

line robust MPC algorithm of Wan and Kothare (2003). This is due to the fact that an ellipsoidal
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invariant set constructed by an ellipsoidal off-line robust MPC algorithm of Wan and Kothare

(2003) is only an approximation of the true polyhedral invariant set.

_ ] | | | | |
-%.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
= 3

C o (kmol/m™)

(a) Algorithm 3.1

T (K)

_ | | | | | |
-%.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 01
C, (kmol/m®)

(b) Wan and Kothare (2003)
Figure 3.1 The comparison between a sequence of polyhedral invariant sets constructed off-line
by algorithm 3.1 and a sequence of ellipsoidal invariant sets constructed off-line by an ellipsoidal

off-line robust MPC algorithm of Wan and Kothare (2003) in example 3.1.

The comparison between the stabilizable regions of feedback gains K, and K, is shown in

Fig. 3.2. In this example, X, is larger than K| because K, is computed by using the state which is
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closer to the origin than K, It can be observed from the figure that an ellipsoidal off-line robust
MPC algorithm of Wan and Kothare (2003) cannot stabilize the states at point A. This is due to

the fact that the states at point A are not contained in the largest invariant ellipsoid x

point 4

¢g. In
comparison, algorithm 3.1 can regulate the states from point A to the origin by using K, because

the states are contained in the largest polyhedral invariant set x € S,. It can also be observed

from the figure that if we start at point B, an ellipsoidal off-line robust MPC algorithm of Wan
and Kothare (2003) can regulate the states to the origin by using the lowest feedback gain K. In
comparison, algorithm 3.1 can regulate the states to the origin by using higher feedback gain X,

due to the fact that x , , €.S,. In this circumstance, algorithm 3.1 can adopt higher feedback gain

as compared to an ellipsoidal off-line robust MPC algorithm of Wan and Kothare (2003). Thus,
algorithm 3.1 can achieve less conservative result as compared to an ellipsoidal off-line robust

MPC algorithm of Wan and Kothare (2003).

~ I I 1 1 1 1
-%‘1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
C,, (kmol/m?)

Figure 3.2 The stabilizable regions of feedback gains K, and X, in example 3.1.

Figure 3.3 shows the regulated output and Fig. 3.4 shows the control input. In this
example, two uncertain parameters «(k) and p(k) are randomly time-varying between
10° <a(k)=k, <10" and 10" <B(k)=-AH, <10". It can be observed from the figure that
algorithm 3.1 can achieve less conservative results as compared to an off-line MPC algorithm of
Wan and Kothare (2003). Moreover, algorithm 3.1 takes less time than an off-line MPC algorithm
of Wan and Kothare (2003) to reach and remain inside the settling band which is properly chosen

as 1% of C

A equilibrium

and +0.1% of T

equilibrium *

Thus, it can be concluded that algorithm 3.1 has less

settling time than an off-line MPC algorithm of Wan and Kothare (2003).
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Algorithm 3.1
- Wan and Kothare, 2003
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(b) The reactor temperature
Figure 3.3 The regulated output in example 3.1 (a) The concentration of 4 in the reactor

(b) The reactor temperature.
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.04
.02
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g o —— Algorithm 3.1
= A AEETTIaee: Wan and Kothare, 2003
LL_
=L
10
-.04
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Time (min)
(a) The feed concentration of 4
20
—— Algornthm 3.1
1590 ) RELCERGE Wan and kothare, 2003

—1 5 T T T T
0.0 2 4
Time (min)

(b) The coolant flow

Figure 3.4 The control input in example 3.1 (a) The feed concentration of 4 (b) The coolant flow.

The cumulative cost ix(i)r Ox(i) +u(i)" Ru(i) is shown in table 3.2. It can be observed
i=0

from the table that algorithm 3.1 has less cumulative cost than an off-line robust MPC algorithm
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of Wan and Kothre (2003) so algorithm 3.1 can achieve better control performance as compared

to an off-line robust MPC algorithm of Wan and Kothre (2003).

Table 3.2 The cumulative cost in example 3.1 .

Algorithm Cumulative Cost
Algorithm 3.1 17.51
Wan and Kothare (2003) 19.12

Table 3.3 shows the overall numerical burdens in example 3.1. Although the construction
of polyhedral invariant sets is more computationally demanding than the construction of
ellipsoidal invariant sets, this is done off-line and hence the on-line computation is tractable. All
of the numerical simulations have been performed in Intel Core i-5 (2.4GHz), 2 GB RAM, using

SeDuMi (Sturm, 1999) and YALMIP (Lofberg, 2004) within Matlab R2008a environment.

Table 3.3 The overall numerical burdens in example 3.1.

Overall off-ine On-line computational time
Algorithm
computational time per prediction
Wan and Kothare (2003) 3.672s 0.001 s
Algorithm 3.1 4.372s 0.001 s
Example 3.2:

In the second example, we will consider an application of our approach to an angular
positioning system. The system consists of an electric motor driving a rotating antenna so that it
always points in the direction of a moving object. The motion of the antenna can be described by

the following discrete-time equation

{9(k+1)} {1 0.1 }{e(k)} { 0 }
_ = |+ u(k)
O+1)| |0 1-0.1a(k) | ok)| |0.0787

0(k)
y(k) =t 0{9(1{)} (3.9)
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where 6(k) is the angular position of the antenna, #(k) is the angular velocity of the
antenna and (k) is the input voltage to the motor. The uncertain parameter «(k) is proportional
to the coefficient of viscous friction in the rotating parts of the antenna. It is assumed to be
arbitrarily time-varying in the range of 0.1< (k) <10. Let 5:0—6?@(1, ?0:0—0&, and ;:u—um
where the subscript eg is used to denote the corresponding variable at equilibrium condition. The

discrete-time model (3.9) can be written as follows

Ok +1) {1 0.1 } o(k) { 0 }-
- = T+ u(k)
I:g(k + 1):l 0 1-0.1a(k) o(k) 0.0787

y(k) =]t O{Q(k)] (3.10)
o0k

Because the uncertain parameter (k) is varied between 0.1 and 10, we conclude that

A(k) e Q where Q is given as follows

{1 0.1} [1 0.1}}
Q=Co ; (3.11)
0 0990 0

The objective is to regulate @ from 0.2 to the origin by manipulating u. The input

o o R J(k)_ix(kﬂ/k)r@ 0T x(k+i/k)
constraint 1s |u(k)|gzvots. ere J, (k)1s given by J, T wk+i/ky| |0 R|u(k+ilk)

1 0
with @ = {O 0} and R = 0.00002.

Next, we will illustrate the step-by-step implementation of the proposed algorithm 3.1. In
an off-line step 1, a sequence of states x, ={(0.35,0.35),(0.30,0.30),(0.25,0.25),(0.20,0.20),
(0.15,0.15),(0.10,0.10), (0.05,0.05)} is chosen to calculate the corresponding state feedback gains
K,. A sequence of states x, is chosen such that the distance between x,, and the origin is less
than the distance between x, and the origin. This is to ensure that the polyhedral invariant sets
constructed are nested (S, = S,). In this example, only seven state feedback gains K, i=1,...7 are

computed off-line because the state feedback gains K, are almost constant beyond i=7.
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After a sequence of state feedback gains K, i=1,...7 is computed in an off-line step 1,
the corresponding polyhedral invariant sets S, i =1,...7 will be constructed in an off-line step 2.
Let us begin with the first feedback gain K,. In an off-line step 2.1, we first set M, =[K,-K'T,
d, =[u! ,u! 1" (There is no output constraint in this example) and m =1. Then, M, and d, can be

i max 2

written as follows

—-455 -1.04 2
M, :[Klrv_Klr]T = 5 d] :[unrm’u:\in ]T =
4.55 1.04 -2

where K, = [—4.55 —1.04] corresponding to the chosen state x, =(0.35,0.35) is calculated from an

off-line step 1, u,, =2 and u,, =-2 are the input constraints.

In an off-line step 2.2, we select row m=1 from (M,,d,), which is an input constraint
Kx<u_ , and find whether the constaint K (4, +BK,)x<u_ is redundant with respect to the
constraints defined by (M, ,d)). By setting W, =K (4 +BK x—u, and solving (3.5), we

1

found that W

L1,1

>0. Thus, an input constraint K,(4, + BK,)x<u__ is non-redundant and it has to
be included in the construction of polyhedral invariant set S, by adding it to the constraints
defined by (M,,d,). Without this constraint, the state x(k+1) can violate an input constraint
Kx(k+1)<u_ for at least one realization of the uncertainty. M, and d, now can be written as
M, =K ,-K ,(K(A+BK,))]"and d, =[u] ,ul, ,u. 1. Then an off-line step 2.2 continues for

/4

11,2 °

We found that W

1,1,2

> 0 and hence the constraints K (4,+B,K)x<u__ also has to be

included in the construction of the polyhedral invariant set S, .

In an off-line step 2.3, by setting m =2, (3.5) is repeatly solved to find the set of initial

states such that the constraint Kx(k+1)>u_, is guaranteed to be satisfied. Then the procedure is

continued for m >2 until there is no non-redundant constraint. Note that the number of contraints
defining the polyhedral invariant set S, is finite because the closed-loop system is robustly
stabilized by the state feedback gain K, calculated from an off-line step 1 (The satisfaction of the
Lyapunov stability constraint (3.2) for the state feedback gain K, guarantees that the closed-loop

system is robustly stabilized.). Finally, in this example, the algorithm terminates at m=12.



33

The polyhedral invariant sets S, i=2,...7 corresponding to the state feedback gains

K., i=2,..7 can be constructed by following the same procedure as S,. After the constructions of

all S are completed, the polyhedral invariant sets S, i=1,...7 as shown in Fig. 3.5 (a) are

i

obtained.
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Figure 3.5 The comparison between a sequence of polyhedral invariant sets constructed off-line
by algorithm 3.1 and a sequence of ellipsoidal invariant sets constructed off-line by an ellipsoidal

off-line robust MPC algorithm of Wan and Kothare (2003) in example 3.2.
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The comparison between the polyhedral invariant sets constructed by algorithm 3.1 and
the ellipsoidal invariant sets constructed by an ellipsoidal off-line robust MPC algorithm of Wan
and Kothare (2003) is shown in Fig. 3.5. Note that for both algorithms, the invariant sets are
constructed by choosing the same sequence of states x, i=1,...7. For each chosen state x,, the
polyhedral invariant set has a significantly larger stabilizable region as compared to an ellipsoidal
invariant set. This is due to the fact that an ellipsoidal invariant set constructed by an ellipsoidal
off-line robust MPC algorithm of Wan and Kothare (2003) is only an approximation of the true

polyhedral invariant set constructed by algorithm 3.1.

The comparison between the stabilizable regions of feedback gains K, and K, is shown in
Fig. 3.6. In this example, K, is larger than K| because K, is computed by using the state which is
closer to the origin than K. It can be observed from the figure that an ellipsoidal off-line robust
MPC algorithm of Wan and Kothare (2003) cannot stabilize the states at point A because the

states at point A are not contained in the largest invariant ellipsoid x ¢ &,. In comparison,

point 4

algorithm 3.1 can stabilize the states at point A by using K, because the states are contained in the

largest polyhedral invariant set x eS,. It can also be observed from the figure that an

point 4
ellipsoidal off-line robust MPC algorithm of Wan and Kothare (2003) can stabilize the states at
point B by using the lowest feedback gain K. In comparison, algorithm 3.1 can stabilize the states

at point B by using higher feedback gain K, due to the fact that x € S,. In this circumstance,

algorithm 3.1 can adopt higher feedback gain as compared to an ellipsoidal off-line robust MPC
algorithm of Wan and Kothare (2003). Thus, algorithm 3.1 can achieve less conservative result as

compared to an ellipsoidal off-line robust MPC algorithm of Wan and Kothare (2003).
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Figure 3.6 The stabilizable regions of feedback gains K, and X, in example 3.2.

Figure 3.7 shows the closed-loop responses of the system when «(k) is randomly time-

varying between 0.1<a(k)<10. It can be observed from the figure that algorithm 3.1 can

achieve less conservative results as compared to an off-line robust MPC algorithm of Wan and

Kothare (2003). Moreover, it is seen that algorithm 3.1 settles within +1% of @,

faster than

equilibrium

an off-line robust MPC algorithm of Wan and Kothare (2003). Thus, it is concluded that

algorithm 3.1 has less settling time than an off-line MPC algorithm of Wan and Kothare (2003).
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b) The control input
Figure 3.7 The closed-loop responses of the system in example 3.2 when «(k) is randomly

time-varying between 0.1<a(k) <10 (a) The regulated output (b) The control input.

The cumulative cost ix(i)T@x(i)+u(i)TRu(i) is shown in table 3.4. Tt can be
i=0

observed that algorithm 3.1 has less cumulative cost than an off-line robust MPC algorithm of
Wan and Kothare (2003) so algorithm 3.1 can achieve better control performance as compared to
an off-line robust MPC algorithm of Wan and Kothare (2003). This is due to the fact that for each
chosen state X;, the stabilizable region of polyhedral invariant set constructed by algorithm 3.1 is
significantly larger than the stabilizable region of an ellipsoidal invariant set constructed by an
off-line robust MPC algorithm of Wan and Kothare (2003). As previously discussed in example
3.1, algorithm 3.1 can adopt higher feedback gain as compared to an off-line robust MPC

algorithm of Wan and Kothare (2003).

Table 3.4 The cumulative cost in example 3.2.

Algorithm Cumulative Cost

Algorithm 3.1 0.21

Wan and Kothare (2003) 0.23
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Table 3.5 shows the overall numerical burdens in example 3.2. For both algorithms, most
of the computational burdens are moved off-line and hence on-line computations are tractable.
However, it can be observed that by using the same amount of on-line computational time, the

proposed algorithm can achieve better control performance as shown in Fig. 3.7.

Table 3.5 The overall numerical burdens in example 3.2.

Overall off-ine On-line computational time
Algorithm
computational time per prediction
Wan and Kothare (2003) 2.831s 0.001 s
Algorithm 3.1 3.541 s 0.001 s

3.3 An Extension of An Off-line Robust MPC Algorithm 3.1 to Linear Parameter Varying

(LPV) Systems

By assuming that the time-varying parameter can be measured on-line at each sampling
instant, the control performance of robust MPC is improved because the first control input can be
calculated without any model uncertainty. In this section, an off-line MPC algorithm for LPV
systems using polyhedral invariant sets is proposed. LPV systems are linear systems whose
dynamics depend on the scheduling parameters that can be measured on-line. The analysis and
synthesis of LPV systems play an important role in control theory since nonlinear systems can be
dealt within the framework of LPV systems. Algorithm 3.1 will be extended by precomputing oft-
line the sequences of state feedback gains corresponding to the sequences of nested polyhedral
invariant sets. Instead of constructing only a sequence of nested polyhedral invariant sets as
proposed in algorithm 3.1, the number of sequences of nested polyhedral invaraint sets
constructed is equal to the number of the vertices of polytope. At each sampling instant, the
smallest polyhedral invariant set containing the currently measured state is determined in each
sequence and the scheduling parameter is measured. The real-time state feedback gain is then

calculated by linear interpolation between the corresponding off-line state feedback gains.
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Algorithm 3.2

Off-line step 1: Choose a sequence of states x,,ie {IZN} and solve the following problem to
obtain the corresponding state feedback gains K, =Y, G ,Vi=12,..,N,Vj=12,...,L. The states

X, should be chosen such that the distance between x, , and the origin is less than the distance

between X, and the origin.

minYi,ijx,iji,j Vi
P

s.t. >0,Vi=12,..,N.Vj=12,....L (3.12)
X

i iJ

r T
Gw. + Gw. -0, * * *

ij

AjGij +BK] Qil § X
1 ; / >0
0°G,, 0 y1 = | (3.13)

1
R?Y,, 0. 0 yI
Vi=12,...N,¥j =12,..LYI=12,.. L

X *
>0,
YZZ; Gi,/ + GI/ = Qi,/ (314)
Vi=12,...,N,Vj=12,..,L, X, < u;m, h= 12,...n,
S *
>0,
(Ale,/ + BYz,f)TCT Gw‘ + Gf/ - Qz.j (3.15)

Vi=12 L N,V = 1200 S, Syllur=l2,0n,

Off-line step 2: Given the state feedback gains K, =Y, G ,Vi=12,...,N,Vj=12,...,L from step 1.

(VAN

For each K, , the corresponding polyhedral invariant sets S, = {x/ M, x< d[,/.} is constructed by

following these steps:

2.1)Set M, =[C",—C",K|,—K/ 1", d,, =[Viu>Viin> Ut | and m=1.

i,j? min

2.2) Select row m from (M, ,,d, ) and check VI, [=1,...L whether M, (4 +BK )x<d is

ij? ijsm (N ijm

redundant with respect to the constraints defined by (M,

ij?

d,,) by solving the following problem:
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max W

x i,j,m,l

st.W,, =M, (4+BK, )x—d,, (3.16)

ij.ml i.j.m

M, x<d,,

If w,, >0, the constraint M, (4, +BK, )x<d  is non-redundant with respect to

i,j,m,l i,j.m i,j.m

M,

ij?

d ;). Then, add non-redundant constraints to (M, .d,)) by assigning

M, =[M] (M,

ijo ij,m

(4,+BK )" and d,, =[d].d] 1.
2.3) Let m=m+1 and return to step 2.2. If m is strictly larger than the number of rows in

(M,,d,) then terminate.

On-line: At each sampling time, measure x(k), p,(k) and determine the smallest polyhedral
invariant set S, ={x/ M,.Jdel._j} containing the measured state in each sequence. Then

implement the corresponding state feedback control law u(k) = (i p,(k)K, ) x(k) to the process.

ij i

The satisfaction of (3.13) for the state feedback gain K(p(k+i)):(i p,k+DK ) K, =Y G

ensures that (Wada et al., 2006)

{[A(p(k +1))+BK(p(k+)]" P(i + LK) A(p(k +1)) + BK (p(k +1))] — P(, k)}

. N (3.17)
<@+ K(p(k +i))" RK (p(k +i))},Vi > 0.

Thus, V@i, k)=x(k+i/k) PG, k)x(k+i/k) is a strictly decreasing Lyapunov function and the

closed-loop system is robustly stabilized by the state feedback gain K(p(k +i)) .

By solving (3.16) and iteratively adding non-redundant constraints A, .

i,j,m

(4+BK, )x<d,,, to

M,

ij?

d,,) by assigning M, =[M (M, (4+BK, )] and d, =[d.d

ijm ij.m

1", we can find the set of
initial states x defined by S, = {x/ Mudei‘j} such that all future states are guaranteed to stay
within this set without input and output constraints violation. Thus, the set S, is polyhedral

invariant set and any convex combination of the corresponding state feedback gain

K(p(k+i)) = (i p,(k+i)K, ) guarantees robust constraint satisfaction.
Jj=l ’
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Examples 3.3

In this example, we will consider the application of our approach to the nonlinear two-

tank system (Angeli et al., 2000) which is described by the following equation

h = —pA\2gh +
oS, PAN2gh +u (3.18)

S, h = pA\[2gh, — pd,\[2gh,

where 7, is the water level in tank 1, 4, is the water level in tank 2 and u is the water flow. The

operating parameters are shown in table 3.6.

Table 3.6 The operating parameters of the nonlinear two-tank system in example 3.3.

Parameter Value Unit
S, 2500 cm’
s, 1600 cm’
4 9 em’
4, - em’
g 980 cm/s’
0 0.001 kg/cm’
h,., 14 cm
h 70 cm

2,eq

Let h=h—h_, h=h—h_ and ;:u—um where subscript ¢ is used to denote the

Leg? 2.eq

corresponding variable at equilibrium condition, the objective is to regulate 4, to the origin by
manipulating « . The input and output constraints are given as follows
1| <50cm (3.19)

‘;‘ <1.5 kg/s, h,

E|gl3 cm,

By evaluating the Jacobian matrix of (3.18) along the vertices of the constraints set

(3.19), we have that all the solutions of (3.18) are also the solution of the following differential

inclusion



41

_ -
pSf e(ip/A/jl:fll:l+ O:|u (3.20)
oS, h | N h>
where 4,,j=1,...4 are given by
. _
_pAI _g 0 _pA| 2_g 0
By i .
4= 2 22 | 2 2
g g g g
A |28 4 A |28 o4
p 1 hl.min p ’ h2m p 1 hl max p ’ hZ,min
—pA, 28 0 -pA 28 0
By e
4= 2 2 |7 2 2
g g g g
A | ZE YR - Y
Gl P llrey G T T
3.21)

and p,;j=1,...4 are given by
| angno-angm) I ardn,o-am) ]
P Oty =i [ )~ |
| angmy-arfi ) | andh,-am) |
P O = i) || )~ ) |
N ardo-anm) [ anmy-arh,) |
P =i [ e - i) |

anfmy-ardn,) |

[ andmy-arfa)y |
P W) =) | Ol =) |
(3.22)

The discrete-time model is obtained by discretization of (3.20) using Euler first-order

approximation with a sampling period of 0.5 s and it is omitted here for brevity. Here J_ (k) is
} {@ 0}[)‘(“’”‘)} with @:B 0} and R=0.01.

x(k+ilk)
0 R|u(k+ilk)

ivenby J_(k)=3
g y J.(0 §Lt(k+i/k)
Figure 3.8 shows the polyhedral invariant sets constructed off-line by algorithm 3.2 and

algorithm 3.1. For both algorithms, the polyhedral invariant sets are constructed by choosing the

same sequence of state x,i e {1,2,...5}. Note that with the same number of chosen states, algorithm

3.2 requires larger number of polyhedral invariant sets than algorithm 3.1. This is due to the fact
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that for algorithm 3.2, the number of sequences of nested polyhedral invaraint sets constructed is

equal to the number of the vertices of the polytope.

h, (em)

h, (em)

T, (em)
=

N e s s e e S e I
hl (em) hl (cm)
al) S, ,ie{l2.. .5 a2) S,,,ie{l2..5)
i+
ak
i 3 2 T 1 2 3 § s 5 4 ] 2 1 _«IJ 1 2 3 i
ht (cm) hl (cm)
a3) S,,ie{l2,.5 a4) S,,ief{l2,..5
(a) Algorithm 3.2

(b) Algorithm 3.1
Figure 3.8 The polyhedral invariant sets constructed off-line by (a) Algorithm 3.2 and

(b) Algorithm 3.1 in example 3.3.
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Figure 3.9 (a) shows the regulated output. For algorithm 3.2, the scheduling parameter is
measured on-line at each sampling time so it can achieve less conservative result as compared to
algorithm 3.1. Moreover, algorithm 3.2 has less settling time than algorithm 3.1 because
algorithm 3.2 requires less time to enter and remain within the settling band (£0.1% of %, _ ;... )-

The control input is shown in Fig. 3.9 (b), the input discontinuities are caused by the switching of

state feedback gains based on the distance between the state and the origin.

——— Algorithm 3.1
540 Algorithm 3.2
—.-— +01% ofh

—.—-— -0.1% of h

2 equilibrivm

2, equilibrium

=
2
I_é\‘ 2 4
1 4
0.0
= 1 T T T T T
0 5 10 15 20 25 30
Time (s)
(a) The regulated output
6
—_ —— Algonthm 3.1
) o .
> Algorithm 3.2
=
1>
1.4
_1 ﬁ T T T T T
0 5 10 15 20 25 30

Time (s)

(b) The control input

Figure 3.9 The closed-loop responses in example 3.3 a) The regulated output b) The control input.
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The overall off-line computational burdens are shown in table 3.7. Although algorithm
3.2 requires larger off-line computational time than algorithm 3.1, the on-line computation is

tractable because there is no optimization problem needed to be solved on-line.

Table 3.7 The overall off-line computational burdens in example 3.3.

Algorithm Off-line CPU time (s)
Algorithm 3.1 3.612
Algorithm 3.2 6.738

3.4 Conclusions

In this chapter, we have presented an oftf-line synthesis approach to robust MPC using
polyhedral invariant sets. The proposed algorithm precomputes off-line a sequence of state
feedback control laws corresponding to a sequence of polyhedral invariant sets. At each sampling
time, the smallest polyhedral invariant set that the currently measured state can be embedded is
determined. The corresponding state feedback control law is then implemented to the process.
Several examples that illustrate the implementation of the proposed off-line robust MPC
algorithm is presented. The results show that the control performance of our proposed algorithm
is better than an ellipsoidal off-line robust MPC algorithm. Moreover, a significantly larger
stabilizable region is obtained. Finally, an off-line MPC algorithm for LPV systems is proposed.
The scheduling parameter is measured on-line at each sampling instant so the control performance

is improved.



CHAPTER 1V
AN INTERPOLATION-BASED MPC STRATEGY FOR LINEAR PARAMETER
VARYING SYSTEMS

One of the main important problems in implementation of MPC is the on-line
computational complexity. Although the significant advances of modern computers over the past
few years have alleviated the computational problem of MPC, the application of MPC is rather
restricted due to its on-line computational requirements. Moreover, the size of the optimization
problem grows respectively with the number of independent uncertain process parameters.

This chapter presents a strategy to alleviate the problem of on-line computational
complexity of MPC. The on-line computational burdens are reduced by precomputing off-line the
sequences of state feedback gains corresponding to the sequences of nested ellipsoids. At each
sampling time, the scheduling parameter is measured and the real-time state feedback gain is

calculated by linear interpolation between the precomputed state feedback gains.

4.1 Introduction

MPC based on linear model is typically used in many industrial processes because the
on-line optimization problem can be formulated as the convex optimization problem by either
linear programming or quadratic programming. However, most of the chemical processes are
nonlinear. The performance of linear MPC can deteriorate drastically when the operating
conditions undergo significant changes. Moreover, the stability of nonlinear system cannot be
guaranteed.

Linear parameter varying (LPV) systems are linear systems whose dynamics depend on
the scheduling parameter that can be measured on-line. The analysis and synthesis of LPV
systems play an important role in control theory since both nonlinear systems and linear systems
with model uncertainties can be dealt within the framework of LPV systems. At each sampling
instant, the scheduling parameter can be measured on-line. Its future behavior is considered to be

uncertain and contained in a polytope.
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Quasi-min-max MPC algorithm for LPV systems was proposed by Lu and Arkun (2000).
The algorithm is seen as an extension of the algorithm presented by Kothare et al. (1996) by
keeping the first control input as a free decision variable. Since the optimization problem is really
solved on-line at each sampling instant, the algorithm requires high on-line computational time.
Moreover, the algorithm turns out to be conservative because it is derived by using a single
Lyapunov function. Two-stage scheduling quasi-min-max MPC algorithm was presented by Lu
and Arkun (2002). The algorithm can achieve less conservative result as compared to Quasi-min-
max MPC algorithm of Lu and Arkun (2000) because more control moves are relaxed from the
feedback control law. However, it is computationally prohibitive in the practical situations
because the size of the on-line optimization problem grows significantly with respect to the size
of the polytope.

In order to reduce the conservativeness arising from the use of a single Lyapunov
function, MPC for LPV systems using parameter-dependent Lyapunov function was proposed by
Wada et al. (2006). As compared with a single Lyapunov function, the use of parameter-
dependent Lyapunov function can reduce the conservativeness because there are more degrees of
freedom in solving the optimization problem. However, the algorithm requires high on-line
computational time because the on-line optimization problem contains many decision variables
and constraints.

Since the application of on-line MPC is restricted to only a slow dynamic process, some
researchers have begun to study off-line MPC (Wan and Kothare, 2003; Ding et al., 2007). The
on-line computational time is reduced by precomputing off-line a sequence of explicit control
laws corresponding to a sequence of invariant ellipsoids. At each sampling time, the smallest
ellipsoid containing the measured state is determined and the real-time control law is calculated
by linear interpolation between control laws of two adjacent invariant ellipsoids. Although the on-
line computational time is reduced, the conservativeness is obtained due to the fact that the
scheduling parameter is not taken into account in the controller design. Moreover, the algorithm is
still derived by using only a single Lyapunov function.

From the preceding review, we can see that on-line robust MPC usually requires high
computational time. Thus, it is computationally prohibitive in practical situations. For off-line

robust MPC, the conservative result is usually obtained because the scheduling parameter is not
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taken into account in the control synthesis. In this chapter, an off-line synthesis approach to MPC
for LPV systems is presented. The on-line computational burdens are reduced by precomputing
off-line the sequences of state feedback gains corresponding to the sequences of nested ellipsoids.
At each sampling time, the scheduling parameter is measured and the real-time state feedback
gain is calculated by linear interpolation between the state feedback gains of the smallest ellipsoid

containing the measured state in each sequence.

4.2 An Interpolation-based MPC Strategy for LPV Systems

In this section, a strategy to reduce the on-line computational complexity of MPC for
LPV systems is presented. Most of the computational burdens are moved off-line. Thus, the on-
line computation is tractable. The on-line computation is reduced by precomputing off-line the
sequences of state feedback gains corresponding to the sequences of nested ellipsoids. At each
sampling instant, the smallest ellipsoid containing the currently measured state is determined in
each sequence of ellipsoids and the scheduling parameter is measured. The real-time state
feedback gain is then calculated by linear interpolation between the corresponding state feedback

gains.

Algorithm 4.1
Off-line Step 1: Choose a sequence of states x,,i e {,2,....,A} and solve the following problem to

obtain the corresponding state feedback gains K, =Y G' and ellipsoids

ij T

g, ={xeR /xTQ:jxsl}, Vi=12,...,N, Vj=12,....L

min)’iv Yi,jGi, .9 j Vi
1 X
s.t. >0,V =12,...L (4.1)
X,

i i

B T
G,J+Gu —Q,J * * *

4G,+BY, Q, * *

i >0,Vj=12,.. LVI=12,... 4.2)
®°G. . 0 I / s .

L]

1
RY,, 0 0 yl

i
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fx .
=20,
_Yi.fT Gi,/ + G:.fr - Qi-j (4.3)
Vji=1..LX, <u,. . h=12,..n,
_ T .
ot r >0,
(A/Gi./' +BY:/) C Gi,/ +Gi,j _Qi,/' (44)
Vji=12....LT <y . r=12,.n
Off-line Step 2: For each i = N, check if the following inequality is satisfied
Q:jl - (A/ + BKM,/)TQ"T[I (A_/ + BKM,/) > 09 (45)

Vi=12,..LVI=12,.L

Online: At each sampling time &, measure x(k), p(k) and adopt the following state feedback

control law

I e S
where K(a, (k) = &, (0L, (K, 1+ (e ()L p, (K., ] 4.7)

Kx(k)=3p, (K, “.8)
If (4.5) is satisfied, then « (k)< (0.1] is calculated from

X0 (@ (RSP, (00, 1+ (1-a ()L p, (DQ., Da(hk) =1 (4.9)

If (4.5) is not satisfied, then «,(k)=1.
An overall algorithm is proved to guarantee robust stability in Theorem 4.1.

Theorem 4.1 Given an initial measured state x(k) satisfying ||x(l’c)||;,1 <LVj=12,...,L,
LJj

algorithm 4.1 asymptotically stabilizes the closed-loop system.

Proof.
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When an initial measured state x(k) satisfies ||x(k)||;,,v Sl,”x(k)”;ll >1,Vvj=12..L, the
1,] i+l

g, (4, +BK,,,) O >0 and the satisfaction of (4.2)
0,(4 +BK, ) 0, .

0, (4,+BK, ) 0/
0, (4,+BK,)) 0,
that  (A(p(k +1)) + BK(a, (k)" P(i+1,k)(A(p(k + 1)) + BK(ct,(k))) = P(i,k) <O  must be

satisfaction of (4.5) ensures that [

ensures that { }> 0. The satisfaction of both (4.2) and (4.5) ensures

satisfied and the state feedback gain K(e,(k)) is guaranteed to asymptotically stabilize the closed-

loop system. More proof details can be found in Appendix B.

Example 4.1: Consider the following nonlinear model for CSTR (Magni et al., 2001) where the

exothermic reaction 4—— B takes place.

Ea

c.=Lc,-c)- k{)e[
%

._ 4
=, -T)+

)2

“RT

kﬂe[ ]CA +

Ud (4.10)

VpC,

(T.-1)

where C, denotes the concentration of 4 in the reactor, I’ denotes the reactor temperature and

T, denoted the temperature of coolant stream. The operating parameters are shown in table 4.1.

Table 4.1 The operating parameters of nonlinear CSTR in example 4.1.

Parameter Value Unit
100 L/min
i) 350 K
C, 1 mol/L
% 100 L
P 1,000 g/L
’ 0.239 J/gK
AH -5x10" J/mol
E /R 8,750 K
, 7.2x10" min’
UA 5x10° J/min K
e 0.5 mol/L
T 350 K

eq
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By defining C. =C,-C,_, T= T-T,, T =T —T.,,,(4.10) can be written as (Ding et
al., 2008)

A—o(T —o (T O 0 |—
! (p](T_) () A qA + T, x,#0
20920, (T) —3.092+209.2,(T) | T | [2.092]°

r -2 o Tc, 0 -
|+ z,, x,=0
2092 —3.092| 7 | |2.092

~1-g!—g,(T) _ —pl-e. a0 L,
_[209.2¢" +209.2g,(T) —3.092+209.2¢9 +209.2¢,(T) | T | [2:092] " °°

-2 0 Jc. 0 |—
_ |+ ) x,=0
2092 -3.092| T 2.092 | ¢
where

— E /R — E /R E /R —
o, (1) =k, exp| —=* ,0,(T) =k, [exp| —== —exp| —— 1C., /T
T+T, T+T T, ’

7 e

g2 (M) =T ¢, 2,(T) = ,(T)— ¢!

For [T|< .0 = [0.(=B)+ (/2.0 =[0.(=B)+ p.(B))/2.

Since g () and gz(Z_") can vary between g (-f)<g (T)<g,(B) and

2,(-B)<g,(T)<g,(B), we have that all the solutions of (4.11) are also the solutions of the

following differential inclusion

(4.12)

where 4, is given by
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Lo Tl 28 -9, 4| e 28Eh) -9,

' 120929 +418.4g,(8) —3.092+209.2¢° | |209.2¢" +418.4g,(-f) —3.092+209.2¢) |
|1 —9) =28,(B) P ) —9, =28,(=P)
P1209.200 —3.092+209.20° +4184g,(B) [ 1 120920 —3.092+209.2¢) +418.4g,(-B) |

and p, is given by

_1EeM-gp) 1 (@B-g@) _1gD-gp) _1 (gB-g@)

P e - 2@ B -a A T 2 @B - T 2@ BB

The objective is to regulate the concentration C. and the reactor temperature T to the

origin by manipulating 7. . The input and output constraints are given as follows

7S
‘ﬂ <5K (4.13)

<1 mol/l

|'T:i <40K

The discrete-time model is obtained by discretization of (4.12) with a sampling period of
0.01 min and it is omitted here for brevity. The proposed algorithm will be compared with Quasi-

min-max MPC algorithm of Lu and Arkun (2000) and an off-line robust MPC algorithm of Wan

and Kothare (2003). Here J_ (k) is given by J_ (k)=Y x(k+z./k) © 0 x(k+z./k) with
| u(k+i/k)| |0 R||u(k+i/k)

®=] and R=0.011.

Figure 4.1 shows the ellipsoids constructed off-line by the proposed algorithm and an
off-line robust MPC algorithm of Wan and Kothare (2003). For both algorithms, the ellipsoids are
constructed by choosing the same sequence of states x,,ie {1,2 ..... 20}. Note that with the same
number of chosen states, the proposed algorithm requires larger number of ellipsoids than an off-

line robust MPC algorithm of Wan and Kothare (2003).
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-‘5!5 voll -0‘15 4)‘1 005 _ 0 0.0 0‘1 0‘15 02 D,‘:i -‘&.25 -D!E .15 -0{1 -0‘05 - 0 0.05 0!1 0.‘15 02 0.‘?.5
C.\ (mol/L) C A (mol/L)
al) g, ={xeR/xX'Qx<1},iefl2,...20} a2) g, ={xeR/x"Q x<1}, ie{l2, .. 20}
.
|
2y

i -012 -0‘15 -()fl -0‘05 _ 0 U‘:)i Ofl 0.15 !!Tl 025 .aﬁ .013 .c)‘lli -ﬂl] -Dlﬂi 0 0.08 DII U“lf 01] 0.‘15
C, (mollL) EA (mol'L)
a3) g, =xeR /X0 x<1l},ie{l2,...20} a4) g, ={xeR/x"Q x<1},ie{l2, .. 20}
(a) Algorithm 4.1
5

- L
-&25 0.2 <015 0.1 005 -0 0.05 0.1 015 02 0.25
C_\(mol-"L)

(b) An off-line robust MPC algorithm of Wan and Kothare (2003)

Figure 4.1 The ellipsoids constructed off-line by (a) Algorithm 4.1 and (b) An off-line robust
MPC algorithm of Wan and Kothare (2003) in example 4.1.
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Table 4.2 shows the overall off-line numerical burdens. It can be observed that the
proposed algorithm requires larger off-line computational time than an off-line robust MPC
algorithm of Wan and Kothare (2003). This is due to the fact that the ellipsoids constructed by the
proposed algorithm are derived by using parameter-dependent Lyapunov function. Thus, the
optimization problem solved off-line is more complex that that presented in an off-line robust

MPC algorithm of Wan and Kothare (2003).

Table 4.2 The overall off-line numerical burdens in example 4.1.

Algorithm CPU time (s)
Algorithm 4.1 8.174
Wan and Kothare (2003) 5.783

Figure 4.2 shows the closed-loop responses of the system. It is seen from the figure that
the proposed algorithm can achieve less conservative result as compared with Quasi-min-max
MPC algorithm of Lu and Arkun (2000) and an off-line robust MPC algorithm of Wan and
Kothare (2003). Moreover, the proposed algorithm takes less time to reach and remain inside the

and +0.1% of T

equilibrium

settling band which is properly chosen as +1% of C . Thus, it can

b
be concluded that algorithm 4.1 has less settling time than an off-line MPC algorithm of Wan and
Kothare (2003) and Quasi-min-max MPC algorithm of Lu and Arkun (2000). For Quasi-min-max
MPC algorithm, although the scheduling parameter is measured and the optimization problem is
really solved on-line, the conservative result is obtained because the algorithm is derived by using

a single Lyapunov function. Moreover, it requires heavy on-line computational burden as shown

in table 4.3.

Table 4.3 The on-line numerical burdens in example 4.1.

Algorithm CPU time (s) per step
Algorithm 4.1 0.001
Wan and Kothare (2003) 0.001

Lu and Arkun (2000) 0.296
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-5 4

—— Algorthm 4.1
---------- Wan and Kothare, 2003

-10 4
—_ ——— L d Arkun, 2000
< uan un,
= 45
-20 -
25 =7
_30 T T T T T T T
0.0 2 4 6 8 1.0 12 1.4 16

Time (min)

(b) The control input

Figure 4.2 The closed-loop responses in example 4.1 (a) The regulated output

(b) The control input.

For an off-line robust MPC algorithm of Wan and Kothare (2003), although the on-line
computational burden is significantly reduced, the algorithm turns out to be very conservative as
shown in Fig. 4.2. This is due to the fact that the nonlinear system is approximated by the
polytopic uncertain system and the scheduling parameter is not taken into account in the

controller synthesis. The cumulative cost > x(i)" @x(i) +u(i)" Ru(i) is shown in table 4.4. It is
i=0

seen that the proposed algorithm can achieve better control performance than an off-line robust
MPC algorithm of Wan and Kothare (2003) and an on-line MPC algorithm of Lu and Arkun
(2000).

Table 4.4 The cumulative cost in example 4.1.

Algorithm Cumulative Cost
Algorithm 4.1 118.01
Wan and Kothare (2003) 122.73

Lu and Arkun (2000) 120.66
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Example 4.2:

Consider the following nonlinear model for CSTR (Garcia-Sandoval et al., 2008) where

the consecutive reaction 4——> B——C takes place.

X1 —1-Da, 0 X, 1
= + (4.14)
X Da, —1-Da,x, | x, 0

where x, denotes the dimensionless concentration of A, x, denotes the dimensionless

2

concentration of B, the control variable u corresponds to the inlet concentration of A4 . The

operating parameters are shown in table 4.5.

Table 4.5 The operating parameters of nonlinear CSTR in example 4.2.

Operating parameters Value
Da, 1
Da, 2
Xy o 0.8956
Let xi = X, =X, X2 = X, —X,,, W=u—u, where the subscript eq is used to denote the

corresponding variable at equilibrium condition. We have that all the solutions of (4.14) are also

the solutions of the following differential inclusion

+H; (4.15)

where 4, is given by

—1-Da, 0 —1-Da, 0
4= Da —1-Da,x A= D 1
1 a - _DaZ'xZ,max

2772, min 1

and p, is given by


http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DGarc%25C3%25ADa-Sandoval,%2520J.P.%26authorID%3D22950307000%26md5%3D9d3f5c8251c3c73efb9ad2e58523b6c5&_acct=C000030318&_version=1&_userid=591295&md5=2783f2280fbd10194f3ad3283113bf7f
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The objective is to regulate x and x> to the origin by manipulating u . The input and

output constraints are given as follows

Mso.s, x.|<05, H <05 (4.16)

The discrete-time model is obtained by discretizing (4.15) with a sampling period of 0.1

Jxk+ilk)] O 0 x(k+ilk
min. Here J_(k) is given by J_ (k)= A +l. ) X H. ) with @=17 and
=|lutk+i/k)| |0 R|u(tk+i/k)

R=0.011.

For both algorithms, the ellipsoids are constructed by choosing the same sequence of

states x,,ie{12,....20}. The resulting ellipsoids are shown in Fig. 4.3.

0.15

0.051-

al) g, ={xeR"/x'Qx<1},ie{l2,...20}
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015

0.1

0.051

-0.05F

Q.1

-0.15F
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0.1 0.1 0.03 0 0.05 0.1 0.15 02
%
a2) &, ={xeR'/x'Q,x<1},iefl2,...20}

(a) Algorithm 4.1

102

(b) An off-line robust MPC algorithm of Wan and Kothare (2003)

Figure 4.3 The ellipsoids constructed off-line by a) Algorithm 4.1 and b) An off-line robust MPC

algorithm of Wan and Kothare (2003) in example 4.2.

Figure 4.4 shows the closed-loop responses of the system. It is seen the proposed

algorithm outperforms other algorithms in regulating x,. Moreover, the proposed algorithm

requires less time to settle within the settling band (+1% of the equilibrium point). Thus, the

settling time of the proposed algorithm is less than the settling times of other algorithms.
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Figure 4.4 The closed-loop responses in example 4.2 (a) The regulated output

(b) The control input.
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Then we will study effects of the number of ellipsoids constructed off-line by algorithm

4.1. Figures 4.5, 4.6 and 4.7 show the ellipsoids constructed off-line by algorithm 4.1 when the

number of chosen states is varied from N =6, 11 and 20, respectively.

0.15p

0.1F
0.15F
02 I L ! | |
02 0.15 0.1 -0.05 0 0.05 0.1 0.15 0.2
X
(@) ¢, ={xeR"/xX'Qx<1},ief{l2,...6}
0.15-
0.1r
0.05-
S Qin )
lxm \/
-0.05-
0.1
-0.15+
-0'-%?.2 -0“15 -071 -0.65 é 0;]3 U!l 0.15 072
X
1
b) &, ={xeR"/x'Q x<1},iec{l2,. .6

Figure 4.5 The ellipsoids constructed off-line by algorithm 4.1

when the number of chosen states N = 6.
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Figure 4.6 The ellipsoids constructed off-line by algorithm 4.1

when the number of chosen states N = 11.
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) &, ={xeR"/x'Q x<1},ie{l2,..20}

Figure 4.7 The ellipsoids constructed off-line by algorithm 4.1

when the number of chosen states NV = 20.
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Figure 4.8 shows the closed-loop responses of the systems in example 4.2 when the
number of chosen states is varied from N = 6, 11 and 20, respectively. It is seen that the control

performance improves as the number of chosen states increases.
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Figure 4.8 The closed-loop responses of the systems in example 4.2 when the number of chosen

states is varied from N =6, 11, 20, respectively.
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4.3 Conclusions

In this chapter, we have presented an interpolation-based MPC for LPV systems. Most of
the computational burdens are moved off-line by precomputing the sequences of state feedback
gains corresponding to the sequences of nested ellipsoids. At each sampling instant, the smallest
ellipsoid containing the currently measured state is determined in each sequence of ellipsoids and
the scheduling parameter is measured. The real-time state feedback gain is calculated by linear
interpolation between the corresponding state feedback gains. Comparisons with the existing
MPC algorithms for LPV systems have been undertaken. The controller design is illustrated with

two examples in chemical processes.



CHAPTER V
IMPROVING CONTROL PERFORMANCE OF OFF-LINE ROBUST MPC BASED ON

A ONE-STEP STATE PREDICTION STRATEGY

An important approach to guarantee robust stability of MPC is to impose the state
feedback control law on the control input. However, by doing so, the conservative result is
obtained because the control input only depends on the evolution of state. Moreover, the
saturation at one point in an input horizon will require a small or zero gain for all steps in the
horizon.

In this chapter, a strategy to improve control performance based on a one-step state
prediction strategy is presented. The conservativeness arising from imposing only the state
feedback control law on the control input in chapters 3 and 4 is reduced by an addition of an
element of free control input. By using the proposed strategy, the control performance is

improved because the number of degrees of freedom in adjusting the plant is increased.

5.1 Introduction

In the presence of plant uncertainty, one of the main approaches to guatantee robust
stability of MPC is to impose the state feedback control law on the control input. Robust MPC
synthesis that allows an explicit incorporation of plant uncertainty in the problem formulation was
proposed by Kothare et al. (1996). The goal is to design the state feedback gain that minimizes
the worst-case performance cost. Since the state feedback control law is imposed on the control
input, the conservativeness is obtained because the control input only depends on the evolution of
state.

In order to reduce the conservativeness, in Casavola et al. (2000), the control
performance of the robust MPC algorithm proposed by Kothare et al. (1996) is improved by using
a sequence of deterministic control inputs in the N-step state prediction instead of a state feedback
control law. Although the control performance is improved, the algorithm cannot guarantee robust
stability because there are not enough degrees of freedom in the optimization to be able to

guarantee robust stability. A correction to the algorithm of Casavola et al. (2000) was proposed
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by Casavola et al. (2007). Robust stability of the closed-loop system is recovered by using a
control policy u=Kx+c in the N-step state prediction instead of a sequence of deterministic
inputs. A larger N implies better control performance at a price of higher computational load so a
suitable tradeoff is required in practice.

The idea to reduce the conservativeness by using the perturbation of free control input
was also presented by Schuurmans and Rossiter (2000). A sequence of free control inputs is
added to the state feedback control law in order to improve the control performance. However, all
of the optimization problems are solved on-line so the algorithm requires high on-line
computational time.

In this chapter, a strategy to improve control performance based on a one-step state
prediction strategy is presented. First of all, the proposed strategy is applied to an off-line robust
MPC algorithm using polyhedral invariant sets in chapter III. Instead of implementing only a state
feedback gain corresponding to the smallest polyhedral invariant set that the currently measured
state can be embedded, the control performance is improved by an addition of an element of free
control input calculated by minimizing a one-step state prediction cost function. At each sampling
instant, only a numerically low-demanding optimization problem is needed to be solved on-line.

Then the proposed strategy is applied to an off-line MPC algorithm for LPV systems in
chapter IV. Instead of implementing only a real-time state feedback gain calculated by linear
interpolation between the off-line state feedback gains corresponding to the sequences of nested
ellipsoids, the control performance is improved by an addition of an element of free control input.
At each sampling instant, only a numerically low-demanding optimization problem is needed to
be solved on-line. Moreover, the number of LMI constraints grows up only linearly with the

number of vertices of the polytope.

5.2 Improving Control Performance of A Polyhedral Off-line Robust MPC Algorithm Based

on A One-step State Prediction Strategy

In this section, a strategy to improve control performance of an off-line robust MPC
algorithm proposed in chapter III is presented. Instead of implementing only a state feedback gain

K, corresponding to the smallest polyhedral invariant set S, that the currently measured state can
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be embedded, the control performance is improved by an addition of an element of free control
input ¢, calculated by minimizing a one-step state prediction cost function. At each sampling
time, given a state feedback gain K, as proposed in algorithm 3.1, an element of free control

input ¢, is calculated by solving the following problem

min x,(k+1)" @ x,(k+1)+¢, Re, (5.1)
s.t.x,(k+1)= (4, + B,K)x(k)+ Bc,,\j =1,2,....L (5.2)
x (k+1) €S, (5.3)

(K x(0)+c),| Sty s VHEAL2,..o0, } (5.4)

Pt

(5.1) is the one-step state prediction cost function. (5.2) is the one-step state prediction.
(5.3) is for guaranteeing robust stability and (5.4) is for guaranteeing that an input constraint is
satisfied. Note that the output constraint does not need to be incorporated in the problem
formulation because the predicted state x,(k+1) is restricted to lie in S, by (5.3) so it must also

satisfy an output constraint‘(cxi (k+ 1))4 EE

Since the optimization problem (5.1) has to be solved on-line at each sampling instant, it
will be formulated as the convex optimization involving linear matrix inequalities (LMIs) that can

be solved in polynomial time. The optimization problem (5.1) can be written in the form of LMIs

as follows

Algorithm 5.1

minJ, (5.5)
Ck
s.t.x (k+1)=(A4, + B K)x(k)+ Bc,,Vj =12,....L (5.6)
x (k+1)eS, (5.7)
I/ * *
O*x(k+1) J I, * (20 (5.8)
R’c, 0 JJ,
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{(K[x(k) +¢,), 1} 20, VhE {200} (5.9)

Implement u(k) = K, x(k)+ c, to the process.
By applying Schur complement to (5.8), we obtain J, >x, (k+1)T0xl.(k+l)+c,»TRck. Thus,
minimizing J, in (5.5) is equivalent to (5.1). By applying Schur complement to (5.9), (5.4) is

obtained.
Example 5.1

In this example, we will consider an application of our approach to a continuous
bioreactor in fermentation process. Biochemical reactors are used to produce a large number of
products including pharmaceuticals, food and beverages. In this bioreactor model, only two
components are considered including biomass X, and substrate S . A fermentation process is
assumed to occur in an isothermal continuous bioreactor with constant volume and constant
physical-chemical properties. The maximum growth rate x __ of biomass is considered to be an
uncertain parameter. The dynamic model based on the component balance is given as follows

(Galluzzo et al., 2008)

dx
dtB =u(SX, -X,D
S)X
ﬁ:_&jL(SF_S)D
dt Y
S

S = —_—m
H(S) = p. K +S+K

y:R m)ﬂ (5.10)

where X, is the biomass concentration, S is the substrate concentration and D is the dilution

rate. The operating parameters are shown in table 5.1.
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Table 5.1 The operating parameters of continuous bioreactor in example 5.1.

Parameter Value Unit
S, 4 kg/m’
¥ 0.4 -
“ 0.01-0.99 [
K, 0.12 ke/m’
K, 0.45 m kg

Let X,=X,-X s S=8 -S,and D= D-D, where the subscript eq is used to denote
the corresponding variable at equilibrium condition. The discrete-time model (5.11) is obtained
by linearization and discretization of (5.10) using Euler first-order approximation with a sampling

time of 0.2 hr.

max

Xae+D)|_[0.0132, (k) 4094 03414p, (k) [Xa)], [-03060 B
Sk+1) | | —0283u. (k)  —0.8536u, (k)+0.94 | S(k) 0.7651

(5.11)
where 0.01< (k) <0.99. Since the uncertain parameter u_ (k) varies between 0.01 and 0.99,

we conclude that A(k) € £2 where 2 is given as follows

0.9411 0.0034 || 1.0521 0.3380
Q=C { },[ } (5.12)

o
—0.0028 0.9314 || —-0.2802 0.0949

The objective is to regulate X, and S by manipulating D . The input constraint is

B 10
‘D(k)‘S0.0IS hr™'. The symmetric weighting matrices in (5.1) are given by @ :{O O} and

R=0.1.

Figure 5.1 shows the polyhedral invariant sets constructed off-line by algorithm 3.1. In

this example, a sequence of nine polyhedral invariant sets is constructed off-line.
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Figure 5.1 A sequence of nine polyhedral invariant sets constructed off-line in example 5.1.

Figure 5.2 (a) shows the regulated output when z,_ =0.5Ar"". It can be observed that
by using the proposed strategy together with algorithm 3.1, we can achieve less conservative
result as compared with using only algorithm 3.1. This is due to the fact that by adding an element
of free control input to the state feedback control law (u(k) = Kx(k) +¢c,), we have more degrees
of freedom to adjust the plant. Moreover, by using the proposed strategy, less settling time is
required for the output to reach and remain inside the settling band (+1% of the equilibrium
point). Figure 5.2 (b) shows the control input. By using only algorithm 3.1, the input
discontinuities are caused by the switching between the state feedback gains based on the distance
between the state and the origin. However, the input becomes continuous by an addition of an

element of free control input as proposed.
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Figure 5.2 The closed-loop responses of the continuous bioreactor in example 5.1

(a) The regulated output (b) The control input.
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The cumulative cost ix(i)r Ox(i)" +u(@)” Ru(i) is shown in table 5.2. It is seen that the

cumulative cost is reduced by an addition of an element of free control input as proposed in

algorithm 5.1.

Table 5.2 The cumulative cost in example 5.1.

The values of u

Algorithm
0.01 0.5 0.99

algorithm 5.1+algorithm 3.1 0.227 0.361 0.404

only algorithm 3.1 0.233 0.372 0.411

5.3 Improving Control Performance of An Off-line MPC Algorithm for LPV Systems Based

on A One-step State Prediction Strategy

In chapter 4, an off-line MPC algorithm for LPV systems is presented. The on-line
computational time is reduced by precomputing off-line the sequences of state feedback gains
K, Vi=12,..N,vj=12,..L corresponding to the sequences of nested ellipsoids
e, ={x/x"Q x<1} where N is the number of ellipsoids in each sequence and L is the number of
vertices of the polytope. At each sampling instant, the smallest ellipsoid containing the currently
measured state is determined in each sequence of ellipsoids and the scheduling parameter p(k) is
measured. The real-time state feedback gain is then calculated by linear interpolation between the
corresponding off-line state feedback gains K(a,(k)=e, (k)[é p,(OK, 1+(1-q, (k))[/i] (KK, ]
where «, (k) € (0.1].

In this section, a strategy to improve control performance of an off-line MPC algorithm
for LPV systems (algorithm 4.1) is presented. Instead of implementing only a real-time feedback
gain K(«, (k)) calculated by linear interpolation between the off-line feedback gains, the control
performance is improved by an addition of an element of free control input ¢, . At each sampling

instant, when the measured state satisfies x(k)'Q, x(k)<1 and x(k)' Q. x(k)>1,Vj=12,...Li#N,

+1,j

an element of free control input ¢, is calculated based on a one-step state prediction strategy as

follows
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min x(k + 1) Ox(k+1)+c, Re, (5.13)
s.t. x(k +1) = (A(p(k)) + BK (e, (k)))x(k) + Bc, (5.14)
x(k+1)' O x(k+1) <1,V =12,....L (5.15)

(K(a,(k)x(k) +c, )| <u,,..The{l2, .n,} (5.16)

e

(5.13) is the one-step state prediction cost function, (5.14) is the one-step ahead state
prediction, (5.15) is for guaranteeing robust stability and (5.16) is an input constraint. Note that
the output constraint ‘(Cx(k+1))r‘ <V.max does not need to be incorporated in the problem
formulation because the state x(k+1) is restricted to lie in &, by (5.15) and hence it must also

satisfy an output constraint (Cx(k +1),| <V, max-

Since the optimization problem (5.13) has to be solved on-line at each sampling instant, it
will be formulated as the convex optimization involving linear matrix inequalities (LMIs) that can

be solved in polynomial time. The optimization problem (5.13) can be written in the form of

LMIs as follows
Algorithm 5.2
minJ, (5.17)
Ck
s.t. x(k +1) = (A(p(k)) + BK (e, (k)))x(k) + Be, (5.18)
Vi * *
1
O@*x(k+1) JI, * >0 (5.19)
Rec, o JI,
- .
>0, Vj=12,... ,
xk+1) Q) J L (5.20)
- . .
K } >0,Vhe{l2,.n) (5.21)
L(K(a, (k) x(k)+c, ), 1

Implement u(k) = K(e,(k))x(k)+c, to the process.
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By applying Schur complement to (5.19), we obtain J, > x(k+1)" Ox(k+1)+c¢, Re,.
Thus, minimizing J, in (5.17) is equivalent to (5.13). By applying Schur complement to (5.20),
(5.15) is obtained. Finally, by applying Schur complement to (5.21), (5.16) is obtained.

By applying the proposed strategy, the state is driven from ¢, towards ¢, , and so on.

i+1,j 2
Finally, the state is kept within &, and driven towards the origin. Thus, robust stability is
guaranteed. Moreover, it can be observed that only (5.20) depends on the number of vertices of

the polytope. The size of the optimization problem of the proposed algorithm grows up only

linearly with the number of vertices of the polytope.
Example 5.2

Consider the following nonlinear model for CSTR where the consecutive reaction

A——>B——C takes place.

{%,}:[—1—&11 0 }{XI}FH” (5.22)
X2 Da, —1-Da,x, || x, 0

where x, denotes the dimensionless concentration of A4, x, denotes the dimensionless

2
concentration of B and the control variable u corresponds to the inlet concentration of 4. The
operating parameters are shown in table 5.3. It is assumed that 4—— B 1is a first order chemical

reaction whereas B——C 1is a second order chemical reaction.

Table 5.3 The operating parameters of nonlinear CSTR in example 5.2.

Parameter Value
Da, 1
Da, 2
X, 0.8956

Let xi=x,—x,_,, x2=x,-x,,

;Zu—um , we have that all the solutions of (5.22) are

also the solutions of the following differential inclusion
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(g

. —1-Da 0 —1- D 0 .
where A4, is given by 4 = : A = 4 and p is
! Da, —1-Da,x, ., Da, -1-Da,x,, . !
. X, —X X, —X,
glVen by pl — 2,max 2 , pz — 2 2,min
2,max - x2,min x2,max x2,min

The objective is to regulate x; and x, to the origin by manipulating u. The input and

output constraints are given as follows

|}1‘ <05

<0.5 (5.24)

X2

M <05

The discrete-time model is obtained by discretizing (5.23) using Euler first-order
approximation with a sampling period of 0.1 min and it is omitted here for brevity. Here the

symmetric weighting matrices in (5.13) are given by @=17 and R =0.01.

Figure 5.3 shows the ellipsoids &,; where i=12,...20 and ;=12 constructed off-line by
algorithm 4.1. In this example, two sequences of ellipsoids are constructed because the polytope
has two vertices j=1,2. Note that a sequence of states x =1,2,...20 chosen to constructed the
ellipsoids should be chosen such that the distance between x,, and the origin is less than the
distance between x, and the origin. This is to ensure that the ellipsoids constructed in each

sequence are nested ¢, — ¢,

ijot
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1
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I 1
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Xl

a.2) E,={xeR /xTQ;;x <1},i=12,...20

Figure 5.3 Two sequences of ellipsoids constructed off-line in example 5.2.

The closed-loop responses of the system are shown in Fig. 5.4. It is seen that by using the
proposed strategy together with algorithm 4.1, we can achieve better control performance than
using only algorithm 4.1. This is due to the fact that the degree of freedom to adjust the plant is
increased. Moreover, the settling time, which is the time required for the output to enter and
remain inside the settling band (£1% of the equilibrium point), is also reduced. In this example,

the on-line computational time at each sampling instant of the proposed strategy is only 0.01 s.
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Figure 5.4 The closed-loop responses in example 5.2 a) The regulated output b) The control input.
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The cumulative cost ix(i)r Ox(i)" +u(@)” Ru(i) is shown in table 5.4. It is seen that the

cumulative cost is reduced by an addition of an element of free control input as proposed in

algorithm 5.2.

Table 5.4 The cumulative cost in example 5.2.

Algorithm Cumulative Cost
Algorithm 5.2 + Algorithm 4.1 0.023
Only algorithm 4.1 0.024

Figure 5.5 shows the closed-loop responses when the number of ellipsoids in each
sequence is varied from N =6, 11 and 20, respectively. It is seen that by an addition of an element
of free control input, almost identical behaviours are obtained for all cases so the numbers of

ellipsoids constructed off-line have less effect on the control performance.
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Figure 5.5 The closed-loop responses in example 5.2 when the number of ellipsoids constructed

off-line is varied a) The regulated output b) The control input.

5.4 Conclusions

In this chapter, a strategy to improve control performance based on a one-step state
prediction strategy has been presented. The conservativeness arising from imposing only a state
feedback gain on the control input is reduced by an addition of an element of free control input.
By using the proposed strategy, the control performance is improved because the number of

degrees of freedom to adjust the plant is increased.



CHAPTER VI

CONCLUSIONS

6.1 Summary of Results

In this research, three synthesis approaches for robust model predictive control have been
proposed in order to solve three important issues including the size of stabilizable region, the on-
line computational complexity and the conservativeness. For all algorithms, all of the on-line
computational burndens are moved off-line so the on-line computation is tractable.

Firstly, an off-line formulation of robust MPC using polyhedral invariant sets is proposed
in order to deal with the problem of the size of stabilizable region. The algorithm precomputes
off-line a sequence of state feedback gains corresponding to a sequence of polyhedral invariant
sets. At each sampling time, the smallest polyhedral invariant set containing the measured state is
determined and the corresponding state feedback gain is then implemented to the process. As
compared with an off-line formulation of robust model predictive control using ellipsoidal
invariant sets of Wan and Kothare (2003), the proposed algorithm gives a significantly larger
stabilizable region because the true stabilizable region is calculated. Moreover, the proposed
strategy can achieve better control performance. The proposed strategy also solves the problem of
on-line computational complexity because all of the optimization problems are solved off-line and
no optimization problem is needed to be solved on-line.

Secondly, an interpolation-based MPC strategy for LPV systems is proposed to alleviate
the problem of on-line computational complexity. The on-line computational burdens are reduced
by precomputing off-line the sequences of state feedback gains corresponding to the sequences of
nested ellipsoids. At each sampling instant, the real-time state feedback gain is calculated by
linear interpolation between the precomputed state feedback gains and no optimization problem is
needed to be solved on-line. As compared with an on-line MPC algorithm for LPV systems of Lu
and Arkun (2000), the proposed strategy gives the same control performance with a significantly
smaller on-line computational time. Moreover, the proposed strategy can achieve better control
performance as compared with an ellipsoidal off-line robust model predictive control strategy

with no interpolation between state feedback gains of Wan and Kothare (2003).
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Finally, the conservativeness arising from imposing the state feedback control law on the
control input in order to guarantee robust stability is reduced by using a one-step state prediction
strategy. The conservativeness is reduced by an addition of an element of free control input in
order to increase the number of degrees of freedom to adjust the plant. At each sampling instant,
only a computationally low-demanding optimization problem is needed to be solved on-line so
the on-line computation is tractable. By using the proposed strategy, the conservativeness is

reduced because we have more degrees of freedom to adjust the plant.

6.2 Limitations and Future Works

For an off-line formulation of robust MPC using polyhedral invariant sets proposed in
chapter 3, the input discontinuities usually occur because the state feedback gains are constant in
the regions between two adjacent polyhedral invariant sets. This problem can be solved by
developing the technique to interpolate the state feedback gains. Another issue is the construction
of polyhedral invariant set. In algorithm 3.1, non-redundant constraints are iteratively added to
find the region that all future states are guaranteed to stay within this set without violation of input
and output constraints. For large system with large number of vertices, more efficient approach
needs to be developed in order to reduce the complexity in construction of polyhedral invariant
set.

For an interpolation-based MPC strategy for LPV systems proposed in chapter 4, the
stabilizable region of the algorithm is quite small in the case of asymmetric input and output
constraints because it is constructed based on the ellipsoidal approximation of the true polyhedral
invariant set. The size of the stabilizable region can be enlarged by calculating the true polyhedral
invariant set. However, new interpolation technique suitable for the true polyhedral invariant set
also needs to be developed.

Finally, in chapter 5, an element of free control input calculated on-line is added to the
state feedback control law calculated off-line in order to increase the degrees of freedom in
adjusting the plant. This strategy can be further improved by developing the technique to calculate

both state feedback control law and an element of free control input off-line.
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APPENDIX A

PROOF DETAILS OF THEOREM 3.1

In order to prove that algorithm 3.1 assures robust stability to the closed-loop, we have to

prove that the state feedback gain K, satisfies the Lyapunov stability constraint

x(k+i/ k) {A(p(k +i)) + B(p(k +)K, 1" PLA(p(k +i)) + B(p(k +i)K,]— P Jx(k+i/k) @A
<—{x(k+i/k) @x(k+i/k)+x(k+i/k) K'RK x(k+i/k)} '

From (A.1), by pre-multiplying by x(k+i/k)" and post-multiplying by x(k+i/k)™", we

obtain

LA(p(k + i) + B(p(k + iK1 PLA(p(k +1) + B(p(k +)K,]- P,}<—{©+ K/ RK,| (A2)

By substituting P, =,0;", pre-multiplying by Q, post-multiplying by Q., substituting

Y = K,Q, and applying Schur complement to the resulting inequality, we obtain

0, O, A(p(k +i) +Y B(p(k+1)’ 0,0° YR
A(p(k+0)Q, + B(p(k+D)Y, 0, O 0 (a3
00 0 rd 0

I R%Yi 0 0 vl |

This inequality is affine in [A(p(k)), B(p(k))] =3 p,(K)[A,, B, ]. Thus, it is satisfied for

Q,- * * *
A/Qi + B/Yl Qi * *
' >0,vj=12,...L (A4)
00, 0 yr
1
R*Y, 0 0 yI

From the proof, it is seen that (A.1) is equivalent to (A.4) so the state feedback gain K, is

guaranteed to satisfy the Lyapunov stability constraint (A.1) by imposing (A.4) in the

optimization problem.
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Since the state is guaranteed to be driven towards the origin and the input and output
constraints are the closed convex set containing the origin, by iteratively adding non-redundant
constraints M, (4, +BK)x<d,k to (M,d) by assigning M =[M/,(M,(4+BK)"] and
d =[d,d ] as proposed in algorithm 3.1, we can find the set of initial states x defined by
S = {x/ Mx< di} such that all future states are guaranteed to stay within this set without input
and output constraints violation. Thus, robust constraint satisfaction is guaranteed. Note that the

iteratively adding non-redundant constraints terminates in a finite number of steps because the

closed-loop system is guaranteed to be robustly stabilized by the state feedback gain X, .
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APPENDIX B

PROOF DETAILS OF THEOREM 4.1

In order to prove that algorithm 4.1 assures robust stability to the closed-loop system, we

have to prove that (a) the state feedback control law K, :i p,(kK, robustly stabilizes the

closed-loop system and (b) the interpolation between the state feedback control laws
K(a,.(k))=ai(k)Ki+(1—al(k))KM,I(I.zipl(k)KU, Ki+l=ipj(k)l<w also robustly stabilizes the
closed-loop system.

Firstly, we will prove that (a) the state feedback control law K, = ELj p,(KK, robustly

stabilizes the closed-loop system. From the inequality

T
G,+G, -0, * * %

ij

AjGi.j +BY,./ Qi‘l & X

>0,Vj=12,...LVI=12,..L (B.1)
]

1
0°G, 0 7yl
1

RY,, 0 0 yI

Q,, has to be positive definite. Thus, (G -0, ) 0 (G, -0,,) has to be non-negative.

(G ,-0.)0(G,-0,)=0 is equivalent to G O0'G >G' +G -0 . By substituting

(A

Y, =K G, 6 and G0 G, >G' +G, -0, ,(B.1) can be written as

L] ] i 1,j —iJ

Gir/'QiT;Gij * * *
(AJ + BK[,])GIJ Qi, * *

!

L >0,Vvji=12,.. . LVI=12,... B.2
0'G, 0 I /j L L (B.2)
1
RK, G, 0 0 yI
(B.2) is equivalent to
0] N
1 h 7/,Q;1] (A, +BKi,/) }/Q:I] * X L !
. T .
dlag(?/fZG,’,/"J/,’ZQ[,[?]’I) @% 0 I dlag(yiZGi,j’inQi,lﬂl’[)Zo (B3)
1
R’K, 0 01
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By substituting P, =0 and P, =0, we will obtain

Pi./' * * *

P4, +BK,) P, * *
o 0 1 #|ZOW=120LVI=12,. L (B.4)
R%K,.,j 0 0 I

For each j, multiply the corresponding inequalities by p,(k +i) and sum for j=1,..,L to

get
P(i,k) [ S S
B, (A(p(k+D))+BK (p(k+i)) F, * *
= 0 1 #|ZOVI=12.0L (B.5)
R%K,(p(kﬂ')) 0 0 I

where P(i,k) =", p,(k+i)P, , A(p(k+1))= il p,(k+i)4; and K (p(k+1) = S p,(k+D)K,, .
e j= ’

For each /, multiply the corresponding inequalities by p,(k+i+1) and sum for /=1,..,L

to get
P(i,k) * * ok
Pi+Lk)A(p(k+1))+ BK,(p(k+i)) P@+Lk) =* =
@% 0 I = 20 (B.6)
R%K[(p(k+i)) 0 0 7

where P(i+Lk)=Y, p,(k+i+1)P, . By applying twice the Schur Complement to the resulting

inequality, we obtain

(A(p(k+)) + BK, (p(k +1)))" P(i +1k)(A(p(k +0)) + BK, (p(k +1))) = P(i,k) <

—r ) (B.7)
— K (p(k+1))" RK, (p(k +1)) -O

Thus, the Lyapunov function V(i,k) = x(k+i/k)" P(i,k)x(k+i/k) is a strictly decreasing

function and robust stability is guaranteed.
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Secondly, we will prove that (b) the interpolation between the state feedback control laws
K(a (k) =a,(bH)K, +(1-a,(k)K,,, K = i p(KK,, K, = i p(KK., also robustly stabilizes the
j=1 j=1

closed-loop system. (B.7) is equivalent to
(A(p(k +i)) + BK, (p(k +1)))" P +1, kX A(p(k +1)) + BK, (p(k +1))) — P(i,k) <0 (B.8)

L
By substituting P(i,k) = Zj‘:, p,(k+i)P,, Pi+1k)= Yopk+i+ )P, A(p(k +i)) = lej (k+ i)A].
J= :

ij 2

and K,(p(k+i)) = ip,.(k +i)K, . (B.8) can be written as

J

P, (A+BK )P
P(A+BK) P

]>o, V=12, LVI=12,.L (B.9)

W
By substituting P, =y,0," and P, =y,0,, we obtain

[ 0 (4,+BK YO

] L >0, =12, L,V =12,...L (B.10)
0, (4,+BK,)) oy }

By applying the Schur Complement to (4.5), we obtain

Q;; (A, + BK[H,,‘)TQ;/T
Qij[l(A/ +BK1+1,/) Qfll

1>0, V=12, LVI=12,..[L (B.11)

Since (B.10) is affine in K, and (B.11) is also affine in K

i+1,j 2

any linear combination

K(a (k) =a,(bh)K, +(1-a,(k)K,,, K = f P(KK,, K, = i p(KK.,,, also satisfies
“P, . & .

9, (4, + BK (a,(k))" O,/

. G >0,vi=12,... LVI=12..L(B.12
0'(4, + BK(a (k) 0 g (B.12)

By substituting P, =y,0, and P, =y,0,,, we obtain
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P P
— (4, + BK (e, ()" (=)'
» g b Yoo ls0, v =12, LVI=12,..L (B.13)
—=(4, + BK (,(k))) —
}/f i

For each j, multiply the corresponding inequalities by p, (k+i)and sum for j=1,..,L.
Then, for each /, multiply the corresponding inequalities by p,(k+i+1) and sum for /=1,..,L.

We obtain

o (A(ptk 1) + Bt () (0
. i , i >0 (B.14)
P a4+ BG4 A

By applying the Schur complement to (B.14), we obtain

(A(p(k + 1)) + BK(a, (k)" P(i + L, k)(A(p(k + i) + BK (e, (k))) — P(i,k) <0 (B.15)

Thus, V(i,k)=x(k+i/k)" P(i,k)x(k+i/k) is a strictly decreasing Lyapunov function and

the closed-loop system is robustly stabilized by the state feedback gain K(e,(k)) .

From the proof in steps (a) and (b), we conclude that algorithm 4.1 assures robust

stability to the closed-loop system.

Next, we will prove that the state feedback gain K(e,(k)) =, (k)K, +(1-¢,(k))K,,, assures
robust constraint satisfaction. Let us begin with the input constraint
jw, (k+ilb)|<u, o h=123,.....m, (B.16)

From algorithm 4.1, the state feedback gain K, must satisfy

{X i }>0 V=1 . L.X, <u' , h=12 (B.17)
r r >0,Vi=1...,L, <u, .. h=12,..n .
Y Gl.'j"l'(;“/. _Q hh h

ij i, j



obtain

satisfy
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By substituting G’ 0"'G , 2G' +G -0, , (B.17) can be written as

i,j i,

X *
i = 2 = B.18
{er Gf,»Q,»,,'GJ >0,V =1..LX,, <u’,., h=12,..n (B.18)
(B.18) is equivalent to
3k
diag(1,G/, )|:G1,,-T K,jr o }diag(], G )20 (B.19)

By substituting K, , =Y, G, |, (B.19) can be written as

ij i

X *
[ . } >0 (B.20)
For each j, multiply the corresponding inequalities by p,(k+i)and sum for j=1,..,L to

X *
{K Q} >0 (B.21)

From (B.17), by following the same procedures, the state feedback gain K, must also
X *
{ T } 20 (B.22)

From (B.21) and (B.22), the following inequality must be satisfied

X *
>0 B.23
{K%af(k» 0", (k))} = (B.23)

where K(a (k) = (K, +(1-a,(k)K,, and 0" (k) =, ()Q" + (-, (K)Q, .

i

By applying the Schur complement to (B.23), we obtain
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X 2 K(a,(k)Q(at, (k)K" (e, (k) (B.24)

Since X,, <u; ., h=12,...n,, (B.24) can be written as

w2 zH(Km,» (kDO (at, (Y, (B.25)
Since (Q% (o, (k) x(k+i/k))| <1 ,(B.25) can be written as
Ul 2 |(K(a,()xk +il k), | (B.26)

By substituting  u,(k+i/k)=(K(a,(k)x(k+i/k)),, we can conclude that

Uy x|t (K +17)

S h=123,...,n,. Thus, the state feedback gain

K(a (k) =a,(k)K, +(1-o,(k))K,,, assures input constraint satisfaction.

Then we will prove that the state feedback gain K(e,(k)) =, (k)K, +(1-c,(k))K,,, assures

the following output constraint satisfaction.

|, (k4 i+ 1K) < Yy mas ¥ = 12,3005, (B.27)

From algorithm 4.1, the state feedback gain K, must satisfy

T *
> P = <P = B.28
{(A/GﬁBx,,-)TCT G,,,.+G,,7—Q,J 2O =12l S Yo =12t (B28)

By substituting G’ 0'G , >G' +G -0, , (B.28) can be written as

N

T *
{(AG “BY JCT GG } >0,V =12....LT, <y, r=12,.n (B.29)
J ij i j&i,j 0L

(B.29) is equivalent to
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*
-1

(4,+BY, G )C" O

1]

diag(l,Gf,){ }diag(l,qj) >0 (B.30)

By substituting K, =Y, G, (B.30) can be written as

T *
{(Aj LBK O Q.'} >0 (B.31)

i,j

For each j, multiply the corresponding inequalities by p,(k+i)and sum for j=1,..,L to

obtain
L Y (B.32)
(A+BK,)'C" O
From (B.28), by following the same procedures, the state feedback gain K, must also
satisfy

{ L - }z 0 (B.33)
(4+BK,,)C" Q]

From (B.32) and (B.33), the following inequality must be satisfied

Ty (B.34)
(4+BK (e (k))) C° O (a,(k))

where K(a (k) =& (K, +(1-a()K. and 0"(a,(k) =)0 +(1-a(k)0.
By applying the Schur complement to (B.34), we obtain

T > C(A+ BK (c, (k) O(ex, (k) A+ BK (e, (k)))" C” (B.35)
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Since T, <y; .. r=12...n ,(B.35) can be written as

V2 [(COA+ BK (@, ()0 (), (B.36)
Since (Q% (o, (k) x(k+i/k))| <1,(B.36) can be written as
Ve 2 |(C(A+BK (e, () x(k +i 1 K)), | (B.37)

By substituting y, (k+i+1/k)=(C(A+BK(e,(k)))x(k+i/k))., we can conclude that

Vrmax 2 ‘ y(k+i+1/k)>r=123,.,n,. Thus, the output constraint is guaranteed to be satisfied.
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