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CHAPTER I

Introduction

In this Chapter, )( nkX is a double sequence of random variables with finite

variances 2
nkσ  and nkµ the expectation of nkX .

The problem of the convergence of distribution functions of sums of

independent random variables has been discussed many times. One of the most

important versions of the convergence theorem is the following theorem.

Theorem 1.1( Lindeberg ) Let )( nkX  be a double sequence of random variables with

finite variances ,2
nkσ ...,2,1,...,,2,1 == nkk n . Assume that for each n ,

nnknn XXX ...,,, 21 are independent  and 0=µnk  for all kn ,  and ∑
=∞→

=
nk

k
nkn 1

2 1lim σ . Then

(i)     the sequence of distribution functions of the sums 
nnknn XXX +++ ...21

weakly converges to the standard normal distribution function and

(ii)    )( nkX  is infinitesimal , i.e. 0)(maxlim
1

=≥
≤≤∞→

εnkkkn
XP

n
 for all 0>ε ,

if and only if )( nkX  satisfies Lindeberg condition ,i.e.

                                       ∑ ∫
= <

∞→
=

nk

k x
nkn

xdFx
1

2 1)(lim
ε

   for all 0>ε .

Later , Kolmogorov generalized Theorem 1.1 to the case that the limit distribution

function is any infinitely divisible distribution function. There are two important

convergence theorems (Theorem 1.2 and Theorem 1.3 ).  In the first theorem )( nkX

must satisfy the following conditions:

)(α )( nknkX µ− is infinitesimal, i.e.,

                                        0)(max
1

→ε≥µ−
≤≤

nknk
nkk

XP  as ∞→n  for all 0>ε .



2

)(β There exists a real number C  such that  C
nk

k
nk <σ∑

=1

2 .

In order to prove Theorem 1.2 , Kolmogorov defined the accompanying distribution

function of the sums

nnnknnn AXXXS −+++= K21

to be the distribution function whose logarithm of its characteristic functionϕ  is given

by

            ∑ ∫∑
=

∞

∞−=
µ+−+µ+−=ϕ

nk

k
nknk

itxnk

k
nknn xdFeittiAt

11
)()1()(ln .

This accompanying distribution function is infinitely divisible.

Theorem 1.2 ([6], p.98)   Assume that )( nkX  satisfies the conditions )(α , )(β  and for

each nnknn XXXn ,,,, 21 K  are independent.  Then there exists a sequence )( nA  of

real numbers such that the sequence of distribution functions of the sums

          nnnknnn AXXXS −+++= K21

converges weakly to a limit distribution function if and only if the sequence of

accompanying distribution functions of nS  converges weakly to the same limit

distribution function.

Theorem 1.3 ([6], p.100)   Assume that )( nkX  satisfies the condition )(α and for

each n , nnknn XXX ,,, 21 K  are independent.  Then there exists a sequence )( nA  of

real numbers such that

(i)         the sequence of distribution functions of the sums

        nnnknnn AXXXS −+++= K21

converges weakly to a limit distribution function F  whose variance is 2σ  and

(ii)       2

1

2 σ→σ∑
=

nk

k
nk

if and only if there exists a function K in m  such that

)i( ′       )()( uKuK nk →     for every continuity point u of K  and
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)i(i ′ )()( +∞→+∞ KK nk

where

∑ ∫
= ∞−

µ+=
nk

k

u

nknknk xdFxuK
1

2 )()(

and m  is the set of bounded , non-decreasing , right-continuous functions from R

into ),[ ∞0  which vanish at ∞− .

The constants nA  may be chosen according to the formula

                           µ−µ=∑
=

nk

k
nknA

1

where µ  is any real number.  Logarithm of the characteristic function ϕ  of the limit

distribution function is given by

                 ∫
∞

∞−

+µ=ϕ )(),()(ln xdKxtftit

where                                           










=−

≠−−
=

.0if
2

0if1)1(
),(

2

2

xt

x
x

itxe
xtf

itx

In [1] , Bethmann generalized Theorem 1.1 to the case that the number of summands

is random. The theorem is as follows.

Theorem 1.4 ([1]) Let )( nkX  be a double sequence of random variables with finite

variances 2
nkσ  and )( nZ  a sequence of positive integral-valued random variables.

Assume that for each n , ...,,, 21 nnn XXZ are independent , →∞P
nZ , 0=µnk  for all

kn ,  and 1)(lim
1

2 =∑
=∞→

nZ

k
nkn

E σ . Then

(i)   the sequence of distribution functions of nnZnn X...XX +++ 21  converges weakly

to the standard normal distribution function and

(ii) )( nkX  is random infinitesimal with respect to )( nZ , i.e.,

                                         →0)(max
1

P
nk

nZk
XP ε≥

≤≤
 as ∞→n  for all 0>ε ,
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if and only if

 →∑ ∫
= ε<

nZ

k x

P
nk xdFx

1

2 1)(  as ∞→n   for all 0>ε .

In this work , we generalize Theorem 1.3 to the case that the limit distribution

function is any infinitely divisible distribution function.

In the main theorems, we assume ),( nkn XZ satisfies the following conditions:

)(α )( nknkX µ− is random infinitesimal with respect to )( nZ , i.e.,

                                        →0max
1

P
nknk

nZk
XP )( ε≥µ−

≤≤
 as ∞→n  for all 0>ε .

)(β There exists a constant C >0 such that  C
qnl

k
nk <σ∑

=

)(

1

2  for a.e. ),( 10∈q .

The main theorems are the followings.

Theorem 1.5 Let ),( nkn XZ  be a random double sequence of random variables which

satisfies the condition )~(α  , )~(β  and  for each ,...,,, 21 nnn XXZn are independent. If

there exists a distribution function  F  with finite variance 2σ such that

(i) the sequence of the distribution functions of random sums

               ∑
=
µ−+++=

nZ

k
nknnZnnnZ XXXS

1
21 ...

converges weakly to  F  and

(ii) 2

1

2 σ→











σ∑

=

nZ

k
nkE  ,

then for a.e. )1,0(∈q , there exist a subsequence )( kn and a function )(qK  in  m
such that

)i( ′   )()( )(
)( uKuK q

qknl →   for all continuity point  u of )(qK  and

)i(i ′  )()( )(
)( +∞→+∞ q

qknl KK   and ∫ +∞=σ
1

0

)(2 )( dqK q ,
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where                          ∑ ∫
= ∞−

µ+=
)(

1

2
)( )()(

qnl

k

u

nknkqnl xdFxuK .

Theorem 1.6 Let ),( nkn XZ  be a random double sequence of random variables which

satisfies the condition )~(α , )~(β  and for each ,...,,, 21 nnn XXZn are independent.  If

for a.e. )1,0(∈q , there exists  a function )(qK  in  m  such that

)i( ′   )()( )(
)( uKuK q

qnl →   for all continuity point  u of )(qK  

)i(i ′  )()( )(
)( +∞→+∞ q

qnl KK   and   2
1

0

)( )( σ=+∞∫ dqK q   for some constant 2σ   and

)i(ii ′     for each ∈x R , )()( xF q  is measurable in q, where )(qF  is the distribution

function whose logarithm of its characteristic function )(qϕ  is given by

                                       ∫=ϕ
R

)(),()(ln )()( udKutft qq ,

then

(i) the sequence of the distribution functions of  random sums

                    ∑
=
µ−+++=

nZ

k
nknnZnnnZ XXXS

1
21 ...

converges weakly to  F   where ∫ ∈=
1

0

)( ,)()( xdqxFxF q R  and

(ii) 2

1

2 σ→











σ∑

=

nZ

k
nkE   and  2σ  is the variance of  F.

In chapter II , some important preliminary results and notations , which are

necessary for this work , are presented. Chapter III contains our main results.



CHAPTER II

     Preliminaries

2.1   Random Variables and Modes of Convergence

A probability space is a measure space ),,( PℑΩ  in which P  is a positive

measure such that 1)( =ΩP . The set Ω  will be referred to as a sample space.   The

elements of ℑ  are called events. For any event A , the value )(AP  is called the

probability of A .

A function X  from a probability space ),,( PℑΩ  to the set of complex  numbers

C is said to be a complex-valued random variable if for every Borel set B in C,

)(1 BX −  belongs to ℑ .  If X  is real-valued, we say that it is a real-valued random

variable, or simply a random variable.  We note that the composition between a

Borel function and a complex-valued random variable is also a complex-valued

random variable.

We will use the notation )(),( xXPxXP ≥≤  and )( xXP ≥  to denote

}))(({}),)(({ xXPxXP ≥ωω≤ωω  and }))(({ xXP ≥ωω , respectively.

We define the expectation of a complex-valued random variable X  to be

∫
Ω

XdP

provided that the integral ∫
Ω

XdP  exists.  It will be denoted by ][XE .

Proposition 2.1.1 ([2], p.174)   Let nXXX ,,, 21 K be random variables. Then

∑
=

=+++
n

j
jn1 XEXXXE

1
2 ][][ K ,

provided that the sums on the right hand side is meaningful.
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Let ),,( µℑΩ  be a measure space and  Y  a topological space.  Let X ,

nXXX ,,, 21 K  be measurable functions from Ω  to Y .  We will write

→XX n    a.e. ][µ

if )( nX  converges to X  almost everywhere with respect to µ .  In the case kR=Ω

and µ  is the Lebesgue measure on kR , we simply write

                  →XX n     a.e..

A sequence )( nX  of measurable complex-valued functions is said to

converge in measure to a measurable complex-valued function X  if

0)})()(({lim =ε≥−µ
∞→

xXxXx n
n

for every 0>ε .

From now on, we shall assume that all our complex-valued random variables,

including real-valued random variables, are defined on a common probability space

),,( PℑΩ .

A sequence )( nX  of complex-valued random variables is said to converge in

probability to a complex-valued random variable X  if )( nX  converges in measure

to X  with respect to the probability measure.  In this case, we write

→XX P
n .

The following theorems are known properties of convergence in probability.

Theorem 2.1.2  ([9], p.201)   Let K,,, 21 XXX and K,,, 21 YYY  be complex-valued

random variables.  If →XX P
n and →YY P

n  then  → YXYX P
nn ++ .

Theorem 2.1.3  ([7], p.46)   Let K,,,, 21 XXYX be complex-valued random

variables.

(i) If →XX P
n  and →YX P

n , then YX =  a.e. ][P .
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(ii) If →XX P
n , then for every subsequence )( knX  of )( nX ,

                        →XX P
kn .

2.2       Distribution Functions and Characteristic Functions

 A function F  from R to R is said to be a distribution function if it is non-

decreasing, right-continuous, 0)( =−∞F  and 1)( =+∞F .

For any random variable X , the function RR: →F  defined by

)()( xXPxF ≤=

is a distribution function.  It is the distribution function of the random variable X .

Theorem 2.2.1  ([2], p.57)   A function F  is a distribution function of a random

variable if and only if F  is non-decreasing, right-continuous, 0)( =−∞F  and

1)( =+∞F .

Proposition 2.2.2 ([7], p.28)   Let X   be  a  random  variable with the distribution

function F .  If ][XE  exists, then

∫
∞

∞−

= )(][ xxdFXE .

The expectation of a random variable X  is also known as the mean of X .

The expectation of 2])[( XEX −  is known as the variance of X  and is denoted by

)(2 Xσ .  Note that mean and variance of a random variable may be infinite.

Let F  be a distribution function.  The function CR: →ϕ defined by

    ∫
∞

∞−

=ϕ )()( xdFet itx
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is called the characteristic function of the distribution function F .  If F  is the

distribution function of a random variable X , then ϕ  is also called the characteristic

function of X .

Proposition 2.2.3  ([6], p.45)   For any characteristic function ϕ , we have

(i) 1)0( =ϕ .

(ii) 1)( ≤ϕ t  for every t .

(iii) ϕ  is continuous.

Proposition 2.2.4  ([8], p.45)

(i) The product of two characteristic functions is a characteristic function.

(ii) If ϕ  is a characteristic function, then 2ϕ  is also a characteristic

                        function.

Proposition 2.2.5  ([3], p.477)   Let )( nF  be a sequence of distribution functions and

)( nϕ  a sequence of corresponding characteristic functions.  Let )( np  be a sequence

of non-negative numbers such that 1
1

=∑
∞

=k
kp .  Then the function

∑
∞

=
=

1
)()(

k
kk xFpxF

is a distribution function and the function

∑
∞

=
ϕ=ϕ

1
)()(

k
kk tpt

is the characteristic function of F .

The random variables nXXX ,,, K21  are called independent if

( ) ∏
==

≤=≤ωω
n

j
jj

n

j
jj xXPxXP

11
)()}{(I

holds for every real numbers nxxx ,,, K21 .
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A sequence of random variables )( nX  is said to be a sequence of

independent random variables if kiii XXX ,,, K21 are independent for all distinct

.,,, kiii K21

Theorem 2.2.6 ([2], p.188,191)   Let nXXX ,,, K21  be random variables with the

characteristic functions nϕϕϕ ,,, K21 , respectively.  Assume that nXXX ,,, K21  are

independent.  Then the followings hold.

(i) The characteristic function ϕ  of nXXX +++ K21  is given by

                                               )()()()( tttt nϕϕϕ=ϕ K21   for all ∈t R.

(ii) )()()()...( nn XXXXXX 2
2

2
1

2
21

2 σ++σ+σ=+++σ K

             if ∞<σ )( iX2   for ni ...,,, 21= .

Let K,,, 21 FFF  be bounded non-decreasing functions.  A sequence )( nF

converges weakly to F  if

(i) for every continuity point x of F , )()( xFxFn →  and

(ii) )()( +∞→+∞ FFn  and )()( −∞→−∞ FFn .

We will write

→FF w
n

if )( nF  converges weakly to F .  Note that the weak limit of the sequence )( nF , if it

exists, is unique.  In the following theorem we state some facts of weak convergence

which will be used in our work.

Theorem 2.2.7  (Helly’s Theorem, [7], p.133)   Let )( nF  be a sequence of uniformly

bounded, non-decreasing, right-continuous functions.  Then )( nF  contains a

subsequence which converges weakly to a bounded, non-decreasing, right-continuous

function.

Let m be the set of all bounded, non-decreasing, right-continuous functions M  from

R into ),0[ ∞  which vanish at ∞− .  The function L  defined for any ∈21,MM m  by



11

              { hhxMxMhhxMhMML
h

++≤≤−−=
≥

)()()(inf),( 121
0

21   for every }x

is a complete metric on m. ([8], p.39)

In the following corollary follows from Theorem 2.2.7 and the fact that the

elements in  m  vanish at ∞− .

Corollary 2.2.8  Let )( nM  be a bounded sequence of elements in m.  Then it

contains a subsequence which converges weakly to an element in  m.

Theorem 2.2.9  ([5], p.39)  Let K,,, 21 MMM be elements of  m.  Then the

following statements are equivalent:

(i) →MM w
n ;

(ii) For every bounded continuous function g on R ,

∫∫
∞

∞−

∞

∞−

→ )()()()( xdMxgxdMxg n ;

(iii) 0),( →MML n .

In the following, we summarize facts concerning weak convergence of  the

distribution functions needed for our work.

Theorem 2.2.10  ([11], p.15)   Let )( nF  and )( nϕ  be sequences of distribution

functions and their characteristic functions. Let F  be a distribution function with the

characteristic functionϕ .   If →FF w
n ,  then )( nϕ  converges to ϕ  uniformly in any

finite interval.

Theorem 2.2.11  ([11], p.15)   Let )( nF  and )( nϕ  be sequences of distribution

functions and their characteristic functions. Let ϕ  be a complex-valued function
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which is continuous at 0.  If )( nϕ  converges to ϕ  for every t , then there exists a

distribution function F such that →FF w
n  and the characteristic function of F  is ϕ .

Let 1F  and 2F  be distribution functions. The convolution of 1F  and 2F  is

defined by

                 ∫∫
∞

∞−

∞

∞−

−=−=∗ )()()()())(( 211221 ydFyxFydFyxFxFF      for all ∈x R .

Theorem 2.2.12 ([4],p.245)  Let )( na be a sequence of real numbers and naE  a

distribution function defined by

                                         




≥
<

=
.if1

if0
)(

n

n
na aa

aa
aE

Then the sequence ( naE ) converges weakly if and only if the sequence )( na

converges in R.

Theorem 2.2.13 ([4],p.252)  Let ...,3,2,1,,,, =nGFGF nn be  distribution functions. If

→FF w
n  and →GG w

n , then → GFGF w
nn ∗∗ .

2.3        Infinitely Divisible Distribution Functions

A distribution function F  with the characteristic function ϕ  is said to be

infinitely divisible if for every natural number n , there exists a characteristic

function nϕ  such that for every t ,

{ }n
n tt )()( ϕ=ϕ .

The characteristic function of any infinitely divisible function is also said to be

infinitely divisible.  A random variable is said to be infinitely divisible if its

distribution function is infinitely divisible.
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Theorem 2.3.1  ([8], p.81)

(i) If ϕ  is an infinitely divisible characteristic function, then for every t ,

           0)( ≠ϕ t .

(ii) If ϕ  is an infinitely divisible characteristic function, then 2ϕ  is also

infinitely divisible.

(iii) The product of a finite number of infinitely divisible characteristic functions is

infinitely divisible.

(iv) A characteristic function which is the limit of a sequence of infinitely divisible

characteristic functions is infinitely divisible.

Theorem 2.3.2  ([5], p.307)   In order that a distribution function F  with finite

variance is infinitely divisible it is necessary and sufficient that there exist a unique

constant µ  and a non-decreasing , right-continuous function of bounded variation K

such that 0)( =−∞K  and the logarithm of its characteristic function ϕ  is given by

                            ∫
∞

∞−

+µ=ϕ )(),()(ln xdKxtftit                                                 (1)

where

In the sequel, ),( xtf  always denotes this function.  The formula (1) is known as

Kolmogorov formula.

Remark  2.3.3 ([12],p.618)  For each ∈t R, 2
2
1),( txtf ≤  for all ∈x R.

Theorem 2.3.4  ([6], p.85)   Let X  be an infinitely divisible random variable with

finite variance.  Let the constant µ  and the function K  be given as in the

Kolmogorov formula of the characteristic function of X .  Then










=−

≠−−
=

.0if
2

0if1)1(
),( 2

2

xt

x
x

itxe
xtf

itx
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(i) [ ] µ=XE

(ii) )(2 Xσ )(+∞=K .

2.4       Kolmogorov Theorems

In this section, we let )( nkX , KK ,3,2,1,,,3,2,1 == nkk n  be a double

sequence of random variables with finite variances.

For each n  and k , we let 2, nknk σµ  and nkF  be the expectation, variance and

distribution function of nkX  , respectively.

In [6], Kolmogorov gave necessary and sufficient conditions for weak

convergence of the sequence of distribution functions of sums

nnnknnn AXXXS −+++= K21

where )( nA  is a sequence of real numbers. There are two important convergence

theorems (Theorem 2.4.2 and Theorem 2.4.3).  In the first theorem, )( nkX  must

satisfy the following conditions.

)(α )( nknkX µ−  is infinitesimal, i.e., for every 0>ε

0)(max
1

→ε≥µ−
≤≤

nknk
nkk

XP .

)(β There exists a real number C such that

 C
nk

k
nk <σ∑

=1

2 .

In order to prove the first theorem, Kolmogorov defined the accompanying

distribution function of sums

     nnnknnn AXXXS −+++= K21

to be the distribution function whose logarithm of its characteristic function is given

by

        ∑ ∫∑
=

∞

∞−=
µ+−+µ+−=Ψ

nk

k
nknk

itxnk

k
nknn xdFeittiAt

11
)()1()(ln .
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Remark 2.4.1  Let RR→:nkK  be defined by

                                   ∑ ∫
= ∞−

µ+=
nk

k

u

nknknk xdFxuK
1

2 )()( for all ∈u R.

If )( nkX  satisfies the condition )(β , then ∈nkK m  and the logarithm of the

characteristic function nΨ of  the accompanying distribution function of nS  is given

by

   ∫∑ +









µ+−=Ψ

= R

)(),()( udKutfittiAt nk
nk

k
nknn

1
ln .

Proof.    Clearly , nkK is non-decreasing and 0)( =−∞nkK for all ∈n N. Since )( nkX

satisfies the condition )(β , )(+∞nkK  is bounded .  Next , we will show that the

function nkK is right - continuous. Let ∈u R and )( mu be a decreasing sequence such

that uum
m

=
→∞

lim .We must show that )()(lim uKuK nkmnk
m

=
∞→

. Since )( mu  is

decreasing and uum
m

=
∞→

lim , so ...],(],( 21 ⊇−∞⊇−∞ uu  and I
∞

=
−∞=−∞

1
],(],(

m
m uu .

Then                      =
→∞

)(lim mnk
m

uK ∑ ∫
= ∞−

→∞
µ+

nk

k

mu

nknk
m

xdFx
1

2 )(lim

                       ∑ ∫
= ∞−

→∞
µ+=

nk

k

mu

nknk
m

xdFx
1

2 )(lim

                           ∑ ∫
= ∞−

µ+=
nk

k

u

nknk xdFx
1

2 )(

                                                   )(uK nk= .

So nkK  is right - continuous. Hence ∈nkK m  . It’s easy to see that the logarithm of

the characteristic function nΨ of the accompanying distribution function of nS  can

be rewritten in the following form :

                                      ∫∑ +









µ+−=Ψ

= R

)(),()( udKutfittiAt nk
nk

k
nknn

1
ln .                      #
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Theorem 2.4.2 ([6], p.98)   Assume that )( nkX  satisfies the conditions )(α , )(β  and

for each nnknn XXXn ,,,, 21 K  are independent.  Then there exists a sequence )( nA  of

real numbers such that the sequence of distribution functions of sums

          nnnknnn AXXXS −+++= K21

converges weakly to a limit distribution function if and only if the sequence of

accompanying distribution functions of nS  converges weakly to the same limit

distribution function.

Theorem 2.4.3 ([6], p.100) Assume that )( nkX  satisfies the condition )(α and for

each n , nnknn XXX ,,, 21 K  are independent.  Then there exists a sequence )( nA  of

real numbers such that

(i) the sequence of distribution functions of sums

nnnknnn AXXXS −+++= K21

converges weakly to a limit distribution function F  whose variance is 2σ  and

(ii) 2

1

2 σ→σ∑
=

nk

k
nk

if and only if there exists a function K  in  m  such that

)i( ′ )()( uKuK nk →    for every continuity point u of K  and

)i(i ′ )()( +∞→+∞ KK nk

where

                                         ∑ ∫
= ∞−

µ+=
nk

k

u

nknknk xdFxuK
1

2 )()( .

The constants nA  may be chosen according to the formula

               µ−µ=∑
=

nk

k
nknA

1

where µ  is any real number.  Logarithm of the characteristic function of the limit

distribution function is given by

           ∫
∞

∞−

+µ=ϕ )(),()(ln xdKxtftit .
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2.5      Random Sums of Random Variables

 Let )( nZ  be a sequence of positive integral-valued random variable.  Let

)( nkX  be a double sequence of complex-valued random variables.  Here our double

sequence is infinite in both directions, i.e,  K,3,2,1=n and K,3,2,1=k .  For each n , a

value )(ωnZ  of nZ determines a finite sequence of values

)(,),(),( )(21 ωωω ωnnZnn XXX K

of )(21 ,,, ωnnZnn XXX K .  It can be seen that for each n , nZ  and )( nkX  together

define a random experiment in which each outcome gives rise to a finite sequence of

complex numbers .

However, the length of this finite sequence is random.We shall call the system

),( nkn XZ ,  a random double sequence of complex-valued random variables.

Let ),( nkn XZ  be a random double sequence of complex-valued random

variables.  For each n , we define

                              ∑
=

nZ

k
nkX

1
, ∏

=

nZ

k
nkX

1
 and 

nnZX

to be the functions from Ω  to C given by the following formulas

          ))(())((
)(

11
ω=ω ∑∑

ω

==

nZ

k
nk

nZ

k
nk XX

                      ))(())((
)(

11
ω=ω ∏∏

ω

==

nZ

k
nk

nZ

k
nk XX

and

                        ))(())(( )( ω=ω ωnnZnnZ XX  ,

respectively.

In case nkX ’s are real-valued random variables, we define

nk
nZk

X
≤≤1

sup

to be the function from Ω  to R  given by

   ))(sup())(sup(
)(11

ω=ω
ω≤≤≤≤

nk
Zk

nk
Zk

XX
nn

.
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It will be shown that ∑
=

nZ

k
nkX

1
,∏

=

nZ

k
nkX

1
 and 

nnZX  are  complex-valued random

variables and nk
Zk

X
n≤≤1

sup  is a real-valued random variable.  These facts are special

cases of a more general result that follows.

Proposition 2.5.1 ([10],p.17) Let )( kY  be a sequence of complex-valued random

variables.  Let Z be a positive integral-valued random variable. Let ZY  denote a

function from Ω  to C defined by

))(()( )( ω=ω ωZZ YY

for all Ω∈ω . Then ZY  is a complex-valued random variable.

Proposition  2.5.2 ([10],p.17)  Let ),( nkn XZ  be a random double sequence of

complex-valued random variables. For each n , ∑
=

nZ

k
nkX

1
, ∏

=

nZ

k
nkX

1
 and 

nnZX  are

complex-valued random variables. Furthermore , in case where the nkX ’s are real-

valued random variables , nk
nZk

X
≤≤1

sup   is a real-valued random variable.

We will consider sums of the form

nnZnnZnnnZ AXXXS −+++= K21

where ),( nkn XZ  is a random double sequence of random variables and )( nkA  is a

double sequence of real numbers. We will refer to them as random sums.

We  say that )( nkX  is random infinitesimal with respect to )( nZ   if

for every  0>ε ,

→0)(max
1

P
nk

nZk
XP ε≥

≤≤
 as ∞→n .



               CHAPTER III

     Convergence of Distribution Functions of Random Sums

The purpose of this chapter is to find necessary and sufficient conditions for

the weak convergence of the sequence of distribution functions of random sums to a

limit distribution function.

In [1], Bethmann gave necessary and sufficient conditions for the weak

convergence of the sequence of distribution functions of random sums to the standard

normal distribution function.One of the important tools used by Bethmann is what is

known as the “q-quantiles”.  We will also make use of this tool.

3.1    Definition and properties of q-quantiles

 Let Z  be a positive integral-valued random variable. Let N),( →10:l  be

defined  by

{ }qkZPkql ≤<∈= )(N)( max .

 The function l  is called the q-quantiles of Z .

Remark 3.1.1  For a positive integral-valued random variable Z ,  the function

q -quantiles of Z  is non-decreasing .

Lemma 3.1.2  Let Z  be a positive integral-valued random variable and CN →:g .

Then

(i) l  is a Borel function .

(ii) ∫=
1

0

))(()( dqqlggoZE .

Proof.

Let { }N∈= jkZ jIm  where 1+< jj kk for ,...,21=j , ∑
=

==
jk

k
j kZPq

1
)(  and 00 =q .
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For each jk  and )[ jj qqq ,1−∈  , we have jkql =)( .

Then )[})({ jjj qqkl ,1
1

−
− =  for ...,4,3,2=j  and )(})({ 11

1 ,0 qkl =− .

(i)      For any open set O  in N ,

U
Ojk

jj qqOl
∈

−
− ∩= )()[)( 1,0,1

1

This implies that )(Ol 1−  is a Borel set in )( 1,0 . Therefore l  is a Borel function .

 (ii)    Since l  is a Borel function and domain of g is N , lg o  is a Borel function.

Then                           ))(())((
)[

1
,1

−

−

−=∫ jjj
jqjq

qqkgdqqlg

for all Zk j Im∈ .

If  { }tkkkZ ,...,,Im 21= , then )1,0[),[
1

1 =
=

−U
t

j
jj qq .

If  { }...,,Im 21 kkZ = , then 1)()(limlim
11
∑∑
∞

==∞→∞→
=====

k

nk

kn
n

n
kZPkZPq .

Thus  )1,0[),[
1

1 =
∞

=
−U

j
jj qq .

Therefore                             ∑
∈

==
Zk

jj
j

kZPkgZgE
Im

)()()( o

                        ∑
∈

−−=
Zk

jjj
j

qqkg
Im

1))((

                        ∑ ∫
∈ −

=
Zk qqj jj

dqqlg
Im ),[ 1

))((

                                     ∫=
1

0

))(( dqqlg  .                                         #

              

Proposition 3.1.3 [1] For every n , let )( nka , ...,2,1=k  be a nondecreasing sequence

of non-negative real numbers and nZ an integral - valued random variable.
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Furthermore , let 0≥a  be fixed. Then we have →aa P
nnZ  if and only if aa qnnl →)(

for all ),( 10∈q .

Proposition 3.1.4  Let )( nZ  be a sequence of positive integral-valued random

variables.

(i) If →∞P
nZ  ,  then ∞→)(qln  for every )( 1,0∈q .

(ii)       If )( nZ  is increasing, then ))(( qln  is increasing for all )( 1,0∈q .

Proof.

(i)   Fix )( 1,0∈q  and let M  be any positive integer. Since 1)(lim =≥
∞→

MZP n
n

, there

exists N∈0n  such that qMZP n −>≥ 1)(  for all 0nn ≥ . That is qMZP n << )(  for

all 0nn ≥ .  This show that for 0nn ≥ ,  Mqln ≥)( . Hence  ∞→)(qln  as ∞→n  .                              

(ii)   Let ),( 10∈q  and 21 nn < .Since qqlZPqlZPZZ nnnnnn ≤<≤<≤ ))(())((,
111221

.

By definition of q -quantiles, )()( qlql nn 21
≤ .                                                                #

Theorem 3.1.5  Let ),( nkn XZ  be a random double sequence of random variables

such that for each K,,,, 21 nnn XXZn  are independent. Let nkϕ  be the characteristic

function of nkX  and )( nkA  a double sequence of real numbers.Then the characteristic

functions nϕ  of  random sums

  nnZnnZnnnZ AXXXS −+++= K21

are given by

                            











ϕ−=ϕ ∏

=

nZ

k
nknnZn titAEt

1
)()exp()(

for R∈t .
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Proof.   For each ∈jn, N ,  let njnjnn
j

n AXXXS −+++= ...21   and  j
nF  and  j

nϕ  be the

distribution function and characteristic function of j
nS , respectively . Then

∏
=
ϕ−=ϕ

j

k
nknj

j
n titAt

1
)()exp()(   for R∈t .

Therefore                                )()( xSPxF
nZn ≤=

                   ∑
∞

=
≤∧==

1
)(

j

j
nn xSjZP

                    ∑
∞

=
≤==

1
)()(

j

j
nn xSPjZP

                                                          ∑
∞

=
==

1j

j
nn xFjZP )()(  .

By Proposition 2.2.5 , for R∈t ,

                         ∑
∞

=
ϕ==ϕ

1j

j
nnn tjZPt )()()(

                      ∑ ∏
∞

= =
ϕ−==

1 1
)()exp()(

j

j

k
nknjn titAjZP

                      











ϕ−= ∏

=

nZ

k
nknnZ titAE

1
)()exp(  .                 #

                 

3.2      Convergence of distribution functions of random sums

 

     Let )( nkX  be a double sequence of random variables with finite variances

2
nkσ  and )( nZ  a sequence of positive integral-valued random variables.  Assume that

for each n , K,,, 21 nnn XXZ  are independent.

 Put

      ,
)(

1
)(21

)( ∑
=
µ−+++=

qnl

k
nkqnnlnn

q
n XXXS K
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                      ∑
=
µ−+++=

n

nn

Z

k
nknZnnZ XXXS

1
21 K ,

and let )(q
nF  and nF  be the distribution functions of )(q

nS  and 
nZS , respectively.

To prove the main theorems ( Theorem 3.2.6 and Theorem 3.2.7 ), we need

the following results.

Theorem 3.2.1 ([8],p.199)  Let { }RRR →×:GG  be a family of functions which

has the following properties :

(i)    For each value of y , the function ),( yxG  is a distribution function in the

variable x .

(ii)   For each value of x , ),( yxG  is a measurable function in the variable y .

Then for any arbitrary distribution function )( yH  ,

                                              ∫
∞

∞−

= )(),()( ydHyxGxF

is a distribution function and the corresponding characteristic function is given by

                                                ∫
∞

∞−

=ϕ )(),()( ydHytgt

where ),( yg ⋅ is the characteristic function of the distribution function ),( yG ⋅ .

Proposition 3.2.2  For a.e. ),( 10∈q , let ],[R)( 10: →qF  be a distribution function.

If for each R∈x  , )()( xF q  is a measurable function in q , then

∫ ∈=
1

0

R,)()( )( xdqxFxF q  , is a distribution function and the corresponding

characteristic function is given by ∫ ϕ=ϕ
1

0

dqtt q )()( )(  for R∈t  , where )(qϕ  is the

characteristic function of )(qF .
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Proof.  Let A   be  a  measurable  subset of ),( 10   such  that  for  every ,Aq∈ )(qF is

a distribution function and 1=)(Al  where l is the Lebesgue measure on ),( 10 . Let N

be an arbitrary distribution function and RRR →×:G  defined by

         






∉
∈=

.if
if

AqxN
AqxFqxG

q

)(
)(),(

)(

For each R∈q  , the function ),( qxG  is a distribution function in x . That is the

condition (i) of Theorem 3.2.1 holds.  Next , we will show that the condition (ii) of

Theorem 3.2.1 holds. That is we must show that for each R∈x , ),( qxG  is measurable

in q.  Let R∈x  and O  be any open set in R.

If OxN ∈)( , then { } ct AOxFAtOxG ∪∈∈=− )(),( )(1 .

If OxN ∉)( , then { }OxFAtOxG t ∈∈=− )(),( )(1 .

Since )()( xF q  is measurable in q , { }OxFAt t ∈∈ )()(  is a measurable set.

Since A is a measurable set , cA  is a measurable set.

Hence for each R∈x , ),( qxG  is a measurable function in q .

Let ],[R 10: →H  be a distribution function defined by

                                              








≥
<<

≤
=

.1if1
10if

0if0
)(

q
qq

q
qH

By Theorem 3.2.1 , we have

                                               ∫
∞

∞−

= )(),()( qdHqxGxF

                                                       ∫=
1

0

dqqxG ),(

                                                       ∫=
1

0

dqxF q )()(   for R∈x  ,

is a distribution function and  the corresponding characteristic function is given by

                                                  ∫
∞

∞−

=ϕ )(),()( qdHqtgt   



25

        ∫=
1

0

dqqtg ),(

                                                        ∫ ϕ=
1

0

)( )( dqtq

for R∈t , where ),( yg ⋅  and )(qϕ are the characteristic functions of the distribution

functions ),( yG ⋅ and )(qF , respectively.                                                                       #

Proposition 3.2.3  If  for  a.e. ),( 10∈q , there exists a distribution function )(qF  such

that → )()( qwq
n FF   and  for each R∈x  , )()( xF q  is a measurable function in q ,  then

we also have →FF w
n  where  F  is a distribution function defined by

∫ ∈=
1

0

R,)()( )( xdqxFxF q .

Proof.   Assume that for a.e. ),( 10∈q , there exists a distribution function )(qF  such

that → )()( qwq
n FF  and for each R∈x  , )()( xF q  is a measurable function in q .

Let )(q
nϕ and )(qϕ  be the characteristic functions of )(q

nF and )(qF , respectively.

Observe that            ∏∑
==
ϕµ−=ϕ
)(

1

)(

1

)( )()exp()(
qnl

k
nk

qnl

k
nk

q
n titt     for all ∈t R.

By Proposition 3.2.2 , ∫ ∈=
1

0

, R)()( )( xdqxFxF q  , is a distribution function and the

corresponding characteristic function is ∫ ∈ϕ=ϕ
1

0

, R)()( )( tdqtt q .

Since → )()( qwq
n FF , by Theorem 2.2.10 , )()( )()( tt qq

n ϕ→ϕ   for all R∈t .

Since 1)( ≤ϕ q
n , by Lebesgue Dominated Convergence Theorem , we have

               ∫∫ ϕ=ϕ
∞→

1

0

)(
1

0

)( )()(lim dqtdqt qq
n

n

for all R∈t . By Theorem 3.1.5 , the characteristic function nϕ  of nZS  is defined by
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])()([)( ∑ ∏
= =

ϕµ−=ϕ
nZ

k

nZ

k
nknkn titEt

1 1
exp   for all R∈t . Let CN, →:tng  be defined by

∏∑
==
ϕµ−=

m

k
nk

m

k
nktn titmg

11
, )()exp()( . By Lemma 3.1.2(ii) ,

                                        ∫ ∫∏∑ ϕ=ϕµ−=ϕ
==

1

0

1

0

)(
)(

1

)(

1
)()()exp()( dqtdqtitt q

n

qnl

k
nk

qnl

k
nkn .

Hence )()( ttn ϕ→ϕ  for all ∈t R. By Theorem 2.2.11, →FF w
n .                                 #

Proposition 3.2.4  ([13])  Let )( nkX  be random infinitesimal with respect to )( nZ . If

→FF w
n  for some distribution function F , then there exist distribution functions

)(qF  and bounded sequences of real numbers )( )(q
na , ∈n N such that for some

subsequence )(n ′ ,

    →w
q

na
q

n EF )(
)(

′
′ ∗ )(qF

for a.e. ),( 10∈q , where aE stands for the degenerated distribution function with

unit-jump at R∈a .

Corollary 3.2.5  Let )( nkX  be random infinitesimal with respect to )( nZ .  If

→FF w
n  for some distribution function F , then for a.e. ),( 10∈q , there exists

distribution function )(qF  such that for some subsequence )(n′ , → )()( qwq
n FF ′ .

Proof.  By Proposition 3.2.4,  for a.e. ),( 10∈q , there exist a distribution function

)(qF  and a bounded sequence )( )(q
na  such that for some subsequence )(n ′ ,

→w
q

na
q

n EF )(
)(

′
′ ∗ )(qF .

Since )( )(q
na  is bounded, there is a subsequence )(n ′′  of )(n ′  such that )( )(q

na ′′

converges. Let =′′∞→′′

)(lim q
nn

a )(qa . Then

                                                 →w
q

na
q

n EF )(
)(

′′
′′ ∗ )(qF
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and by Theorem 2.2.12, we have

                                                 → )()( qa
w

q
na

EE
−′′−

.

By Theorem 2.2.13 , → )(
)()(

qa
qwq

n EFF
−′′ ∗ .  Let )(

)()(
qa

qq EFF
−

∗= . Then )(qF  is a

distribution function, so the corollary is proved.                                                           #

In the main theorems , we assume ),( nkn XZ  satisfies the following conditions :

           )~(α   )( nknkX µ−  is random infinitesimal with respect to )( nZ .

           )~(β     There exists a constant 0>C  such that ∑
=

<σ
)(

1

2
qnl

k
nk C   for a.e. )1,0(∈q .

            The following theorems are the main theorems of this chapter.

Theorem 3.2.6  Let ),( nkn XZ  be a random double sequence of random variables

which satisfies the condition )~(α  , )~(β  and  for each ,...,,, 21 nnn XXZn are

independent. If there exists a distribution function  F  with finite variance 2σ such

that

(i) the sequence of the distribution functions of  random sums

               ∑
=
µ−+++=

nZ

k
nknnZnnnZ XXXS

1
21 ...

converges weakly to  F  and

(ii) 2

1

2 σ→











σ∑

=

nZ

k
nkE  ,

then for a.e. )1,0(∈q , there exist a subsequence )( kn and a function )(qK  in  m
such that

)i( ′   )()( )(
)( uKuK q

qknl →   for all continuity point  u of )(qK  and
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)i(i ′  )()( )(
)( +∞→+∞ q

qknl KK   and ∫ +∞=σ
1

0

)(2 )( dqK q ,

where                          ∑ ∫
= ∞−

µ+=
)(

1

2
)( )()(

qnl

k

u

nknkqnl xdFxuK .

Proof.    We divide the proof into 3 steps as follows.

Step 1  We will show that for a.e. )1,0(∈q , there exist a subsequence )( kn and a

function )(qK  in  m
such that

→∫
R

)( )(),( udKutf qknl ∫
R

)( )(),( udKutf q  .

Since →FF w
n , by Corollary 3.2.5 , for a.e. )1,0(∈q , there exists a distribution

function )(qF  such that for some subsequence )( kn , → )()( qwq
kn FF . By Theorem

2.4.2, the sequence of  accompanying distribution functions of )(q
knS converges weakly

to )(qF . Let )(q
knψ  be a characteristic function of the accompanying distribution

function of )(q
knS   and  )(qϕ  a  characteristic  function  of  )(qF .  By Theorem 2.2.10 ,

)()( )()( tt qq
kn ϕ→ψ   for all ∈t R.  It follows that  )(ln)(ln )()( tt qq

kn ϕ→ψ  for all ∈t R.

By Remark 2.4.1 , we have

                        ∫∑∑ +












µ+













µ−=ψ

== R
)(

)()(
)( )(),()( udKutfittit qknl

qknl

j
jkn

qknl

j
jkn

q
kn

11
ln

                                       ∫=
R

)( )(),( udKutf qknl .

Since )(q
knψ  is infinitely divisible , by Theorem 2.3.1(iv) , )(qϕ  is infinitely divisible.

By Theorem 2.3.2 , ∫+µ=ϕ
R

)(),()(ln )()( udKutftit q
q

q  for some constant qµ  and

function )(qK  in  m .
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Therefore         →∫
R

)(),( )( udKutf qknl ∫+µ
R

)(),( )( udKutfti q
q .

For 0≠t  ,     →∫
R

)( )(),( udKutf
t qknl
1

∫+µ
R

)( )(),( udKutf
t

i q
q

1 .

To show that  0=µq , it suffices to show that 01lim
0

=∫→
R

)( )(),( udKutf
t qknlt

 and

01lim
0

=∫→
R

)( )(),( udKutf
t

q
t

. By Remark 2.3.3 , 2
2
1),( tutf ≤  for all ∈t R .Thus

)()(),()(),( )(
R

)(
R

)( +∞≤≤ ∫∫ qknlqknlqknl K
t

udKutf
t

udKutf
t 2

11
∑ σ=
=

)(

1

2
2

qknl

j
jkn

t
.  

By the condition )~(β  , ∑ σ
=

)(

1

2
qknl

j
jkn is bounded , so 01lim

0
=∫→

R
)( )(),( udKutf

t qknlt
.

Similarly, we can prove that 01lim
0

=∫→
R

)( )(),( udKutf
t

q
t

. Hence 0=µq . It follows that

→∫
R

)(),( )( udKutf qknl ∫
R

)( )(),( udKutf q .

Step 2   We will show that for a.e. )1,0(∈q , → )(
)(

qw
qknl KK  where )( kn  is a

sequence in step 1.

First , we will show that for a.e. )1,0(∈q , there exists a subsequence of )( )(qknlK

which converges weakly  to )(qK .

Since for each ∈k N , )(qknlK  is non-decreasing and by condition )~(β , C
qknl

j
jkn <∑ σ

=

)(

1

2 ,

that is ))(( )( +∞qknlK  is bounded, so )( )(qknlK  is bounded. By Corollary 2.2.8 , there

exists a subsequence )( )(q
rknlK  of )( )(qknlK  and a function 

)(q
K  in  m such that

→
)(

)(
qw

q
rknl KK .By Remark 2.3.3, ),( utf  is continuous and bounded for all ∈t R,

thus by Theorem 2.2.9 ,
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                         →∫
R

)( )(),( udKutf q
rknl ∫

R

)(
)(),( uKdutf

q
                                 …..(*)

for all ∈t R .

By (*) and step 1 , we have    =∫
R

)(
)(),( uKdutf

q
∫
R

)( )(),( udKutf q .

By Theorem 2.3.2 , )()( qq
KK = .  So → )(

)(
qw

q
rknl KK . By the same argument , we

can prove that for every subsequence of )( )(qknlK , it contains a subsequence which

converges weakly to )(qK . By Theorem 2.2.9 , for every subsequence of )( )(qknlK , it

contains a subsequence which converges to )(qK  with respect to the metric L . This

implies that )( )(qknlK  converges to )(qK  with respect to the metric L . By Theorem

2.2.9 , → )(
)(

qw
qknl KK .

Step 3   We will show that ∫ +∞=σ
1

0

2 dqK q )()( .

Since  2

1

2 σ→











σ∑

=

nZ

k
nkE  , by Lemma 3.1.2(ii) , we have 2

1

0

)(

1

2lim σ=σ∫ ∑
=∞→

dq
qnl

j
nj

n
.

Therefore  2
1

0

)(

1

2lim σ=σ∫ ∑
=∞→

dq
qknl

j
jkn

k
. By condition )~(β  and it follows from the

Lebesgue Dominated Convergence Theorem that  2
1

0

)(

1

2lim σ=σ∫ ∑
=∞→

dq
qknl

j
jkn

k
. By step 2 ,

we  have  )()( )(
)( +∞→+∞ q

qknl KK . That is )(lim )(
)(

1

2 +∞=σ∑
=∞→

q
qknl

j
jkn

k
K . Therefore

∫ +∞=σ
1

0

2 dqK q )()( .

By step 1- step 3, the theorem is proved.                         #
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Theorem 3.2.7  Let ),( nkn XZ  be a random double sequence of random variables

which satisfies the condition )~(α , )~(β  and for each ,...,,, 21 nnn XXZn are

independent.  If  for a.e. )1,0(∈q , there exists  a function )(qK  in  m  such that

)i( ′   )()( )(
)( uKuK q

qnl →   for all continuity point  u of )(qK    

)i(i ′  )()( )(
)( +∞→+∞ q

qnl KK   and   2
1

0

)( )( σ=+∞∫ dqK q   for some constant 2σ   and

)i(ii ′     for each ∈x R , )()( xF q  is measurable in q, where )(qF  is the distribution

function whose logarithm of its characteristic function )(qϕ  is given by

                                       ∫=ϕ
R

)(),()(ln )()( udKutft qq ,

then

(iii) the sequence of the distribution functions of  sums

                    ∑
=
µ−+++=

nZ

k
nknnZnnnZ XXXS

1
21 ...

converges weakly to  F   where ∫ ∈=
1

0

)( ,)()( xdqxFxF q R  and

(iv) 2

1

2 σ→











σ∑

=

nZ

k
nkE   and  2σ  is the variance of  F.

Proof.  For a.e. )1,0(∈q , let )(q
nψ  be a characteristic function of the accompanying

distribution function of ∑
=
µ−+++
)(

1
)(21 ...

qnl

k
nkqnnlnn XXX . By Remark 2.4.1,

                        ∫∑∑ +









µ+










µ−=ψ

== R
)(

)()(
)( )(),()( udKutfittit qnl

qnl

k
nk

qnl

k
nk

q
n

11
ln

                                       ∫=
R

)( )(),( udKutf qnl .
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By )i( ′ , )i(i ′  and  Theorem 2.2.9 , →∫
R

)( )(),( udKutf qnl ∫
R

)( )(),( udKutf q .   Let  )(qF

be the distribution function whose logarithm of its characteristic function )(qϕ  is

given by

                                       ∫=ϕ
R

)(),()(ln )()( udKutft qq .

Then   )(ln)(ln )()( tt qq
n ϕ→ψ   for all ∈t R ,  so )()( )()( tt qq

n ϕ→ψ  for all ∈t R.  By

Theorem 2.2.11 and Theorem 2.4.2 , → )()( qwq
n FF . By Theorem 2.3.4 , )(qF  has zero

mean and variance of )(qF  is )()( +∞qK .  By Proposition 3.2.3 , →FF w
n   where  F

is  a  distribution  function  defined  by ∫ ∈=
1

0

)( ,)()( xdqxFxF q R. Since

)(lim )(
)(

1

2 +∞=σ∑
=∞→

q
qnl

k
nk

n
K  and C

qnl

k
nk <σ∑

=

)(

1

2  for a.e. )1,0(∈q ,  by  Lebesgue

Dominated  Convergence  Theorem , 2
1

0

)(
1

0

)(

1

2 )(lim σ=+∞=σ ∫∫ ∑
=∞→

dqKdq q
qnl

k
nk

n
. Hence,

by Lemma 3.1.2(ii) , 2

1

2 σ→











σ∑

=

nZ

k
nkE . 

It remains to show that 2σ  is the variance of  F.  Observe that

                          ∫ ∫ ∫∫∫
−

∞→
==

RR

m

m

q
m

q dqxFxddqxFxdxxdF
1

0

)(
1

0

)( ))((lim))(()( .

For each N∈m , let )(mnP  be the partition of the interval ],[ mm−  ,

                                mxxxxxm mnmn =<<<<<=− − )(1)(210 ...

such that 
n
mxx ii

2
1 += −  for  )(,...,3,2,1 mni= . Then for any N∈m  and iu  in

],[ 1 ii xx −  , )(,...,3,2,1 mni= ,we have

mxFxFmxFxFu
mn

i
i

q
i

q
mn

i
i

q
i

q
i ≤−≤− ∑∑

=
−

=
−

)(

1
1

)()(
)(

1
1

)()( ))()(())()((

       …..(1)

and  for all N∈m ,
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∫∫
−−

≤
m

m

q
m

m

q xdFxxxdF )()( )()(     

                      ∫
∞

∞−

≤ )()( xdFx q

                      ∫∫
>≤

+=
1

)(

1

)( )()(
x

q

x

q xdFxxdFx

                      ∫
>

+≤
1

)(2 )(1
x

q xdFx

                      ∫
∞

∞−

+≤ )(1 )(2 xdFx q

                       )(1 )( +∞+= qK

and         2
1

0

)( 1))(1( σ+=+∞+∫ dqK q .                                                                      …..(2)

For each N∈m ,

            ∫∫∫ ∑∫ −
− =∞→

−=
1

0
1

)(
1

0

)(
)(

1

1

0

)( ])()([lim))(( dqxFdqxFudqxFxd i
q

i
q

m

m

mn

i
i

n
q  

        ]))()(([lim
1

0
1

)()(
)(

1
∫∑ −

=∞→
−= dqxFxFu i

q
i

q
mn

i
i

n

                                            dqxFxFu i
q

i
q

mn

i
i

n
))()((lim 1

)()(
1

0

)(

1
−

=∞→
−= ∫ ∑

                                            dqxFxFu i
q

i
q

mn

i
i

n
))()((lim 1

)()(
1

0

)(

1
−

=∞→
−= ∫ ∑                     (by (1))

                                            ∫ ∫
−

=
1

0

)( )(
m

m

q dqxxdF                                                       …..(3)

Therefore ,

 ∫
R

)(xxdF ∫ ∫
−

∞→
=

m

m

q
m

dqxFxd
1

0

)( ))((lim
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                    ∫ ∫
−

∞→
=

1

0

)( )(lim
m

m

q
m

dqxxdF                      (by(3))

                    ∫ ∫
−

∞→
=

1

0

)( )(lim
m

m

q
m

dqxxdF                      (by(2))

                    ∫ ∫=
1

0

)( )(
R

dqxxdF q

                    ∫=
1

0

0dq                                                 (since 0=∫
R

)( )(xxdF q )

                    0= .

Similarly , we can show that ∫
R

)(2 xdFx ∫ ∫=
1

0

)(2 )(
R

dqxdFx q .

Hence the variance of  F is equal to ∫
R

)(2 xdFx ∫ σ=+∞=
1

0

2dqK q )()( .                 #

Corollary 3.2.8    Let )( nkX , k = 1, 2, …, nk , n = 1, 2, … be  a  double sequence of

random variables which satisfies the condition )(α and for each n, ,..., 21 nn X X  are

independent. Then there exists a distribution function  F  with finite variance 2σ  such

that

(i) the sequence of the distribution functions of sums

∑
=
µ−+++=

nk

k
nknnknnn XXXS

1
21 ...

converges weakly to F and

(ii) 2

1

2 σ→σ∑
=

nk

k
nk

if and only if there exists a function  K  in  m  such that

(i´) )()( uKuK nk →  for all continuity point  u of  K   and

(ii´) ),()( +∞→+∞ KK nk

where                                ∑ ∫
= ∞−

µ+=
nk

k

u

nknknk xdFxuK
1

2 )()( .
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