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CHAPTER 1

Introduction

In this Chapter, (X,;)is a double sequence of random variables with finite

variances cik and p,, the expectation of X .

The problem of the convergence of distribution functions of sums of
independent random variables has been discussed many times. One of the most

important versions of the convergence theorem is the following theorem.

Theorem 1.1( Lindeberg ) Let (X, ) be a double sequence of random variables with

finite variances Gik , k=1,2,....k,,n=1,2,... . Assume that for each n ,

ky

X 15X 2 5s Xy, are independent and p,; =0 forall n,k and lim Za,fk =1. Then
n—>0 k=1

(1) the sequence of distribution functions of the sums X, +X,, +..+ X,

weakly converges to the standard normal distribution function and

(i) (X,;) is infinitesimal , i.e. lim max P(lX k| >¢g)=0 forall ¢>0,
b n—o 1<k<k, :

if and only if (X, ) satisfies Lindeberg condition ,i.e.
kn
lim > [x*dF,(x)=1 forall £>0.

no® i \x\<g

Later , Kolmogorov generalized Theorem 1.1 to the case that the limit distribution
function is any infinitely divisible distribution function. There are two important
convergence theorems (Theorem 1.2 and Theorem 1.3 ). In the first theorem (X ;)
must satisfy the following conditions:

() (X, —W,x)1s infinitesimal, i.e.,

max P(|Xnk—;,tnk|28)—>0 as n—>oo forall € >0.
I<k<k,



kl’l
(B)  There exists a real number C such that Zcﬁk <C.
k=1

In order to prove Theorem 1.2 , Kolmogorov defined the accompanying distribution

function of the sums
Sp=Xpu+Xpp+. +X, —4,
to be the distribution function whose logarithm of its characteristic function¢ is given
by
ey ky ®
Ing, () = —id,t+ ”kzl i+ kZl [ (€™ =1)dFy (x+ ).

This accompanying distribution function is infinitely divisible.

Theorem 1.2 ([6], p.98) Assume that (X, ) satisfies the conditions (a),(B) and for
each n, X, X,,..., X ~are independent. Then there exists a sequence (4,) of

real numbers such that the sequence of distribution functions of the sums
S, =X 1+X 5 to X -4,
converges weakly to a limit distribution function if and only if the sequence of

accompanying distribution functions of §, converges weakly to the same limit

distribution function.

Theorem 1.3 ([6], p.100) Assume that (X, ) satisties the condition (o)and for

each n , X

n1sX posesX - are independent. . Then there exists a sequence (4,) of

real numbers such that
(1) the sequence of distribution functions of the sums

S, =X, 1+X,» +...+Xnkn -4,
converges weakly to a limit distribution function /' whose variance is o? and
kp
(i) D on—>oc’
k=1

if and only if there exists a function K in 777 such that

" Ky, (u)> K(u) for every continuity point # of K and



(i) Ky, (+90) > K(+)

where

ky u
Ky, )=) Ixzank (X+Hg)
kzl—oo

and M is the set of bounded , non-decreasing , right-continuous functions from R
into [ 0,%) which vanish at — oo .
The constants 4, may be chosen according to the formula
kn
4, = ];“nk e

where p is any real number. Logarithm of the characteristic function ¢ of the limit

distribution function is given by

Inop(¢)=ipe+ OJ(jf(t,x)dK(x)

—00

(™ —l—itx)L2 if x#0
where )= o
t2

== if x=0.
2

In [1], Bethmann generalized Theorem 1.1 to the case that the number of summands

1s random. The theorem is as follows.

Theorem 1.4 ([1]) Let (X,;) be a double sequence of random variables with finite
variances O',fk and (Z,) a sequence of positive integral-valued random variables.

Assume that for each n, Z,,X,,,X,,,...are independent ,Zn—P>oo, n, =0 for all

nl>

Z}’l
n,k and limE(Zafk):l. Then

n—>0 k=1
(i) the sequence of distribution functions of X, +X ,+..+X,, converges weakly

to the standard normal distribution function and

(11) (X,;) 1s random infinitesimal with respect to (Z,)), i.e.,

max P(|Xnk|28)—P>0 as n —oo forall £>0,
1<k<Z,



if and only if

Zl’l
Z szank(x)—P>1 as n—>oo forall £>0.

[

In this work , we generalize Theorem 1.3 to the case that the limit distribution
function is any infinitely divisible distribution function.

In the main theorems, we assume (Z,,, X, ) satisfies the following conditions:

(o) (X, =W, )1s random infinitesimal with respect to (Z,,), i.e.,

max P(|Xnk —unkl28)—P>0 as n—>oo forall € >0.

1<k<Z,
In(q)
(B)  There exists a constant C >0 such that z Gik <C for a.e.qe(0,]).
k=1

The main theorems are the followings.

Theorem 1.5 Let (Z,,,X,;) be a random double sequence of random variables which

satisfies the condition (@) , (ﬁ) and foreach n.,Z,,X,;,X,,,... are independent. If

nl»

there exists a distribution function F with finite variance o such that

(1) the sequence of the distribution functions of random sums
Zﬂ
SZn :an +Xn2 ++ann _zul’lk
k=1
converges weakly to F and
Zn
(i1) E ZGik o’
k=1
then for a.e.q € (0,1), there exist a subsequence (n;)and a function K @ in m

such that

@ K (u)— KD () for all continuity point u of K? and

1
(ii") Klnk(q)(+oo)—>K(q)(+oo) and ¢” = [K@ (+0)dg
0



In(g) u
where Kln(q)(l/l): Z J.xzank(x—'—Mnk)'
k=1 —00

Theorem 1.6 Let (Z,, X, ) be arandom double sequence of random variables which

satisfies the condition (&) ,(B) and for each n,Z,,,X,;, X, ,... are independent. If
for a.e.q €(0,1), there exists a function K @ in M such that

i) KWK @ (y) for all continuity point u of K7

1
(i) K (g (+00) = K9 (400) and JK(q) (+o0)dg=c> for some constant 6> and
0

(iii'")  for each xeR , F(x) is measurable in ¢, where F'? is the distribution

function whose logarithm of its characteristic function cp(q) is given by
Ine ()= [ f(tu)dK'? @),
R
then

(1) the sequence of the distribution functions of random sums

Zn
SZn :an +Xn2 +"'+Xl’lZn _Zunk
k=1

1
converges weakly to F© where F(x) = jF @ (x)dg , xeR and
0

Zn
(i1) E[Zcﬁk} — % and o7 is the variance of F.
k=1

In chapter II , some important preliminary results and notations , which are

necessary for this work , are presented. Chapter I1I contains our main results.



CHAPTER 11

Preliminaries
2.1 Random Variables and Modes of Convergence

A probability space is a measure space (€2,3,P) in which P 1is a positive
measure such that P(Q)=1. The set Q will be referred to as a sample space. The
elements of J are called events. For any event A, the value P(A) is called the

probability of A4 .

A function X from a probability space (2,3, P) to the set of complex numbers
C is said to be a complex-valued random variable if for every Borel set B in C,
X _1(B) belongs to J. If X is real-valued, we say that it is a real-valued random

variable, or simply a random variable. We note that the composition between a
Borel function and a complex-valued random variable is also a complex-valued

random variable.

We will use the notation P(X < x),P(X = x) and P( |X | > x) to denote
P( {o)|X ()< x}), P( {03|X (w)>x}) and P( {0)”)( (co)| > x}), respectively.

We define the expectation of a complex-valued random variable X to be

j XdP
Q

provided that the integral I XdP exists. It will be denoted by E[X].
Q

Proposition 2.1.1 ([2], p.174) Let X, X,,..., X, be random variables. Then

n
E[X;+Xy+..+X,]=D E[X,],
Jj=1

provided that the sums on the right hand side is meaningful.



Let (Q2,3,n) be a measure space and Y a topological space. Let X ,
X,X,,...,X, be measurable functions from Q to Y. We will write
X,—>X ae. [u]
if (X,) converges to X almost everywhere with respect to p. In the case Q = R
and p is the Lebesgue measure on R¥, we simply write

X,—X ae.

A sequence (X, ) of measurable complex-valued functions is said to
converge in measure to a measurable complex-valued function X if

Lim ({1 X, ()= X ()] >2})=0

for every £€>0.

From now on, we shall assume that all our complex-valued random variables,
including real-valued random variables, are defined on a common probability space
(Q,3,P).

A sequence (X ,) of complex-valued random variables is said to converge in
probability to a complex-valued random variable X if (X,) converges in measure

to X with respect to the probability measure. In this case, we write

ber o
The following theorems are known properties of convergence in probability.

Theorem 2.1.2 ([9], p.201) Let X, X;,X,,..cand V,1],Y;,... be complex-valued

random variables. If Xn—P>X and Yn—P>Y then Xn+Yn—P>X+Y.

Theorem 2.1.3 ([7], p.46) Let X,Y,X;,X,,... be complex-valued random

variables.

() IfX,-5>X and X,-5Y, then X =Y ae.[P].



(11) If X n—P>X , then for every subsequence (X - ) of (X,),

2.2 Distribution Functions and Characteristic Functions

A function F from R to R is said to be a distribution function if it is non-
decreasing, right-continuous, F(-%)=0 and F(+x)=1.
For any random variable X , the function 7 : R — R defined by
F(x)=P(X <x)

1s a distribution function. It is the distribution function of the random variable X .

Theorem 2.2.1 ([2], p.57) A function F is a distribution function of a random
variable if and only if F is non-decreasing, right-continuous, F(—)=0 and

F(+0)=1.

Proposition 2.2.2 ([7], p.28) Let X be a random variable with the distribution
function F . If E[X] exists, then

E[X]= [xdF(x).

—0

The expectation of a random variable X is also known as the mean of X .

The expectation of (X —E[X ])2 is known as the variance of X and is denoted by

o2 (X) . Note that mean and variance of a random variable may be infinite.

Let F be a distribution function. The function ¢:R — C defined by

o0

o) = [e™dF (x)

—00



is called the characteristic function of the distribution function F . If F is the
distribution function of a random variable X , then ¢ is also called the characteristic

function of X .

Proposition 2.2.3 ([6], p.45) For any characteristic function ¢, we have
»H  e0O)=1.
(i)  |e()|<1 forevery ¢ .

(iii)) ¢ is continuous.

Proposition 2.2.4 ([8], p.45)

(1) The product of two characteristic functions is a characteristic function.
(i)  If ¢ isa characteristic function, then |(p| is also a characteristic

function.
Proposition 2.2.5 ([3], p.477) Let (F),) be a sequence of distribution functions and
(p,,) a sequence of corresponding characteristic functions. Let (p,) be a sequence

o
of non-negative numbers such that Z P =1. Then the function
k=1

F(x)= piFi (%)
k=1

is a distribution function and the function
@)= pi oy (1)
k=1

1s the characteristic function of F'-.

The random variables X, X,,..., X, are called independent if
n n
P(ﬂ{m‘Xj (@)=<x;n=]]P(X,<x,)
Jj= Jj=1

holds for every real numbers x;,x,,...,x, .
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A sequence of random variables (X)) is said to be a sequence of

independent random variables if X, , X i . ¢

i are independent for all distinct

i°

ifyinseeesif s

Theorem 2.2.6 ([2], p.188,191) Let X, X>,,..., X, be random variables with the
characteristic functions @;,®,,...,¢ ,, respectively. Assume that X, X,,..., X, are

independent. Then the followings hold.

(1) The characteristic function ¢ of X; + X, +...+ X, is given by
o) = o195 (?)...9,(t) forall reR.
(i)  0%(X;+ Xy +ut X)) =02 (X)) +07(Xy)+...46%(X,)

if 62(X;) <00 for i=1,2, yn.

Let F,F},F,,... be bounded non-decreasing functions. A sequence (F))
converges weakly to F if
(1) for every continuity point x of F', F, (x) = F(x) and
(11) F,(+0) = F(+0) and F, (=00)— F(—©) .
We will write
F,—>F
if (F,) converges weakly to . Note that the weak limit of the sequence (F))), if it

exists, is unique. In the following theorem we state some facts of weak convergence

which will be used in our work.

Theorem 2.2.7 (Helly’s Theorem, [7], p.133) Let (F,)) be a sequence of uniformly
bounded, non-decreasing, right-continuous functions. Then (F,) contains a

subsequence which converges weakly to a bounded, non-decreasing, right-continuous

function.

Let M be the set of all bounded, non-decreasing, right-continuous functions M from

R into [0, o) which vanish at —co. The function L defined for any M,,M, €/ by



11
L(Ml,Mz)zihnf{h|M1 (x—h)—h<M,(x)<M,(x+h)+h forevery x}
>0

is a complete metric on /71. ([8], p.39)

In the following corollary follows from Theorem 2.2.7 and the fact that the

elements in 771 vanish at — co.

Corollary 2.2.8 Let (M, ) be a bounded sequence of elements in /72. Then it

contains a subsequence which converges weakly to an element in 771.

Theorem 2.2.9 ([5], p.39) Let M,M,M,,...be elements of 771. Then the
following statements are equivalent:
i M,—>M:

(i1))  For every bounded continuous function g on R,

[eCodm () > [g(x)aM (x);

(i) LM, ,M)—0.

n?s

In the following, we summarize facts concerning weak convergence of the

distribution functions needed for our work.

Theorem 2.2.10 ([11], p.15)  Let (F,) and (¢, ) be sequences of distribution

functions and their characteristic functions. Let £ be a distribution function with the

characteristic functionq. If F,~">F, then (¢,) converges to ¢ uniformly in any

finite interval.

Theorem 2.2.11 ([11], p.15) Let (F,) and (¢,) be sequences of distribution

functions and their characteristic functions. Let ¢ be a complex-valued function
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which is continuous at 0. If (¢, ) converges to ¢ for every ¢, then there exists a

distribution function F such that F,—> F and the characteristic function of F is ¢.

Let F} and F, be distribution functions. The convolution of F} and F, is

defined by

(Fi*Fy)(x)= [ Fy(x=y)dF ()= [ Fy(x=y)dF,(y) forall xeR.

—00 —00

Theorem 2.2.12 ([4],p.245) Let (a,) be a sequence of real numbers and E, a

distribution function defined by

0 ifa<a,

Then the sequence (E, ) converges weakly if and only if the sequence (a,)

ifaza, .

converges in R.

Theorem 2.2.13 ([4],p.252) Let F,G,F, .G, ,n=1,2,3,... be distribution functions. If

F,—>F and G,—>G ,then F,*G,—>F*G .

2.3 Infinitely Divisible Distribution Functions

A distribution function F with the characteristic function ¢ is said to be
infinitely divisible if for every natural number n, there exists a characteristic

function ¢, such that for every ¢,

o0 =lg. (0}
The characteristic function of any infinitely divisible function is also said to be

infinitely divisible. A random variable is said to be infinitely divisible if its

distribution function is infinitely divisible.
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Theorem 2.3.1 ([8], p.81)

(1) If ¢ is an infinitely divisible characteristic function, then for every ¢ ,
o(1)#0.
(i)  If ¢ is an infinitely divisible characteristic function, then |(p|2 is also

infinitely divisible.

(ii1)  The product of a finite number of infinitely divisible characteristic functions is
infinitely divisible.

(iv) A characteristic function which is the limit of a sequence of infinitely divisible

characteristic functions is infinitely divisible.

Theorem 2.3.2 ([5], p.307) In order that a distribution function F with finite
variance is infinitely divisible it is necessary and sufficient that there exist a unique

constant p and a non-decreasing , right-continuous function of bounded variation K

such that K(—o)=0 and the logarithm of its characteristic function ¢ is given by

Ino(t)=ipt+ j F(t,x)dK (x) (1)

—0

where

e™ —1—itx pe if x#0
( ;
f(f,X)Z t2 =

- if x=0.
2

In the sequel, £ (¢,x) -always denotes this function. The formula (1) is known as

Kolmogorov formula.

Remark 2.3.3 ([12],p.618) For each feR,

f(t,x)|£%t2 for all xe R.

Theorem 2.3.4 ([6], p.85) Let X be an infinitely divisible random variable with

finite variance. Let the constant p and the function K be given as in the

Kolmogorov formula of the characteristic function of X . Then
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0  Elx]=n

(i)  o%(X) =K(+).
24 Kolmogorov Theorems

In this section, we let (X,;), k=L123,...,k,, n=123,... be a double
sequence of random variables with finite variances.
For each n and k , we let anaﬁik and F,;, be the expectation, variance and

distribution function of X, , respectively.

In [6], Kolmogorov gave necessary and sufficient conditions for weak
convergence of the sequence of distribution functions of sums

Sn = an +Xn2 5- 8 '+Xnkn _A}’l
where (4,) is a sequence of real numbers. There are two important convergence

theorems (Theorem 2.4.2 and Theorem 2.4.3). In the first theorem, (X,;) must

satisfy the following conditions.

(o) (X, —n,) 1sinfinitesimal, 1.e., for every € > 0

max P(]Xnk —unk|28)—>0 .
1<k<ky

(B)  There exists a real number C such that

k”l
Zﬁﬁk e
k=1

In order to prove the first theorem, Kolmogorov defined the accompanying
distribution function of sums
Sy ZX W FX o+ L+ Xy =4,
to be the distribution function whose logarithm of its characteristic function is given
by

ky ky ©
W, () =—id, t+it ) W+ [(€™ =DdFy (x+it,)
k=1 k=1_o0
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Remark 2.4.1 Let K; :R—R be defined by

ky u
Ky, @)= [x*dFy (x+p,) forall ueR.
kzl_(x)

If (X, ) satisfies the condition (f3), then K K, €M and the logarithm of the

characteristic function ¥, of the accompanying distribution function of §,, is given

by

kp
In¥, (t)=—iAnz+it£zunk]+ j [t u)dKy (u) .
k=1 R

Proof. Clearly, K ~isnon-decreasing and K; (—o0)=0 for all neN. Since (X ;)

satisfies the condition (B),K £, (+o0) 1s bounded . Next , we will show that the
function K, 1is right - continuous. Let <R and (u,,) be a decreasing sequence such
n

that lim u,, =u.We must show that lim Ky, (“m):Kk,, (u) . Since (u,) is
m—»0 m—>0

decreasing and lim u,, =u , s0 (—0,u; |2 (-0,u,]>... and ﬂ(—oo,um]:(—oo,u] .

m—>0
m=1

ky Ym
Then lim K ()= lim > j X2dE (i)
m-—>0 m_)ookil_oo
kn Um
=" lim [xdF (x+i)
kzlm—mo_oo
ky u 3
:Z jx ank (X'H'Lnk)
kzl_oo

=Kkn (M) .
So K is right - continuous. Hence K €M1 . It’s easy to see that the logarithm of

the characteristic function ¥, of the accompanying distribution function of §, can

be rewritten in the following form :

K
In¥, (t):—iAnt+it[Zunk]+ j S u)dK (u) . #

k=1 R
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Theorem 2.4.2 ([6], p.98) Assume that (X, ) satisfies the conditions (a), () and

for each n, X

n1>X p2se-» Xy, are independent. Then there exists a sequence (4,,) of
real numbers such that the sequence of distribution functions of sums

converges weakly to a limit distribution function if and only if the sequence of
accompanying distribution functions of S, converges weakly to the same limit

distribution function.

Theorem 2.4.3 ([6], p.100) Assume that (X,;) satisfies the condition (o) and for

each n, X,;,X,,,...X,; are independent. Then there exists a sequence (4,) of

nl»
real numbers such that
(1) the sequence of distribution functions of sums

Sy =Xt Xpg+et Xy —4

n

converges weakly to a limit distribution function ¥ whose variance is o? and

k}’l
(i1) Zcﬁk —c’
k=1

if and only if there exists a function K in /7 such that
i) K k, ()= K (u) for every continuity point u of K and
(i) Ky, (+00) > K(+0)
where
ky u z
Kkn (u):z J.x AF e (X+ ) -
kzl_oo

The constants 4, may be chosen according to the formula

ki’l
An = Zunk —u
k=1
where p is any real number. Logarithm of the characteristic function of the limit

distribution function is given by

Ing(t)=ipt+ T Ft,x)dK (x).

—00
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2.5 Random Sums of Random Variables

Let (Z,) be a sequence of positive integral-valued random variable. Let
(X, ) be a double sequence of complex-valued random variables. Here our double
sequence is infinite in both directions, i.e, n=1,2,3,...and k=1,2,3,... . Foreach n, a

value Z,(®) of Z, determines a finite sequence of values
nl (o), XnZ (@), nZn () (o)

of X,1,X,2,...X,7 () - It can be seen that for each n, Z, and (X,;) together

nl>
define a random experiment in which each outcome gives rise to a finite sequence of
complex numbers .

However, the length of this finite sequence is random.We shall call the system

(Z,,X,x), arandom double sequence of complex-valued random variables.
Let (Z,,X,;) be a random double sequence of complex-valued random

variables. For each n, we define

Zn Zn
ZX,,k , Hxnk and X,
k=1 k=1

to be the functions from Q to C given by the following formulas

Zy (o)

(ZXnk )((0) ( zXnk )(0))

Zy(®)

(HXnk )((0) ( HXnk )((’))

and
(X2, @)=(X 7, () (@) ,
respectively.

In case X, ’s are real-valued random variables, we define

sup X nk
1<k<Z,

to be the function from Q to R given by

(sup X )@ =( sup X, )0).
1<k<Z, 1<k<Z, (o)
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Z?‘l Z}’l
It will be shown that Z Xk ,H X, and X, are complex-valued random
k=1 k=1

variables and sup X, is areal-valued random variable. These facts are special
1<k<Z,

cases of a more general result that follows.

Proposition 2.5.1 ([10],p.17) Let (¥,) be a sequence of complex-valued random

variables. Let Z be a positive integral-valued random variable. Let Y, denote a
function from Q to C defined by
V72 (@)=(Y7 () (@)

for all ®eQ. Then Y, 1s a complex-valued random variable.

Proposition 2.5.2 ([10],p.17) Let (Z,,X,;) be a random double sequence of

ns

Zl’l Zn
complex-valued random variables. For each n , ZX N HX o and X,z - are
k=1 k=1

complex-valued random variables. Furthermore , in case where the X, ’s are real-
valued random variables, sup X,; is areal-valued random variable.

1<k<Z,

We will consider sums of the form
SZn :an +Xn2 oo '+XnZn —Anzn
where (Z,,X,;) is a random double sequence of random variables and (4,;) is a

double sequence of real numbers. We will refer to them as random sums.

We say that (X ;) is random infinitesimal with respect to (Z,,) if
for every €>0,

max P(|Xnk|28)—P>0 as n—>oo.
1<k<Z),



CHAPTER 111
Convergence of Distribution Functions of Random Sums

The purpose of this chapter is to find necessary and sufficient conditions for
the weak convergence of the sequence of distribution functions of random sums to a
limit distribution function.

In [1], Bethmann gave necessary and sufficient conditions for the weak
convergence of the sequence of distribution functions of random sums to the standard
normal distribution function.One of the important tools used by Bethmann is what is

known as the “g-quantiles”. We will also make use of this tool.
3.1 Definition and properties of g-quantiles

Let Z be a positive integral-valued random variable. Let /:(0,1) > N be
defined by
I(q)=max{k eN|P(Z <k)<q} .

The function / is called the q-quantiles of Z .

Remark 3.1.1 For a positive integral-valued random variable Z, the function

g -quantiles of Z is non-decreasing .

Lemma 3.1.2 Let Z be a positive integral-valued random variable and g : N — C.

Then

(1) [ is a Borel function .
1

() E(g0Z)=g(lg)dq .
0

Proof.

k)
Let ImZ:{kj|jeN} where k; <k, for j=1,2,..., q; :ZP(Z:k) and g, =0.
k=1
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Foreach k; and g €lq;_;,q;) , we have I(q)=k;.

Then I ({k;}) =1q,1.q;) for j=2,3,4,..and I"'({k;}) =(0,q)).

(i) Foranyopenset O inN,

170y = 1g;4.4;)n(0,1)
kjEO

This implies that / _1(0) is a Borel set in (0,1). Therefore / is a Borel function .

(ii) Since / is a Borel function and domain of gis N, go/ is a Borel function.

Then [g@ndg = gk;)a; ;)
lg9j-1.95)

for all kj elmZ.

t
If ImZ ={ky,ky,...k |, then | J[g;1.9;)=[0.1).
j=1

k ©
If ImZ ={k,ky,...} ,then lim g, = lim Z P(Z=k)=) P(Z=k)=l.

n—20 n—)OOkzl k=1
Thus | J[q,..9,)=[0.1).
Jj=1
Therefore E(geZ)= Y gk )P(Z=k;)
kjeImZ
= Y elk;)g,~q;1)
kjeImZ

=Y [al@)dq

kIEImZ [qj—l ,qj)

1
= [2((9))dq . #
0

Proposition 3.1.3 [1] For every n, let (a,; ), kK =1,2,... be a nondecreasing sequence

of non-negative real numbers and Z,an integral - valued random variable.
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Furthermore , let @ > 0 be fixed. Then we have a,,, %54 ifand only if a,; (,y > a

forall g € (0,1).

Proposition 3.1.4 Let (Z,) be a sequence of positive integral-valued random
variables.
(1) If Zn—P>oo , then /,,(q¢) >« for every g € (0,1).

(i1) If (Z,)) is increasing, then (/,(g)) is increasing for all ¢ € (0,1).

Proof.
(i) Fix ¢ €(0,1) and let M be any positive integer. Since lim P(Z, >M)=1, there

n—®

exists ny €N such that P(Z, 2M)>1-q for all n=n,. Thatis P(Z,<M)<gq for
all n > n(. This show that for n = ng, 1,(q)=M . Hence [,(q) > as n—>oo .
(i) Let g<€(0,1) and n; < nZ.Sincean <Z,, P(Z,, <ln1 (9)<P(Z, <ln1 @)<q.

By definition of g -quantiles, 7, (¢)</, (¢). #

Theorem 3.1.5 Let (Z,,X,,) be a random double sequence of random variables

such that for each n,Z,,X,,,X,,,,... are independent. Let ¢,, be the characteristic

nl»>
function of X,; and (4,;) a double sequence of real numbers.Then the characteristic
functions ¢, of random sums
Szn :an +X}’12 +.. .+ann —Anzn

are given by

Z}’l

9,O=E eXp(_itAnZn )H(Pnk (1)
k=1

for teR.
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Proof. Foreach n,jeN, let S/ =X, +X,p+.+X,;—-4,; and F/ and ¢/ be the

distribution function and characteristic function of S ,{ , respectively . Then

, j
o5 () =exp(=itd, )] Jox () forteR.
k=1

Therefore F,(x)=P(S z, < X)

=ZP(Z,Z :j/\S,{ <Xx)
=1

=Y P(Zy = IP(SI <x)
j=1

=Y P(Z, = )F] (x) .
e]

By Proposition 2.2.5 , for te R,

¢, (V=Y. P(Z, = o} @)
Jj=1

3 J
:z P(Zn ™ j)exp(_itAnj )H(Pnk (®)
=1 k=1

Zn
= Eliexp(_itAnZn )H(Pnk (t):l .

k=1

3.2 Convergence of distribution functions of random sums

Let (X, ) be a double sequence of random variables with finite variances

Gik and (Z,) a sequence of positive integral-valued random variables. Assume that

foreachn,Z,,X,;,X,,,... are independent.

Put

In(q)
SO =X+ X g et X ()= D bk »
k=1
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Z?‘l
Sz, =Xm+Xp+..+X,, —Zunk )
k=1

and let Fn(q) and F), be the distribution functions of § ,(1‘1) and S , respectively.

To prove the main theorems ( Theorem 3.2.6 and Theorem 3.2.7 ), we need

the following results.

Theorem 3.2.1 ([8],p.199) Let {G| G:RxR —> R} be a family of functions which
has the following properties :

(1) For each value of y, the function G(x,y) is a distribution function in the
variable x .

(i) For each value of x,G(x, ) is a measurable function in the variable y .

Then for any arbitrary distribution function H(y) ,

F(x) = [G(x, y)dH ()

—0

is a distribution function and the corresponding characteristic function is given by

o) = | g, )dH(y)

—00

where g(-,y) is the characteristic function of the distribution function G(-,y).

Proposition 3.2.2 Fora.e. ¢ (0,1), let FYD R [0,1] be a distribution function.

If foreachxeR |, F (q)(x) 1S a measurable function in ¢, then

1
F(x) =I F (q)(x)dq , x €R ;s adistribution function and the corresponding
0

1
characteristic function is given by ¢(¢) = j (p(‘”(t)dq for te R , where (p(q) is the
0

characteristic function of F ()
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Proof. Let 4 be a measurable subset of (0,]) such that for every ged , F @ s
a distribution function and /(A4) =1 where / is the Lebesgue measure on (0,1). Let N
be an arbitrary distribution function and G:RxR —R defined by

F@(x) if ged

G(x’q): .
N(x) if ggA .
For each ¢ € R , the function G(x,q) is a distribution function in x. That is the

condition (i) of Theorem 3.2.1 holds. Next , we will show that the condition (ii) of

Theorem 3.2.1 holds. That is we must show that for each x € R, G(x,q) is measurable

ing. Let xeR and O be any open set in R.

If N(x)eO, then G (x,O):{teA‘F(t) (x)eo}uA‘-‘ :
If N(x)2O, then G ' (x,0)= {teA‘ F® (x)eo}.
Since F (q)(x) is measurable in ¢, {t € AI FO (x) e 0} is a measurable set.

Since 4 is a measurable set, 4° is a measurable set.

Hence for each xe R, G(x,g) is a measurable function in ¢ .

Let H:R —[0,1] be a distribution function defined by

0 ifg<o0
H(g)=4 q 1f0<g<l
=t

By Theorem 3.2.1 , we have

F()= [Gxq)dH (q)

—00

1
= [ G(x,q)dg
0

1
=.[F(Q)(x)dq for xeR ,
0
is a distribution function and the corresponding characteristic function is given by

o()= | gt:)dH (9)

—00
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1
=f g(t,q)dq
0

1
=[ ¢ (t)dg
0

for te R, where g(-,y) and (p(q) are the characteristic functions of the distribution

functions G(-,y)and F @ respectively. #

Proposition 3.2.3 If for a.e.ge(0,1), there exists a distribution function F @ such
that £ F@ and for cachx e R, F(x) is a measurable function in ¢, then

we also have F,—> [ where F is a distribution function defined by

1
F(x)= IF(q) (x)dg, xeR.
0

Proof. Assume that fora.e.q €(0,1), there exists a distribution function F @ guch

that F,Z(Q) % F@ and foreachx € R , F9(x) is a measurable function in ¢ .

Let 09 and ¢ be the characteristic functions of 9 and F@, respectively.

In(q) In(q)

Observe that 0D ()=exp(=it I W) [ [@m(6) forall teR.
k=1 k=1

1
By Proposition 3.2.2 , F(x) = I F (q)(x)dq , Xx € R, is a distribution function and the
0

I
corresponding characteristic function is @(¢) = Iw(q) (t)dg ,teR.
0

Since F9 % F@ by Theorem 2.2.10, ¢V (1) - ¢ P () forall teR.
Since ‘ (p;q)‘ <1, by Lebesgue Dominated Convergence Theorem , we have

1 1
lim [ ())dg = [¢'? (t)dg
n—»0 0 0

for all e R. By Theorem 3.1.5, the characteristic function ¢, of § Z is defined by
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Zy Zn
@, (=Elexp(=it ) )] [ouc (O] forall reR. Let g, ,:N—C be defined by
k=1 k=1

m m
& (m)=exp(=itY )] [0, (1) By Lemma 3.1.2(ii),
k=1 k=1

1 In(9) ln(q) 1 @
(Pn(t):jexp(_it zunk) H(Pnk (t)dq:J.(an (H)dgq .
0 0

k=1 k=1

Hence ¢, (t)—>¢(¢) for all teR. By Theorem 2.2.11, F,->F . #

Proposition 3.2.4 ([13]) Let (X', ) be random infinitesimal with respectto (Z ). If
F,-">F for some distribution function F , then there exist distribution functions

F@ and bounded sequences of real numbers (aff”), neN such that for some

subsequence (n'),

(q) W o (q)
an *Ea(?) Ly
n

for a.e. ¢ €(0,1), where E, stands for the degenerated distribution function with

unit-jump at a € R.

Corollary 3.2.5 Let (X, ) be random infinitesimal with respect to (Z,). If
Fn—W)F for some distribution function F, then for a.e. ¢ € (0,1), there exists

distribution function '’ such that for some subsequence (n'), Fn(,q ) p@)

Proof. By Proposition 3.2.4, for a.e. ¢ € (0,1), there exist a distribution function
F9-and a’bounded sequence (af,q)) such that for some subsequence (1) ,

() W, (@)
Fn/ *Ea(?)ﬁF KR
n

Since (a'?) is bounded, there is a subsequence (n") of (n") such that (a¢))

converges. Let lim a'? = a9 . Then
n"—»c0

(@) W, 7 (q)
Fn” *Ea(Z)_)F 4
n
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and by Theorem 2.2.12, we have
W,
E—a’(ﬁ) ﬁE—a(q) .
By Theorem 2.2.13 , F}f"q)—w>}7(q)*E () - Let FO=F@Dxp (¢) - Then F@ jsa
—da —da

distribution function, so the corollary is proved. #

In the main theorems , we assume (Z,,, X, ) satisfies the following conditions :

(@) (X,x — W) is random infinitesimal with respect to (Z,,).

~ In(q)
(B) There exists a constant C > 0 such that z G%k <C forae. ge(0,1).
=1

The following theorems are the main theorems of this chapter.

Theorem 3.2.6 Let (Z,,X,,) be a random double sequence of random variables
which satisfies the condition (&) , (B) and for each n Ly XXy e are

independent. If there exists a distribution function F with finite variance o2 such

that
(1) the sequence of the distribution functions of random sums
Zl’l
SZn :an +Xn2 ++ann _zp‘nk
k=1

converges weakly to F* and

Zn
(i) “ B om0,
k=1
then for a.e.q € (0,1), there exist a subsequence (n;)and a function K @ in m

such that

i) K by (@) (u)—> KD () for all continuity point u of K4 and
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1
(ii") K,nk(q)(+oo)—>1<(q)(+oo) and o” =[ K9 (+o0)dg,

0
In(q) u 5
where K@= [ XPdF(x+p,).
k:1 —00

Proof. We divide the proof into 3 steps as follows.

Step 1 We will show that for a.e.q € (0,1), there exist a subsequence (n;)and a

function K? in m

such that

| S WK, (@) = [ £ (tadk @) .
R R

Since Fn—w)F , by Corollary 3.2.5 , for a.e.q €(0,1), there exists a distribution

function F? such that for some subsequence (nk),Fn(Z)—W>F @ By Theorem
2.4.2, the sequence of accompanying distribution functions of SF(ZZ) converges weakly
to F. Let wfg{) be a characteristic function of the accompanying distribution
function of S’EZ) and ¢'? a characteristic function of F'?. By Theorem 2.2.10,

w%{) (1) > ¢ (r) forall 1 eR. It follows that ln\ugj() (1) > IneD (1) forall teR.

By Remark 2.4.1 , we have

lnk (@) lnk (@)
Iy D=1 Y m it Xpags [+ [ £ 0K, (@)
J=1 J=1 R
= [ f(t)dK,, (@)
R
Since ijl]c) is infinitely divisible , by Theorem 2.3.1(iv) , (p(q) is infinitely divisible.

By Theorem 2.3.2 , In (p(q) (1) =ip t+ jf(t,u)dK(q) (u) for some constant p, and
R

function K? in m .
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Therefore [ f(tu)dK, (g () = ipgt + [ £(t.)dK D @)
R
For 120, [ f)dk, ) — ity + [ fG)dK D),
R R

To show that p, =0, it suffices to show that }1_1)1(1)%{ f (t,u)dK,nk (@) =0 and
R

lim%J‘f(t,u)dK(q)(u) =0.ByRemark 2.3.3, < %tz for all € R .Thus
t—0
R

(LK, () ()

sij|f(z,u)|d1<, (q)(u)SmK, () () = LI kz o) -
g ey 2 5

~ n (q)
By the condition () , Z Gik] 1s bounded , so hm jf(t u)dKl (q)(u) 0.
L

Similarly, we can prove that 1im%J. f(tu)dK @ (1)=0. Hence gy =0. It follows that
t—0
R

[F@wdK,, @) = [ ft,u)aK D).
R R

Step 2 We will show that for a.e.q €(0,1), Klnk (q)—W>K(q) where (n;) is a

sequence in step 1.

First , we will show that for a.e.q € (0,1), there exists a subsequence of (K Iy ()

which converges weakly to K @),

~ lnk (9)

Since for each ke N, K g (@) is non-decreasing and by condition (), 2 ('5,21 " <C,
=1

that is (K g (@) (+90)) 1s bounded, so (K T (¢)) 18 bounded. By Corollary 2.2.8 , there

exists a subsequence (K ) of (K ) and a function E(Q) in M such that
I”kr (q9) lnk (9)

K, (q)—W>E(q) By Remark 2.3.3, f(t,u) is continuous and bounded for allz R,
r

thus by Theorem 2.2.9 ,
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[rewak, - | F(t,uyd K P @) (M)
R " R

forall reR.

By (*)andstep 1, wehave [ f(tu)dK ()= [ £(t,u)dK P ).
R R

()

By Theorem 2.3.2, K =K. So K )—W>K(q). By the same argument , we

k,. (q

can prove that for every subsequence of (K I (q)) » 1t contains a subsequence which
converges weakly to K @ By Theorem 2.2.9 , for every subsequence of (K Iy (@) 1t

contains a subsequence which converges to K @ with respect to the metric L . This

implies that (K I (q)) converges to K (@ with respect to the metric L . By Theorem

229K, (—>K7.

1
Step 3 We will show that - [K© (+e0)dg
0

Zn Ly (q)
Since E{Zcﬁk}—mxz , by Lemma 3.1.2(ii) , we have limj z G,zy-dq:cxz.
=1 n—)ooo =

llnk (9)
Therefore  lim I z Gik jdq=c52. By condition () and it follows from the

k—o0

0 J=1
1 lnk (9)
Lebesgue Dominated Convergence Theorem that I lim z cik idq =2, By step 2,
Ok—)oo =
lnk (9)

; ; 2
we have K,nk(q)(-i-oo)—)K (q)(+oo). That is kh_r)lgo Z_‘I O :K(q)(+oo). Therefore

1
o2 :J-K(q)(+oo)dq .
0

By step 1- step 3, the theorem is proved. #
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Theorem 3.2.7 Let (Z,,X,,) be a random double sequence of random variables

which satisfies the condition (&),(B) and for each n.,Z,,X, ,X,,,... are

nl»

independent. If for a.e.q € (0,1), there exists a function K @ in M such that

() K (@) —>KD () forall continuity point u of K¢

1
(i) K 1y(q) (F®) > K (‘I)(+oo) and _[ K@ (+oo)dq202 for some constant o> and
0

i’ for each xeR , F @ (x) is measurable in , where F (@ i the distribution
(iii’) q

(@)

function whose logarithm of its characteristic function ¢'?’ is given by

I (1)= [ f(t.u)dK @ ).
R

then

(ii1)  the sequence of the distribution functions of sums

Zn
SZ}’! :an +Xn2 +"'+XnZn _Zunk
k=1

1
converges weakly to ' where F(x) = JF @ (x)dg , x eR and

0
Zn
iv) FE ZGik — % and o7 is the variance of F.
k=1

Proof. Fora.e. ¢g€(0,1),let \ufﬂ) be a characteristic function of the accompanying

ln(q)
distribution function of X ,; +X 5 +..+X,,; ()~ Z“nk . By Remark 2.4.1,

k=1
@ In(q) In(q)
Iy O)=—1 D [+t X [+ [Su)dK ;@)
k=1 k=1 R

= [ £tu)dK gy (@)
R
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By (i), (ii") and Theorem 2.2.9,j [tw)dK, (g (@) j F(tw)dKPw). Let F@
R R

be the distribution function whose logarithm of its characteristic function (p(Q) is

given by
Ino'? ()= j F(t,uw)dK'D ().
R

Then Iny'?(1)—>Ine? (r) forall teR, so y'? (1)@ (1) forall reR. By
Theorem 2.2.11 and Theorem 2.4.2 , 9 5> F(@ By Theorem 2.3.4, F9) has zero

mean and variance of F'9) is K (Q)(+oo). By Proposition 3.2.3, F, —>F where F
1

is a distribution funetion defined by F(x) = jF“I) (x)dq , x €R. Since
0

ln(q) (@)
lim Z 62, =K9 (+e0) and Z 62, <C fora.e.qe(0,1), by Lebesgue

N p=1 k=1

17,(9) 1
Dominated Convergence Theorem , limI Z G%kdq: I K@ (+oo)dq:c52. Hence,
n—>0
0 k=l 0

Zn
by Lemma 3.1.2(ii) ,El:chik} ==
k=1

It remains to show that o~ is the variance of F. Observe that

j xdF (x) = j xd(iF@)(x)dq): lim rfxd(_l[F(‘” (x)dq) .
R R 0 " 0

For each m e N, let B, be the partition of the interval [-m,m] ,

—m=Xx <x1 <XZ <...<xn(m)_1 <xn(m) =m
2m : .
such that x; = x,_{ + — for i=1,2,3,...,n(m). Then for any m € N and u; in
n

[x;_1,x;], i=12,3,...,n(m) ,we have

n(m)

S uy(FDx) - FO(x,))

i=1

n(m)
S (FD ()= FD x| <m

i=1

<m

(D)

and forall me N,
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m m
[xdF @ (o)< [ x]dF @ (x)
-m -m
< [|x[aF @ (x)
= [|x[dF @ o)+ | x[dF @ (x)
‘x‘él ‘x‘>l
<1+ [|xdF @)
‘x‘>1
<t+ [|x|*dF @ ()
=1+ KD (+o0)
1
and j (1+ KD (+o0))dg =1+67>. 2
0
Foreach me N,
m 1 n(m) 1 1
[ xd([ F'9(x)dg) = lim > u, [ F'9(x;)dg - [ F @ (x;-1)dg)
Smo0 R I 0

n(m) 1
= lim > {[(F9 ()= F'(x,1))dg]
RN

L n(m

)
= lim . >, (F9 ()= F9x,2)dg

1 n(m)
=ftim Y u; (79 6) < F 9 ))dg (by (1))

n—>0

0 i=1

:j rfxa’F(q) (x)dg (3
0]

m

Therefore ,

[ xdF (x) = 1im rf xd(iF(q) (x)dq)
R " 0
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1 m
= lim j j xdF'D (x)dq (by(3))
m—>0 0-
1 m
= I lim J xdF'9 (x)dg (by(2))
0 m—o0 “m
1
= j j xdF D (x)dg
OR
1
:J.Odq (since J.xdF(q)(x)=0)
0 R
=0.

1
Similarly , we can show that J.xzdF (x) = IszdF (@) (x)dq .
R 0R

1
Hence the variance of F'is equal to IxzdF (A% J' K (q)(+oo)dq:(52 . #
R 0

Corollary 3.2.8 Let (X,;).k=1,2,..., k,,n=1,2,... be a double sequence of

random variables which satisfies the condition (o) and for each n, X, X,,,... are

nl»

independent. Then there exists a distribution function /' with finite variance o? such
that

(1) the sequence of the distribution functions of sums

2
Sy =X+ X+t Xy =D Mk
k=1

converges weakly to F and
k}’l
(i1) Zcik Ly o2
k=1
if and only if there exists a function K in 7 such that

1) Ky, (1) > K(u) for all continuity point u of K and

(i) Ky, (+0) > K(+),

ky u
where Ky, (u):z szank(x+unk).
kzl_oo
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Proof. In order that S, canbe viewed as a random sums, we define Z, and X, as

follows. For any positive integer 7, we define
Z,(®)=k,
forall ne Q.
Fork=1,2,... k,, define jf',,k(co)=Xnk((o) forall we

and for k> k, , define X, (0)=0 forall neQ.

It follows that (Z,,,X,;) is a random double sequence of random variables which are

independent in each row. We denote the distribution function, characteristic function,
mean and variance of X & by ﬁnk » @i o and G , Tespectively. Since Z, (@)=Fk,

forall @ € Q, I,(g) =k, for all ge(0,)). First, we will show that (Z,,X ) satisfies
the condition (&) . Let >0 be given. Since (X,;) satisfies the condition (), we

have max P({X 1 —H . ].28)-—>0. Let g,y = max P(X,; —py|2€). so A, —>0-

1<k, 1<k<ky,

By Proposition 3.1.3 , a,7_ 5.0, Thatis max P X Mok |28)——11>0.

I<k<Z,

Therefore (Z,, X k) satisfies condition (t) . We note that (i) and (ii’) are equivalent

and 1, (q)=k, for ge(0,1), so the condition (B) holds.

Next, we will prove that the sequence of the distribution functions of sums
SZ,, =Xn1 +Xn2 ';"""'){nZ,‘z “Eunk
k=1

converges weakly to F if and enly if
the sequence of the distribution functions of sums

Ky
Sn :an +Xn2+"'+Xnkn —Zu'nk
k=1

converges weakly to F.

Let ¢ be the characteristic function of F. According to the fact that P(Z, =k,)=1,

we have the characteristic function @, of §Zn is given by

Zn Zp
5;; ® ;E[exp(“itZﬁnj)Hanj ®]

R
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w k k
=> P(Z, =kyexp(=it ) L, )] [0t
k=1 .

= A

&y ky,
= P(Zn =k, )CXp(—itZ'ﬁnk )Hzﬁnk
k=1 k=1

ky
=exp(——itZ!~ink )H(Pnk {t)

k=1 k=1

which is the characteristic function ¢, of §, Then ¢,({#)—>¢(t) for all reR if and
only if ¢, (f)—>o(r) for all e R . Hence the sequence of the distribution functions of

§Zn converges weakly to /7 if and only if the sequence of the distribution functions of

S, converges weakly to F.

7 ky |
(—>) Since Z, (@) =k, forall 0eQ , E{) o5 1=> 6% By the same proof of
k=1 k=]

step 1 of Theorem 3.2.6, there exists a function K /7 such that
A
[fewdr, - [rewar @) .
R R

Let (n") be any subsequence of (#). By Theorem 3.2.6, for a.e.g<(0,1), there exist a

subsequence (n") of (n") and a function X9 in M such that K .(,,~>K .

Since I,.(q)=k,» for all ge(0,1), so Ky - BED gnd K9 are equal for all
ge(0)). Let K=K@. Thus X, ,—>K. By Theorem 2.2.9,

[remdk, 0~ [fEwdkw) .

R R

By the uniqueness of the representation by Kolmogorov’s formula, we conclude that
K=K . Hence Ky —>K.

(<) By (i') and (ii"), we have X, ,~»K forall ge(0,]) and

1 1

JK'D (+o0)dg =K (+0)dgq =K (+o0) . Let 6> =K{(+o0). Since KV =K for all g&(0,1),
0 0

clearly, for each xeR, F¥(x) is measurable in g, where F@ is the distribution

function whose logarithm of its characteristic function go(q} is given by



37

IneP ()= [rewdr D).
R

Therefore the sufficiency follows from Theorem 3.2.7. #

Theorem 3.2.9 Let (Z,,X,;) be a random double sequence of random variables

which satisfies the condition (&), for a.e.qe(0,1),(K 1,(q)}1s monotone and for
each n ,Z,,X,,X 2, are independent. If there exists a distribution function F

with finite variance o such that
i) the sequence of the distribution functions of sums

Zy
Szg= X + X gy +t Xyp =3 g
=1

converges weakly to F' and

Zp
(ii) E[Zcﬁk} -2,

k=1

then fora.e.q € (0,1), there exists a function X9 in 77 such that

() Ky (@) > KD (w) for all continuity point # of K@ and

1
(i) K () —> KD (40) and %= jKW)(m)dq,
0

Inig) u
where K@= 2, [«PdFy(x+i).
k=1 —G

The converse is true if for each xe R, F'? (x) 1s measurable inl ¢, where F9) is the

distribution function whose logarithm of its characteristic function (p(q)— is given by

e @ @)= [£wdk P w).
R

Inig)
Proof. TFirst, we will show that for each ¢ e (0,1), Z Gﬁk 18 bounded.

k=1
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Since E{Z crﬁ

Bl

i:ZGnk} is bounded. For each ze N and ¢ € (0,1),

|-+
%‘, zi: LIP(Z, =)

cw |

I 2 P(Z, <I)

@ )
> SonPZ,=D

Il (g)k=1
=G§} P(Zn xln (Q))'H-TiZ P(Zn :ln (Q))+--'+Uﬁln(q) P(Zn =ln (@)

+651 P(Zy =, (DD +05; P(Z, =L Q)+ D+t 02y 3 P(Z,, =1, (@)+])
+0'§(ln(q)+1} P(Zn =ln ((])'1'1)‘1'
ln(‘i‘) 9
> > o P(Z,21,(q)
k=1

Iniq)

> Z o2 (1—g). ( since P(Z, <[, (4N<q)
k=1

In(g)
Since Ei:EG nk} is bounded , Z o2, is bounded for each g € (0,1) .From the fact

k=1 k=1
Tn{q)
that for each g € (0,1}, Z G, 1s bounded, we can use the same argument of step1-
k=1

step3 in Theorem 3.2.6 to show that for a.e. g € (0,1), there exist a subsequence (7 )

and a function K9 in M such that Koy @@= KD (1) for all continuity point «

of K and K ot @) (+0) = K 9 (+00) | But! (K I,(q)) 1s monotone,we have

K (@)K @ () for all continuity point u of X@ and X 1,(q) (@)= K @ (4o0).

i
To prove the necessity , it remains to show that o2 = j‘K @ (400)dyg .
0
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Zy 11 (q)
Since lim E{Zoﬁk]zcz , by Lemma 3.1.2(ii) , we have lim jz ol dg=o>.

n—o | n—>w 0 k=1
1 () 2 ' 5 1
Since (K (,)) is monotone, J.}im Z Oupdy=c”. That is o2 = IK @ {+e0)dg . The
o o 5

converse can be proved in the similar way as the proof of Theorem 3.2.7. #

Example 3.2.10 Let Z, be arandom variable defined by
P(Z,=1)=0 and P(Z;=2)=1 ,

for n>2, P(Z, =ra*)=l and P(Z, mn+1):1——£ .
b7} 7
Foreach n and k,defined X, by P(X ——-—~1~w-)—P(X —L)“1
3 nk nk \[; nk \/; 7 .
[ 1
0 ifx<—r
n
Then Fo(x)=4 2 if-——i—<x<—1—
nk 9 ‘\/E_ 2
1 1fx2—-—1—
n

forall n,k.

Assume that for each n,Z,,X,;,X,,,...arc independent.

It’s easy to see that p,, =0 and Gﬁk A forall n, k.
i

Then

7 if 0<q<}~
1. L(g)=2 forall ge(0,}) and 7 (g)= P for n=2.
n+l i —<g<i
I

2. (X,;.Z,) satisfies the conditon (&) ,i.c.,

max P(X,.[2€)-50 forall e>0.
1<k<7,

In(g)y —~
3. D om<2 forall ge(0).ie., (X,;) satisfies the conditon (F).
k=]

4. Forall ge(0,), K, (,,—>K where K:R—R defined by
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0 if u<0

K(u)z{l if 120 .

5. The sequence of the distribution functions of random sums
SZH x_an +Xn2 +'"+X”Zn

converges to a limit distribution function.

Next, we will show that 1-5 hold.
1. For qe(0,1}, (q)=max{keNlP(Z1 <k)sq}=2.

For n=2 ,let ge(0,1).

Case 1 0<q<—1—.
n

P(Z, <n)=0<g and P(Z, <n+)=P(Z,=m)=">q.
n
Then [, {(g)=n.

Case 2 ESq<1.
F

P(Z,<n+))=P(Z, B0 ah
n

P(Z, <n+2)=P(Z, =)+ P(Z, =)= —i(i—2)=1>¢ .
al 13

Then [, (g)=n+l.

2. To prove (X,;,Z,) satisfies the conditon (&), by Proposition 3.1.3 , it suffice to

show that for each ge(0,1), him max P(EX nk128)=0 forall €>0.
n—oolsk<l, (g)

Let ge{0,1) and €>0. Let N eN be such that %<q and L<s.For n=N,

N

P(X.. =)= max P(X, .|=e)= max (P(X ,=e)+P(X ,  <-€))=0.
Egﬁf;) (Xne>€) I<k<nil (X 2e) 1Sk£n+1( (X oie 20 (X )

Thus Hm max P(X,[|2e)=0.

n—ool<k<l, (g)

1 n+l
o2, =Zl=-’3ilsz forall ge(0,1).

Lig) = n+
k=1 k=t
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4. Let ge(0,]) and ue R~{0}. Let N, e N be such that —L2~<q.
: 1

Casel u<0.

Let Ny eN be such that u<— . Let N=max{N;,N,}.

1
N,
ly(g) u

For n2 N, Ky ()= xzank(x+unk)
k:I —00

s

3] ¥

= jx Ny dF, nk (x)
! w0

B

X
li

=0,
Then Kln(‘]) (u)«——)O.

Case2 u>0.

Let N, e N be such that >

! . Let N=max{N|,N,}.
YNy
b«
For n2N,K; (@)= 2 [PdFy vy

k=] —o

¥

= xzank (x)

T

=

o
1l

A+l

=3 ( WdFu @+ PdF, ()
e —

7 Jn

ntl

-

f

Lozl iy
(G-0X \/;) +(1 2)(\[5) )

k=l

ut

)

1

It

a5
I
LA

ntl

n

Then Kln(q) (u)—)l .

5. Follows from Theorem 3.2.7. #
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