CHAPTER VI
WAVELET THEORY IN STATISTICAL FIELD THEORY
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6.1 Gaussian model

The Gaussian model's Hamiltonian is similar to the Landau-Ginzburg

model’s but without the quartic tclm (u = 0).
68.1.1- -Formulation

The Gaussian model (free field theory) is given by the Hamiltonian
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To obtain the Hamiltonian in term of wavelet transform field, we must express the
difference of two fields in wavelet coefficients. This is done by using the

characteristic function of the link
L(x, p)(») = 8,5, (6.2)

and the scalar product in the space of lattice field, then

a(x+e )—a(x) <a,L(x,n)>
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As the wavelet transform is orthogonal, it conserves the scalar product.

<d,L(x,p)>

a(x+e )—a(x)

|
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where ﬁf"’(x, ()(x") is the wavelet transform of L({x,u)(y). “L'hen the expectation

value of the link Hamiltonian is

33180 e, " A (65)
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with the symbolic notation
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(6.6)

This gives the power spectrum of the link (x, 1) on scale n, in the sense. that the

original norm of the function L(x, ) is distributed over different sca.les Accord to

conservation of the norm

i@l - Saewo)y
The notation can be extended to
e S|

This gives the power spectrum of the whole lattice.

Similarly, the site Hamiltonian gives
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with the characteristic function S(x) of a site
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In this case, there is further analytical simplification as the sum over x€ I" can be

performed
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due to the normalization of wavelets,

The internal energy is therefore

U = <H>, liﬂij"l’m+%§$N,A,"’ (6.12)
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It is interesting when we use the characteristic function link .; both internal energy
and entropy are linear in the varational parameters. The variation can then be

performed analytically and leads to the result

A‘(-) = i AI
B m’+lLﬁ"’

; (6.13)
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With the notation (6.13), the quantity ll:f"’r/N" has taken place of the momentum
square k2 in the comresponding Fourier-space expression. The wavelet coefficient
n=N, t=0 gives the avérage of the function over all sites.

In the case of a charactg_;_istic function of a link (6.13), the average vanishes

and thus

A = e 6.14)
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is divergent for m’ —0. The same divergence appears in the Fourier Transform
associated with the k= 0 mode and is caused by the invariance under adding a
constant to a massless field. As it appears only in a single wavelet coefficient, it

can be easily subtracted in the wavelet case as with the Fourier Transform.




6.1.2 Correlator

According to C. Best and A.Schaferwork, I find something mistake in this
part. To calculate the correlator of the Gaussian model, we first derive the scaling
property of the fluctuation strengths A with respect to n. Using the factorization

property (5.4) of the wavelets, we find for (6.8)

£ (x, p)(x) YO (x+e, —X)Y(x = X)

D
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*[w,‘,”"" (x, +1~-x) =y " (x, - x, )) (6.15)

Squaring and summing over x,x” and §t yields

2
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& = X (Hw.‘“""’(x.-x:](w.‘_“""(xu+1—x;)—w.“""’(xu-x;)) (6.16)
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6.1.8 Correlation Function

" Given the fluctuation strengths A®™, the corelation function can be

calculated by applying the wavelet transform

<a(x)a(y)> = C(d)

n

ZE,: C™(x,y)A" (6.17)

with the wavelet autocorrelation
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() = 2T E0) (6.18)
These functions are not translation invariant as the translation group, has

complicated representation in wavelet space.

‘The scaling relations between wavelet (which hold approximately for

discrete wavelets of sufficiently high scale n imply that

Py = CP(x=y) !

i

2'(,.'-:-):2 CH Q2" " (x—y) (6.19)

These wavelet correlators have finite but nonzero extent (as the wavelets have).
Thus, long range correlations can be obtained by (in wavelet space uncorrelated)
fluctuations at sufficiently large scales. In this way, the wavelet theory can map a
critical position-space theory with long -range correlations to less critical wavelet-
- space theory dominated by short-range correlations.

The correlation function can be solved exactly by a Fourier Transform

(Itzykson Drouffe, 1992 and Zinn-Justin, 1989).

1 1 cos(k.d)

C(d) BN k_,,-mi’-+-E(2—2COS(I€.BM )

(6.20)

with & on the dual lattice FT" with lattice spacing -z—T,-

Figure 6.1-6.3 show the wavelet coefficient fluctuations in two dimensional
Gaussian model on 64*64, m = 0.032 for different t and sum all t for different

wavelet types.
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Figure 6.1 Wavelet coefficient fluctuation in two dimensional Gaussian model on
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Figure 6.2 Wavelet coefficient fluctuation in two dimensional Gaussian model on

' 64*64, m = 0.032,3=1,D8 (@) t=0 (b) t=1,2,3 (c)Sum all t
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Figure 6.3 Wavelet coefficient fluctuation in two dimensional Gaussian model on

64%64, m = 0.032,f=1,D20 (@t=0 (b) t=1,2,3 (c) Sum all t
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Figure 6.4-6.6 sho@ the Gaussian correlation function m = 0.032, 64*64
lattice points, f =1 at different scales (n), for different wavelet types.

Figure 6.7 shows the prediction for correlation function from different
wavelets. The higher order of the wavelet is closer to the exact result. Since the

higher wavelets approach form of the free wave that diagonalizes the Hamiltonian,
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Figurre 6.4 Gaussian correlation function m = 0.032, 64*64 lattice points, B =1 at
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Figurre 6.6 Gaussian correlation function m = 0.032, 64*64 lattice points, B =1 at
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Figure 6.7  Gaussian correlation function m = 0.032, 64*64 lattice points, § =1,
sum all 1, n. The solid line is the exact result, the broken lines the
resull of the variational procedure with different Daubechies wavelets
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where @(d)is step function defined by

&(d)

0 whered <0
1 whered =0

The correlation function of the field theory is then

<a(x)a(x+d)> = ')':(1-2""d)®(1—2""d)®(d) (6.22)

nal f

Let 2" <d <2™". Then only terms with nzn, contribute to the sum. If
Y h

A" ~a"4™ the sum can be performed, sending N =5 o0 5o
' P

C(d)

*A(O}nn,@(d) ianz-l)u(l LY 2]-ud)

Hay,

i Del

D, 2 =-H,
A(O)nwe)(d)a"nz'l 0(2")_(1 —2' nda?,':__) (6.23)

il

inserting 2" ~ dand thus " ~4 “6“ . the correlation function becomes
C(d) ~ dm (6.24)

This corresponds to the equation (3.2) which the critical exponent (17) equal to zero

in Gaussian model.
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8.2 Landau-Ginzburg Model

6.2.1 Formulation

-

To consider the Landau-Ginzburg theory in D dimensions with single

component order parameter §(x), the Hamiltonian is

=y
J
—

| d"x{%(VS(x)): +%°S(x)’ +f‘2ﬁs(x)“ ] (6.25)

with coupling constants 7, and u,.

The general expansion of the field §(x) in a wavelet basis is given by

Y8 T 500y ) x) +§ (6.26)

notoxtel”

S(x)

As wavelets are objects whose zero-th moments (their average over the real axis)
vanish, they cannot represent an overall magnetization of the system. The over all

magnetization is written separately as S,

<Sx)> = § (6.27)
This constant, it implies for the wavelet coefficients

<d"(xy> = § 8§ F (6.28)

n N0

ie., the only coefficient with a nonzero expectation value is 4'"', associated with

scaling function at the topmost level. An extra degree of freedom. 8 | eiving the
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center of the probability distribution of 4., appears only in the intenal energy
and does not influence the entropy.
The expansion (6.26) is substituted into the Hamiltonian. Assuming §=0,

the first term becomes

H, IPEEAA

"

ZZZS"'(xl) Sp(w YA (xm)) | (6.29)

Myt fyly Xk

with the representation of the Laplac::c operator in wavelet space.
B mm) = a2 Gaws (4)) (630)

Fortunately, this quantity has been investigated by [Beylkin et at., 1991], who gave
an existence proof for some wavelet and scaling form. Remarkably, it does not
exist for the Haar wavelet which can not differentiate twice.

The quadratic term becomes

DB IS (6.31)

a n x

JdPxs(x)

H,

by the orthonormality properties of Daubechies wavelets.

The quartic term has a complicated four-point interaction

H, JaPxs(x* - (632)

Ay iy Hyanly &f o

2 2 X5(R). S M dnan) 639
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The matrix M is obtained by Cartesian composition

Mo gen) = OME(g 2.5, 7) (6:34)

QUL jel 0 fubaitala

from the matrix element

(ANNA

M("""""")(xl’,x;,x;,xj) = de‘l’,f:")(x,’)(x )...‘P,f"‘)(x;)(x) (6.35)
This complexity can be simplified by using wavelet si)ace instead of
position space. The scaling relations of wavelets allow considerable simplifications,

at least an approximate solution can be obtained analytically.
6.2,2 Scaling Form of the Matrix Elements

To calculate the internal energy, the scaling forms of the involved matrix
elements are derived. For the derivative term (6.29), we need the matrix element
(6.30) of the Laplace operator for 7, = n, = n and x! =x! =0 (for simplicity,
the system is assumed to have translational invariance)

By rescaling the integration variables,

~

A"=}o,0)

i

010 gPY-2b | 4 2, (x)A¥, (x)

27 A% 0) - o (636)

iy

the powers of 2 stem from the normalization of wavelets, from the rescaling of the

integration variable and from the substitution under the double derivative,

-

»
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respectively. The remaining coefficient A‘:;?(0,0) = A, hasbeen shown to
exist and calculated by Beylkin et al., 1991, for Daubechies wavelet starting at

DAUBG6. The representation of Laplace operator does not exist for Haar wavelet or

DAUB4.

For the four point matrix element, the situation is not simple as the

expression is reduced to

M (nmm) (0’0‘ x'v’ x’)

fibyigty

Jax2mmy, (x )2, ()27, ()R, (X)(x)

2 Jan¥, (x ) ¥, ()

* oy, QM x= )XY, (27 (2" (x- X)) (6.37)

Assuming 7, <1, x’ may be substituted by x} —x{ (as ™ contains all points oi-

r“). When n,<<pn,, assuming the third term and fourth wavelet under the
integral change much faste: ihan the other two and are thus essentially localized
around x=27"x’.. Then the first two terms can be considered approximately
constant under the integral and perform the remaining integration using the
orthonormality of wavelet.

Mo 00,x0,0) = 27y 2Ty, (27 (6.38)

In order to evaluate the free energy, it is necessary to sum over X;, X;,

then the scaling expression becomes
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3 T MG EaE) = N2ews,,8
e xel™

(6.39)

3.4y

8.2.3 Effective Internal Energy

The complete expression of the internal energy is derived. From the

derivative term, the contribution is

U \

F: - ' —22 hDE( 'l':) |': (6'40)
from the quadratic term

U | A

& g -;9-[222‘“"4‘,"’ +s’} (6.41)

from the quartic term, using Wick's theorem (Bellac 1991) and equation (6.39)

Z|=

- -uozz',z "R A AT, + 2" +3u0S2222'"D (6.42)

mny 4

6.2.4 Approximate Solution
For simplicity, the nondiagonal term in A g neglected and written
A = 5,,4; < I (X )

2

Let A = 222rhA” (6.44)
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Then the free energy can be written

%0 = %gZ"""(—A,’h)A}"’+-’§-A+—'-§-§’
+3%?- A’ +3u,5%A +%9— 54 (6.45)
The free energy is minimized v:(ith respect to 5, :
%-J = 1,8 +2u,S° +6u,SA | | = 0
which lead to the trivial solution S=0, the nontrivial solution is
§ =Y (6.46)
2\ 2y, 3
The square root is positive whenever .
A < ;—:Z (6.47)

u, >0, thus the condition for the existence of a nontrivial minimum requires that

the fluctuation are smaller than a certain value,

To minimize free energy with respect to"the fluctuation’ 47 ;

1

1 oU 1 r _
= —2__"0 (—ﬁll)+‘29‘3qu+ 3MOS 2 —W

2N, A 2
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= 0 (6.48)
This yields
1 1

. = - 6.49
A 28 270(-4, )+, +3u,(A+5?) ©,

Note that A depends on the A™. Putting u= 0, we get the Gaussian model

results

| 1
() : r~ 6.
A™ (Gaussian) 2B 27 (-A Jor, (6.50)

The power law behavior A" =2 corresponds to infinite correlation length. At the
transition point, the correlation length is infinite and the fluctuation strengths have

scaling form
AP = 20 (6.51)

Sum the equation (6.44) by using A™ from (6.49)

(0}
A e _E'i- ' B Z 1
252 -] F 2B (=4, )20 ~1)

The fluctuation strengths are finite for D > 2. On the other hand, this result can

be equated to the value from 6.47)

g L1

rT-A, 27
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This approach can be extended to allow a small but non vanishing mass,
equivalent to a small deviation from criticality. Expanding in this mass parameter,
it reveals that the solution is unstable for D<4 as the sum A diverges.

The upper critical dimensions can be obtained as D >4, which the mean

field result holds.

6.2.56 Renormalization Group Transformation

6.2.6.1 Formulation

By the principle of minimal free energy, the calculations of the partition
function to a nonlinear minimization problem, have been reduced in a moderate
number of variables.

In the concept of Wilson renormalization group, to solve this minirnization
successively with respect to each scale is attempted, thus eliminating the variable
associated with scale and obtaining an effective internal energy function of the
remaining variables.

Assuming A4 = A", this simplifies the renormalization group transformation
considers;bly. As the solution calculation is derived, this will not change the
quantitative behavior.

When # < 0 have been eliminated, the Egscalcd fields are introduced on the

1 ..
next-coarser lattice by the transformation

Z(n) 2-2 A(m-l) - (6.52)

The scale factor is chosen in such a way that the kinetic term remains

unchanged under the scale transformation.
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Let us first assume that A” vanishes, i.e. the coarse lattice is considered

exclusively. Then the Hamiltonian is

Ug _ -nD _1_ ~2nD PRI T
TN, = 22 [22. C,+2' 5 ]A |
U, o 55 ol ()

$7 200 g o () A (6.53)

g

where C, =Z(-—-A"). The volume factor 22N, on the left hand side takes the

reduced number of sites on the next-higher lattice into account.

This is identical with the original expression when the substitutions
r - ry=2r, (6.54)
u, - uy =22y (6.55)

Thus, the canonical dimension of the coupling constant is obtained. The complete

internal energy in form of A is

U, R/ (1 ron,J @ 3Um o

-2 = —_— | = L4 ——t

N, Nt SCats += [4"]
+3u0n,z(z2""DA'”]}A(°)) (6.56)

The renormalization step-is pe-formed by

e minimizing the expression with respect to 4"
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e minimizing the expression with respect to A
e calculating the new effective free energy by inserting the value of A©

found, which will be a function of the A”, n>0

(n)

¢ expanding it into powers of A" , and

e absorbing the new terms into a renormalization of the coupling constants

To perform this calculation, the following shorthand notation is used .

1
a £ [—2- C,+n, 52'1] 6.57)
A = 3n,22;,2"'°A(") (6.58)
3
b - > n (6.59)
Then the internal energy becomes
U U’ -
~ = —+(a+u,A)a?+up(4®) (6.60)
Q NO
The corresponding entropy is
- S b4}
. = 1o =2nD (n}
N 5 ;2 In A (6.61)

Minimizing the free energy with respect to A'” leads to the equation

nf
(0 4y A} + 20,54 - A = 0 (6.62)
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In the spirit of the £ expansion, the Guassian model (1,= 0) is assumed 2
0 ) . .
good approximation. Then A” is expanded in a series of the quartic coupling u,.

The intemal energy is obtained to O{u):

H

Yy
N

1]

U (n_3niw, S 135n° ’]
N, \2B 84°B° 8a'B’ 32a°B°

ny’ 27nu0 aD A(n)
+ (4 B 207 )22 A

8 lnIs
£ 8a"|3 - 2‘622 (n.+ﬂ:)DA(n~. Alm) (6.63)
n>0ny >0

The second and third can be absorbed into a redefinition of coupling constants.
To lowest order in u,
n’u’

ren -~ W (6'64)

o
[

81nu,
u" = uo - 8a4 B 2 (6.65)

Thus, according to (6.30) and (6.31), the renormalization flow is

O’y
rO’ = 22(’6-’- 403;01)
N
’ - _ 1ty
i, = 2 "0(" S(J‘B 2 J

Note that the variable ¢ depend on r,
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8.2.5.2 Renormalization Flow and Fixed Point

At first, there is always the fixed point 7y = U, = 0, corresponding to
massless Gaussian model with infinite correlation length. The critical exponents are
given by the lincarized renormalization transformation around this point. The

matrix M of transformation is derived

3(r) 20
; _ x 0 2, (6.66)

This is the well-known result for the critical behavior around the Guassian fixed
point. In particular, it is stable for D > 4 in the u direction.
For D < 4, there is another fixed point. Using the shorthand
ry = 2 (r,+nu;) (6.67)

Y, = 24%u (1-7142) (6.68)

and solving for nontrivial fixed point in the second equation, one gets

. 1=22
- = + 8 | (669)
(only the positive solution is physical). The corresponding 71, is
. T h 4
r = (-2 (6.70)

Iy
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Resubstituting and taking into account that a 7| and gamma involve r,, one gets

27n 27n?

| oy Yl b -
4(1-2 1-2 :
r = - {1+ ( )) 4( )CA (6.71)
1 1
Besides numerical factor is dominated by the matrix element of the Laplace

operator CA. However, the stability of the fixed point is investigated by

neglecting the influente of 'r, on the coefficient . The two eigenvalues are

calculated
32°-32
= d = _— 72
A 4 A > (6.72)

Both of them are 21 and give the Wilson-Fisher fixed point instable. It
remains to be seen whether the instability is inherent to the variational approach or
the perturbative expansion in implementing the remormalization group and in

calculation of its fixed points.
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